
Paper Distributed asynchronous

algorithms in the Internet – new routing

and traffic control methods
Andrzej Karbowski

Abstract— The paper presents several new algorithms con-

cerning the third (network) and the fourth (transport) layer

of ISO/OSI network model. For the third layer two classes of

the shortest paths algorithms – label correcting and auction

algorithms – are proposed. For the fourth layer an application

of price decomposition to network optimization and Internet

congestion control is suggested.

Keywords— computer networks, optimization, shortest path,

traffic control, decomposition, distributed computations, asyn-

chronous algorithms.

1. Introduction

In the last decade two new approaches were intensively

studied to solve shortest path/routing problems in parallel

and distributed environment, namely, label correcting [4, 8],

and auction [18] algorithms.

The label correcting algorithms may be treated as a gener-

alization of the Bellman-Ford algorithm. The name “la-

bel” refers to the distance from the origin node “1” to

a node i 6= 1, the correction is its change in subsequent iter-

ations of the algorithm leading towards the optimum (these

algorithms may be similarly applied to problems with mul-

tiple origins and a single destination, by reversing the roles

of origins and destinations and the direction of each arc).

A notion of the candidate list of nodes is introduced. Dif-

ferent shortest path algorithms are distinguished by the

method of selecting the node to exit the candidate list at

each iteration. The simplest method from this family is the

Bellman-Ford method – where the candidate list is simply

a FIFO queue. More sophisticated label correcting methods

maintain two queues and use more complex removal and

insertion strategies. The objective is to reduce the num-

ber of node reentries to the candidate list. Some of these

methods – namely SLF (small label first) and SLF-LLL

(large label last) will be described in the paper.

An interesting alternative to these algorithms seem to be

auction algorithms. In the basic version [2, 8] an auction

algorithm maintains a path starting at the origin and a price

for each node. The terminal node of the path “bids” for

neighboring nodes basing on their prices and the lengths

of the connecting arcs. At each iteration the path is either

extended by adding a new node or contracted by deleting its

terminal node. When the destination becomes the terminal

node of the path, the algorithm terminates.

In recent years a considerable progress was also done in

the area of distributed traffic control in the Internet. A spe-

cial interest was paid to the asynchronous price method.

In particular, the theory presented in [14] was thoroughly

examined by the author of this paper. Unfortunately, an

error in the proof of convergence of the asynchronous ver-

sion of the algorithm was found. Later on this proof was

corrected [12], so this interesting and important theory has

been saved. At the same time Steven Low and his col-

laborates have shown how important for the Internet this

theory is. In their works they used it not only as a tool to

analyze the stability of different implementations of TCP

congestion control protocols [16, 17], but also as a basis

for the development of new, more efficient protocols [10].

At the end of the article some of these results will be pre-

sented.

2. Classical Bellman-Ford routing

algorithm

We consider a directed graph consisting of n nodes

(routers). Let us denote by N the set of all these nodes

and by Ni the set of neighbours of the ith node (that is,

the set of all nodes from the set N, to which arcs starting

from i go). Let us assume, that every arc (i, j) : j ∈ Ni is

characterized by a positive scalar value ai j, which we will

treat as the cost of passage from i to j, that is the distance

measure (metric).

Let us choose a node m ∈ N and assume, that it may

be reached from all other nodes. It can be easily proved

(e.g., by the contradiction), that the paths of the minimum

costs d̂im (so-called shortest paths) can be obtained through

the solution of the following set of equations:

d̂im = min
j∈Ni

(

ai j + d̂ jm
)

i 6= m . (1)

Let us take now

him(d) =

{

minj∈Ni (ai j +d jm) i 6= m
dii i = m

(2)

and

d = [d11d12, . . . ,d1n, . . . ,dn1,dn2, . . . ,dnn] , (3)

hi(d) = [hi1(d), . . . , . . . ,hin(d)] , (4)

h = [h1,h2, . . . ,hn] . (5)

29

Andrzej Karbowski

To find the solution we may apply the Bellman-Ford algo-

rithm

d := h(d) (6)

starting from dii = 0; di j = ∞, i 6= j,∀i, j ∈ N. This algo-

rithm is based on the order preserving (monotone) map-

ping h, which may be implemented in a distributed, totally

asynchronous version [6].

The optimization algorithm (1)–(6) may be applied respec-

tively – to adapt routing to the current situation in a net-

work. In that case the cost ai j should be a measure of

the quality of transmission, dependent on the current flow

(transmission rate) fi j between nodes i and j. A very pop-

ular flow cost function ai j(.) is:

ai j(fi j) =
fi j

(ci j − fi j)+ εi j
+di j · fi j , (7)

where ci j is the transmission capacity of arc (i, j) and di j is

the processing and propagation delay (of course we assume

0 ≤ fi j ≤ ci j; εi j > 0 is a small constant to avoid zero in

the denominator). However, in this – adaptive – case one

should remember, that the cost functions (7), dependent

monotonically on flow, should be augmented with constant

components δi j (so-called bias factors, interpreted as link

costs/lengths at zero load), because otherwise oscillations

(in subsequent optimal routings) may occur [5].

The presented adaptive routing approach is used in the In-

ternet [7] in demons routed, gated and protocols RIP and

Hello.

In the first protocol so-called “hop count metrics” is used,

what means, that simply all elementary arcs are counted

for; in the second “network delay metrics”, that is the time

of transmission, is taken into account. In the active state,

all messages used to the optimization of the routing tables

(i.e., the tables of the shortest path neighbours for differ-

ent destinations) are sent by every computer to all direct

neighbours every 30 seconds.

3. Generic shortest path algorithm

The algorithm presented in the previous section may be

treated as a special case from a more general class of algo-

rithms. We will present these algorithms to solve problems

as formulated in the cited works.

Let us take now that for each node i ∈ N we want to find

a path of minimum length (cost) that starts at node 1 and

ends at i (these algorithms may be similarly applied to

problems with multiple origins and a single destination,

by reversing the roles of origins and destinations and the

direction of each arc). We assume, that all arc lengths are

positive and that there exists at least one path from node 1
to each other node.

A general class of algorithms to which belongs, among

others, Bellman-Ford algorithm are label correcting algo-

rithms. The name “label” refers to the distance di , d1i

from the origin node “1” to a node i 6= 1, the correction is

its change in subsequent iterations of the algorithm lead-

ing towards the optimum. A notion of the candidate list of

nodes is introduced. Let us denote it by V . In addition to

this, let us denote by A the set of all arcs in the directed

graph (that is, the set of all links in the network). As-

suming that V is nonempty, a typical iteration of a shortest

path algorithm (not necessarily of label correcting type) is

as follows [3]:

Initialization:

d1 = 0, di = ∞ for i 6= 1,

V = {1} .

Typical iteration of the generic shortest path algorithm:

Remove a node i from the candidate list V .

For each outgoing arc (i, j) ∈ A, with j 6= 1,

if d j > di +ai j, set:

d j := di +ai j (8)

and add j to V if it does not already belong to V .

Different shortest path algorithms are distinguished by the

method of selecting the node to exit the candidate list V
at each iteration. For example in Dijkstra method the node

exiting V is the node whose label is minimum over all

other nodes in V . This guarantees, that every node enters

and exits V exactly once and its label is not changed in

later iterations. Because of that, these methods are called

label setting methods. Label correcting methods avoid the

overhead associated with finding the minimum label node

at the expense of multiple entrances of nodes into V . In

these methods a queue Q is used to maintain the candidate

list V . Bellman-Ford method is the simplest method from

this family. In the terms of the above generic shortest path

algorithm it maintains V in a FIFO queue Q; nodes are

removed from the top of the queue and are added to the

bottom of Q.

4. SLF and LLL strategies

More sophisticated label correcting methods maintain V in

one or in two queues (eg., in so-called threshold algorithms

the candidate list is partitioned into two separate queues

on the basis of some threshold parameter) and use more

complex removal and insertion strategies. The objective

is to reduce the number of node reentries in V . Some of

these methods are significantly faster than Bellman-Ford

method. The most effective proved to be SLF and SLF-

LLL methods [4].

In the SLF method the candidate list V is maintained as

a double ended queue Q. At each iteration, the node re-

moved is the top node of Q. The rule for inserting new

nodes is as follows:

30

Distributed asynchronous algorithms in the Internet – new routing and traffic control methods

Let i be the top node of Q, and j be a node that enters Q,

if d j ≤ di, then enter j at the top of Q;

else, enter j at the bottom of Q.

The LLL method defines a more complicated strategy of re-

moval a node from Q, which aims to remove from Q nodes

with small labels. At each iteration, when the node at the

top of Q has a larger label than the average node label in Q
(defined as the sum of the labels of the nodes in Q divided

by the cardinality Q of Q), this node is not removed from Q,

but rather it is repositioned to the bottom of Q. It may be

described as follows:

Let i be the top node of Q, and let s = ∑ j∈Q d j/Q,

if di > s, then move i to the bottom of Q.

Repeat until a node i such that di ≤ s is found and is re-

moved from Q.

It is possible to combine the SLF queue insertion and

the LLL node selection strategies. The resulting method

is denoted by SLF-LLL. The proof of convergence of

these two algorithms closely resembles the proof of the

convergence of Bellman-Ford algorithm and is based on

the monotonicity property of the label modification map-

ping [4, 8].

In the parallel implementation, each processor removes the

top node from Q (perhaps after some shifts of the queue in

the case of LLL strategy), updates the labels of its adjacent

nodes and adds these nodes (if necessary) into Q according

to SLF insertion strategy. This means, that several nodes

can be simultaneously removed from the candidate list and

the labels of the adjacent nodes can be updated in parallel.

In the distributed version an additional processor responsi-

ble for maintaining the candidate queue Q is useful. When

the algorithm is implemented in an asynchronous version,

a new node may be removed from the candidate list by

some processor while other processors are still updating

the labels of other nodes. Of course, only one processor

at a time can modify a given label. Hence, it is very easy

to implement this method on a parallel shared-memory or

ccNUMA machines using locks to assure the consistency

of data.

A multiple queues version of this algorithm showed also

very good features [4]. In this version each processor uses

a separate queue (a node can reside in at most one queue). It

extracts nodes from the top of its queue, updates the labels

for adjacent nodes and uses a heuristic procedure for choos-

ing the queue to insert a node that enters V . For example,

it may be the one with the minimum current value of the

sum of the outgoing arcs in that list. This heuristic is easy

to implement and ensures good load balancing among the

processors. For checking whether a node is present in the

candidate list (that is, in some queue) it is suggested [4, 8]

to associate with every node a Boolean variable, which

is updated each time a node enters or exits a candidate

list. This algorithm is easily generalized to the problem of

finding several distinct shortest paths [8] showing in many

problems very high efficiency.

Other label correcting methods (however, not so efficient in

tests), e.g., with threshold dividing queues, are presented

in [4].

5. Auction algorithm

A more efficient alternative to the presented algorithms

seem to be auction algorithms. In the basic version [2, 18]

such an algorithm maintains a path starting at the origin s
and a price for each node. The terminal node of the path

“bids” for neighboring nodes basing on their prices and the

lengths of the connecting arcs. At each iteration the path

is either extended by adding a new node or contracted by

deleting its terminal node. When the destination becomes

the terminal node of the path, the algorithm terminates.

To present the algorithm in a formal way, let us denote by P
a path starting at the origin, that is: P = (s, i1, i2, . . . , ik),
where (im, im+1) ∈ A, m = 1, . . . ,k − 1. We assume that

i j1 6= i j2, j1 6= j2, that is a path does not contain any cycle.

The node ik is called the terminal node of P. The degener-

ate path P = (s) may be also obtained in the course of the

algorithm.

If ik+1 is a node that does not belong to a path P =
(s, i1, i2, . . . , ik) and (ik, ik+1) is an arc, extending P by ik+1

means replacing P by the path (s, i1, i2, . . . , ik, ik+1). If P
does not consist of just the origin node s, contracting P
means replacing P with the path (s, i1, i2, . . . , ik−1).

In addition to the path, the algorithm maintains a price pi

for each node i ∈ N in the network. Let us denote by p the

vector of all prices pi. We say, that a path-price pair (P, p)
satisfies complementary slackness (CS) if the following re-

lations hold:

pi ≤ ai j + p j, ∀(i, j) ∈ A , (9)

pi = ai j + p j (10)

for all pairs of successive nodes i and j of P.

An important property is that if a path-price pair (P, p)
satisfies CS, then portion of P between node s and any

node i ∈ P is the shortest path from s to i and dsi = ps − pi

is the corresponding shortest distance.

The algorithm proceeds in iterations, transforming a pair

(P, p) satisfying CS into another pair satisfying CS. At

each iteration the path P is either extended by a new node

or contracted by deleting its terminal node. In the latter

case the price of the terminal node is increased strictly. In

may be described in the following way:

Typical iteration:

Let i be a terminal node of P.

• Step 0: (Scanning of successor nodes)

If pi < min
{ j|(i, j)∈A}

{ai j + p j} (11)

go to Step 1; else go to Step 2.

31

Andrzej Karbowski

• Step 1: (Contract path)

Set pi := min
{ j|(i, j)∈A}

{ai j + p j} (12)

and if i 6= s contract P.

• Step 2: (Extend path)

Extend P by node ji, where

ji = arg min
{ j|(i, j)∈A}

{ai j + p j} . (13)

If ji is the destination d, stop; P is the desired shortest

path.

The algorithm starts with the default pair:

P = (s), pi = 0, ∀i

and stops when the destination node d becomes the termi-

nal node of the path. This iteration is called the “forward

algorithm”. It is possible to apply also the “reverse algo-

rithm”, where not the source s, but the destination node d
is fixed (and forms the initial path) and the path extends by

inserting and contracts by deleting the starting node, and

to use a combined algorithm, where there are two paths:

Pf – starting at the origin s and Pr – ending at the des-

tination d. In this algorithm alternately several forward

and reverse iterations are performed at least one of which

leads to an increase of, respectively, origin price ps or the

destination price pd . This two-sided algorithm terminates

when the two paths have a common node. In many tests [2]

this hybrid approach proved to be the most effective, much

faster than the sided Dijkstra algorithm.

When there are several origin nodes, the shortest path auc-

tion algorithm may be implemented in a parallel way in

a distributed environment [2]. In the basic (i.e., forward)

version for each origin i there is a separate processor that

executes the forward algorithm and keeps in local mem-

ory a price vector pi (build of the snapshots of prices p j
l

sent by other nodes) and a corresponding path Pi satisfying

CS together with pi. The price vectors are communicated

at various times to other processors, perhaps irregularly.

A processor operating on Pi upon reception of a price vec-

tor p j from another processor j, adopts as the price of each

node l the maximum of the prices of l according to the ex-

isting and the received (i.e., the snapshots) price vectors,

that is:

pi
l := max(pi

l , p j
l), ∀l ∈ N . (14)

This guarantees keeping the CS property, monotonicity of

the mapping:

pi := min
{ j|(i, j)∈A}

{ai j + p j} (15)

and the asynchronous convergence of the algorithm.

The parallel, synchronous and asynchronous implementa-

tions of the two-sided different shortest path algorithms for

different problems (including many origin – many destina-

tions routing problem) are more complicated due to the pos-

sibility of losing CS and, in the consequence, the oscillation

of prices. To avoid it, all nodes are equipped with counters

for forward and reverse extensions without an intervening

contractions. However, in most tests (on a shared-memory

machine) much simpler, one sided, forward scheme showed

superiority. The details are described in [18].

6. The application of the price method

to network flow optimization

In this section we will return to a problem presented in [11],

because since that time there were some progress both in

a better justification of this approach and in the understand-

ing of its importance for the Internet. There were also suc-

cessful implementations of this method to improve Internet

congestion control protocols at the TCP level.

We will consider the situation, where the capacities of links

are too small to carry all traffic and it is necessary to reduce

the users’ transmission rates. So, we will deal with the

decision variables – flexible transmission rates xw, where

w ∈ W is the connection and W is the set of all active

connections (i.e., source-destination pairs).

The transmission rates should belong to some intervals:

xw ≤ xw ≤ xw . (16)

Every customer, that is the user of the network, assesses

the satisfaction from the use of the network through his

utility function Uw(xw), defined on the interval [xw,xw]. In

this problem, instead of minimization of the total cost of

transmission, which is not so important for the operator of

the network (because most links are fully used), we will

strive to maximize the satisfaction of the customers, that is

the sum of their utility functions.

Hence, our problem will be as follows:

max
x ∑

w∈W
Uw(xw) , (17)

xw ≤ xw ≤ xw, w ∈W , (18)

fi j = ∑
w∈Wi j

xw ≤ ci j, ∀(i, j) ∈ A . (19)

The last inequality expresses capacity constraints of the

links; Wi j denotes the set of connections (virtual paths)

traversing arc (i, j), that is:

Wi j = {w|(i, j) ∈ Aw} , (20)

where Aw is the set of arcs (links) used by connection w.

The Lagrange function for problem (17)–(19) will be as

follows:

L(x, p) = ∑
w∈W

Uw(xw)− ∑
(i, j)∈A

pi j

(

∑
w∈Wi j

xw − ci j

)

, (21)

where

x =

[

xw,w ∈W

]

. (22)

32

Distributed asynchronous algorithms in the Internet – new routing and traffic control methods

Let us notice now that:

∑
(i, j)∈A

pi j

(

∑
w∈Wi j

xw − ci j

)

= ∑
(i, j)∈A

pi j ∑
w∈Wi j

xw − ∑
(i, j)∈A

pi j ci j

= ∑
w∈W

∑
(i, j)∈Aw

pi j xw − ∑
(i, j)∈A

pi j ci j

= ∑
w∈W

xw ∑
(i, j)∈Aw

pi j − ∑
(i, j)∈A

pi j ci j

= ∑
w∈W

xw pw − ∑
(i, j)∈A

pi j ci j , (23)

where

pw = ∑
(i, j)∈Aw

pi j (24)

is the price for the connection w along its path formed of

arcs (i, j) ∈ Aw.

Applying (23) to (21) we get:

L(x, p) = ∑
w∈W

(

Uw(xw)− xw pw

)

+ ∑
(i, j)∈A

pi j ci j . (25)

According to the duality theory, the optimal solutions, both

the optimal distribution of flows
(

x̂w,w∈W
)

and the vector

of optimal prices [p̂i j ,(i, j) ∈ A] may be obtained via the

two-phase procedure:

min
p

[

LD(p) = ∑
w∈W

max
xw≤xw≤xw

(

Uw(xw)−xw pw

)

+ ∑
(i, j)∈A

pi j ci j

]

.

(26)

In this way we obtained W problems of optimization of

connection transmission rates and an A = n-dimensional

problem of optimization of prices of unit bandwidth

(V denotes the number of elements of the set V). It can be

proved [12, 14], that they may be solved in a distributed,

partially asynchronous way1.

More precisely, the wth user solves the local optimization

problem:

max
xw≤xw≤xw

(

Uw(xw)− xw p̃w(t)

)

, (27)

where p̃w(t) is the current estimate of the price of trans-

mission w, that is:

p̃w(t) = ∑
(i, j)∈Aw

t

∑
τ=t−B

ηw
i j(t,τ)pi j(τ) . (28)

In the last equation ηw
i j(t,τ) are (usually unknown) non-

negative coefficients such that:

t

∑
τ=t−B

ηw
i j(t,τ) = 1 (29)

1The proof of the asynchronous convergence theorem in [14] had a se-

rious error pointed out and corrected in [12].

and B is the length of the time window (i.e., the measure of

asynchronizm). The optimal solution of the local problem

(27) may be determined analytically [14] from the expres-

sion:

x̂w =
[

U
′−1
w (p̃w)

]xw

xw

, (30)

where [z]ba = min{max{z,a},b} and U
′−1
w is the inverse

of = U
′

w.

The optimal link prices p̂i j in problem (26) may be cal-

culated in different ways. In the simplest case the steepest

descent method is applied. According to Eq. (21) this is

realized by the iteration:

pi j(t +1) =

[

pi j(t)+ γ
(

f̃i j(t)− ci j

)]+

, (31)

where

f̃i j(t) = ∑
w∈Wi j

t

∑
τ=t−B

ηi j(t,τ)xw(τ) (32)

is the estimate of the total flow through the link (i, j). In the

last equation ηi j(t,τ) are (usually unknown) nonnegative

coefficients such that:

t

∑
τ=t−B

ηi j(t,τ) = 1 (33)

and B is the length of the time window. Due to the the-

ory presented in [12, 14], for sufficiently small values of

the stepsize γ and bounded time intervals between consecu-

tive updates of the optimal link prices pi j and transmission

rates xw, the algorithm converges partially asynchronously.

Since the algorithm was devoted to flow control in the Inter-

net, where sending information on current internal prices

of links (from the operator to users) and the calculation

of current average transmission rates in all virtual paths

would mean some additional equipment and the commu-

nication overheads, the following estimation mechanisms

were proposed [1, 15]:

1. Instead of calculation of the aggregated flow rate

f̃i j(t) in the link (i, j), the link operator measures the

link buffer occupancy vi j(t). This occupancy evolves

according to the equation:

vi j(t +1) =

[

vi j(t)+ ∑
w∈Wi j

xw(t)− ci j

]+

, (34)

where xw(t) is the current flow rate of the transmis-

sion w. Then, the new link price pi j(t + 1) is set

as:

pi j(t +1) = γvi j(t) . (35)

2. Instead of passing the users directly the information

on the current price of the unit of the bandwidth,

the link operator applies random exponential mark-

ing (REM) algorithm. It allows for encoding this

information in only one bit2 of the stream of packets.

2We mean explicit congestion notification (ECN) bit in the IP header.

33

Andrzej Karbowski

Namely, it is assumed, that the link (i, j) marks each

packet with a probability mi j(t) which is exponen-

tially increasing in the price pi j(t) (or in the buffer

occupancy vi j(t) – see (35)):

mi j(t) = 1−φ−pi j(t) , (36)

where φ > 0 is a constant. Once a packet is marked,

its mark is carried to the destination and then con-

veyed back to the source via acknowledgement (due

to the TCP/IP protocol). The end-to-end probabil-

ity that a packet of the connection w is marked after

traversing the whole its way made of arcs form the

set Aw is then:

mw(t) = 1− ∏
(i, j)∈Aw

(1−mi j(t)) = 1−φ−pw(t) , (37)

where pw(t) = ∑(i, j)∈Aw pi j(t) is the price for the

transmission of the unit of bandwidth along the vir-

tual path w. Then, the customer using this connection

estimates the price of it p̃w(t) by the fraction m̃p(t)
of his packets marked in some window before time t
and inverting (37), that is:

p̃w(t) = − logφ (1− m̃w(t)) . (38)

Owing to this two improvements, there is no need for ad-

ministrative communication between the operators of links

and the end users of the network.

It should be noted, that the prices in this model are regarded

rather as a control signal to guide sources’ decisions, than

a part of the charge a user pays [14]. In particular, these

prices (i.e., Lagrange multipliers) equal zero when the traf-

fic is below the capacity of the network. In other words:

the user pays nothing for the highest desirable quality! On

the contrary, he pays more and more for connections of

lower quality, when there is a congestion in the network.

Such pricing mechanism would be hardly acceptable for

a human. So it is rather a tool for software agents.

In the latest articles Low and collaborates [16, 17] present

few such agents and interpret their utility functions. It is

shown, that in the Internet these agents are simply different

implementations of TCP congestion control protocols. The

basic idea is to regard the process of congestion control as

carrying out a distributed computation by sources and links

over a network in real time to solve an optimization prob-

lem. The objective is to maximize aggregate source utility

subject to capacity constraints. The source rates are in-

terpreted as primal variables, congestion measures as dual

variables, and TCP/AQM (active queue management) pro-

tocols as distributed primal-dual algorithms to solve this

optimization problem and its associated dual problem. Dif-

ferent protocols, such as Reno, Vegas, RED, and REM, all

solve the same prototypical problem with different utility

functions, Moreover, all these protocols generate conges-

tion measures (Lagrange multipliers) that solve the dual

problem in equilibrium. It is described in the next section.

7. TCP window flow control through

the price method and the consequences

The classical congestion control method, currently used in

the Internet at the TCP level, is based on Jacobson al-

gorithm [9] called TCP-Reno. If we denote by: z(t) – the

length of the source window at time t, that is the maximum

number of unacknowledged packets that the source can in-

ject into the network at the time t; RTT – round trip time,

that is the time between sending the packet and receiving

its acknowledgement; ACK – the acknowledgement packet;

TOUT – timeout for waiting for ACK, this algorithm may

be described in the following way:

1. Slow-Start phase

• z(0) = 1,

• after every ACK received z(t + 1) = z(t) + 1
until attaining SSTRESH (slow-start threshold).

2. Congestion avoidance phase:

z(t +1) =















































z(t)+ 1
z(t) OK ≡ ACK received

before TOUT

1
2z(t) the loss of packet

≡ ACK has not arrived

before TOUT

or 3 previous

have been received
(39)

In the recent works [16, 17]:

• z are treated as primal variables (actually it is taken

x = c · z, c = const.),

• the link congestion measures are treated as dual vari-

ables p,

• the dynamic (state) equations describing the modifi-

cation of z (or rather x) and p are treated as a dis-

tributed primal-dual algorithm.

One may transform the most important congestion avoid-

ance phase of TCP-Reno to the problem (17)–(19) taking:

żw(t) = κw(t) ·

(

1−
pw(t)
vw(t)

)

, (40)

where

κw(t) =
1

Tw(t)
; vw(t) =

3
2z2

w(t)
(41)

and Tw(t) is an estimate of RTT at time t for the wth con-

nection.

34

Distributed asynchronous algorithms in the Internet – new routing and traffic control methods

Let us denote the transmission rate by xw(t):

xw(t) = zw(t)/Tw(t) (42)

and define an utility function:

U(xw) =

√

3/2
Tw

tan−1

(

√

2
3

xw ·Tw

)

. (43)

The dual variable pw may be interpreted as the probability

of the loss of a packet for the wth connection.

The TCP-Reno has some drawbacks:

• at the beginning the window grows too slowly,

• when the packets are lost the window is shortened

too abruptly,

• often oscillations,

• the big packets are privileged (small packets are

punished although the congestion is almost always

caused by big packets).

Because of these drawbacks, some proposals appeared how

to improve the effectiveness of using the link capacities and

to make the network more just. The most successful proved

to be the following model:

κw(t) = γ ·αw; vw(t) = αw/xw(t) , (44)

U(xw) = αw logxw , (45)

where κw,vw are from the state equation (40) and U(xw)
is from the source optimization problem (17)–(19). The

utility function is derived from the notion of weighted pro-

portional fairness introduced by Kelly [13].

A vector of rates x̂ = (x̂w,w ∈ W) is weighted proportion-

ally fair if it is feasible and if for any other feasible vec-

tor x, the aggregate of proportional changes is zero or

negative:

∑
w∈W

αw
xw − x̂w

x̂w
≤ 0. (46)

It easy to check, that the performance index (45) as a con-

cave function satisfies weighted proportional fairness condi-

tion (46) and, if we treat all connections as a game between

users, it is a Nash-equilibrium point [19].

The dual variable pw in this model is interpreted as a delay

caused by queues in routers for the wth connection.

This very approach became a basis for the development

in California Institute of Technology (Caltech) by

prof. S. Low group of the new TCP control protocol called

FAST (Fast Active queue management Scalable Transmis-

sion control protocol). It was designed for high speed data

tranfers over large distances, e.g., tens of gigabyte files

across the Atlantic [10]. At the time of writing this paper the

world record of the Internet transmission (8.6 Gbps from

Los Angeles to Geneva (CERN) via Chicago) belonged to

this very group (as the previous one).

References

[1] S. Athuraliya and S. H. Low, “Optimization flow control”. II. Im-

plementation, 2000, http://netlab.caltech.edu

[2] D. P. Bertsekas, “An auction algorithm for shortest paths”, SIAM

J. Opt., vol. 1, pp. 425–447, 1991.

[3] D. P. Bertsekas, “A simple and fast label correcting algorithm for

shortest paths”, Networks, vol. 23, pp. 703–709, 1993.

[4] D. P. Bertsekas, F. Guerriero, and R. Musmanno, “Parallel asyn-

chronous label-correcting methods for shortest paths”, J. Opt. Theory

Appl., vol. 88, pp. 297–321, 1996.

[5] D. P. Bertsekas and R. Gallager, Data Networks. Englewood-Cliffs:

Prentice-Hall, 1992.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-

putation: Numerical Methods. Belmont: Athena Scientific, 1997.

[7] D. E. Comer, Internetworking with TCP/IP. Vol. I: Principles, Pro-

tocols, and Architecture, Englewood Cliffs: Prentice-Hall, 1991.

[8] F. Guerriero and R. Musmanno, “Parallel asynchronous algorithms

for the K shortest paths problem”, J. Opt. Theory Appl., vol. 104,

no. 1, pp. 91–108, 2000.

[9] V. Jacobson, “Congestion avoidance and control”, ACM Comput.

Commun. Rev., vol. 18, pp. 314–329, 1988.

[10] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: motivation, architec-

ture, algorithms, performance”, in Proc. IEEE Infocom, Hong Kong,

2004.

[11] A. Karbowski, “Distributed asynchronous routing in Internet – a sur-

vey of optimization algorithms”, in Proc. I Int. Conf. Decis. Sup.

Telecommun. Inform. Soc. (DSTIS), Warsaw, Poland, pp. 89–97.

[12] A. Karbowski, “Correction to Low and Lapsley’s article “Optimiza-

tion flow control. I. Basic algorithm and convergence”, IEEE/ACM

Trans. Netw., vol. 11, issue 2, pp. 338–339, 2003.

[13] F. P. Kelly, “Charging and rate control for elastic traffic”, Eur. Trans.

Telecommun., vol. 8, no. 1, pp. 33–37, 1997.

[14] S. Low and D. E. Lapsley, “Optimization flow control. I. Basic

algorithm and convergence”, IEEE/ACM Trans. Netw., vol. 7, issue 6,

pp. 861–874, 1999.

[15] S. Low, “Optimization flow control with on-line measurement or

multiple paths”, in Proc. 16th Int. Teletraf. Congr., Edinburgh, UK,

1999.

[16] S. H. Low, “A duality model of TCP and queue management al-

gorithms”, IEEE/ACM Trans. Netw., vol. 11, issue 4, pp. 525–536,

2003.

[17] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion con-

trol”, IEEE Contr. Syst. Mag., vol. 22, no. 1, pp. 28–43, 2002.

[18] L. Polymenakos and D. P. Bertsekas, “Parallel shortest path auction

algorithms”, Paral. Comput., vol. 20, pp. 1221–1247, 1994.

[19] H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game-theoretic

framework for bandwidth allocation and pricing in broadband net-

works”, IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667–678,

2000.

35

Andrzej Karbowski

Andrzej Karbowski received

his M.Sc. degree in electronic

engineering (specialization au-

tomatic control) from Warsaw

University of Technology (Fac-

ulty of Electronics) in 1983.

He received the Ph.D. in 1990

in automatic control and

robotics. He works as adjunct

both at Research and Academic

Computer Network (NASK)

and at the Faculty of Electronics and Information

Technology (at the Institute of Control and Computation

Engineering) of Warsaw University of Technology. His re-

search interests concentrate on data networks management,

optimal control in risk conditions, decomposition and par-

allel implementation of numerical algorithms.

e-mail: A.Karbowski@ia.pw.edu.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

Institute of Control

and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

36

