
Paper Structural representations

of unstructured knowledge
Wiesław Traczyk

Abstract—Knowledge should be represented in a formal,

structured manner if we want to process and manage it. Un-

fortunately a source knowledge presented in many documents

has informal, unstructured shape. The goal of these consider-

ations is to present the methods of translation from the textual,

unstructured knowledge to the structured knowledge, preserv-

ing textual form.

Keywords— textual knowledge, knowledge representation lan-

guages, ontology.

1. Introduction

Knowledge is used in all areas of human activities but there
are domains, relevant to computer applications, in which
the word knowledge is located in the name of a branch.
Three more popular such fields, with their links to data,
knowledge and human agents, are presented in Fig. 1.

Fig. 1. Knowledge generation, processing and utilization.

Knowledge discovery looks for specific, previously un-
known but important, regularities in large data bases.
These regularities (or patterns) determine a new knowl-
edge gained from data. Different forms of knowledge ob-
tained from data mining are adapted to the goals and dic-
tated by experts. Usually patterns are described by associ-
ation rules, decision trees, regression functions and neural
networks.
Knowledge engineering constructs knowledge-based sys-
tems used for reasoning, intelligent search and decision
support. Knowledge, related to particular domain, is built
into a system and utilized for data transformation (e.g., from
conditions to conclusions).

Knowledge management consists in organization and facili-
tation of knowledge generation and utilization, with a main
task – increase of institution profit.
In the last two domains a form of primary knowledge can
be very diversified. The low and company regulations, in-
stitution rules, medical procedures, web pages, fragments
of books and other documents written in a natural language
are frequently the main sources of knowledge. But, if the
knowledge is to be processed by computers, its form has to
be converted to a formal shape, with precisely defined syn-
tax and semantics. Then, the proper knowledge representa-

tion (KR) is needed, easy to obtain from natural language
descriptions and easy to understand by computers. General
demands for such a representation are usually summarized
by the ontology: a set of formally specified concepts (such
as things or events) and their properties and relations that
describe a domain of interest, in order to create an agreed-
upon vocabulary for exchanging information.
Since the goal of KR is to express knowledge in computer-
tractable form, the two questions should be answered before
discussing the possible solutions:

– what does it mean “knowledge”?

– what are the demands from languages used for knowl-
edge representation?

There is no universally accepted definition of knowledge.
Most likely the cause of it lies in very big diversity of
the notion. Knowledge (in its intuitive meaning) can be
descriptive or procedural, explicit or tacit, qualitative or
quantitative, individual or collective, and so on (even east-

ern or western). It is essential to determine the need that
the knowledge must fulfill. It can be used for problem
solving and decision support, for inference, as an interlin-
gua for cooperating agents or software modules, to define
semantics for natural language interpretation, etc.
If the range of knowledge application is limited to knowl-
edge engineering and management, the following definition
seems to be appropriate: knowledge is a special kind of in-

formation able to transform the source information to the

information in demand.
In another words – it is a mapping:

KNOWLEDGE: information → information.

The definition of information can be taken from C. Shan-
non, the father of information theory: information is every-

thing that decreases uncertainty.
It is assumed that the meaning of uncertainty is well known.

81

Wiesław Traczyk

Knowledge as a means of information transformation is well
suited to different domains:

– knowledge of problem solving: problem → solution,

– knowledge of decision support:
problem + criteria → decision,

– knowledge of inference: conditions → conclusion,

– knowledge of search: demands → goal, etc.

Source and resulting information can be interpreted as input
and output data, and knowledge – as a program used for
data processing. Such a program should be described by
specialized languages of knowledge representation.
Demands for representation language depends on the layer
of processing [1, 2].

• The domain layer concerns declarative knowledge
about the domain of application. Such knowledge
describes the objects of discourse in a particular do-
main, facts that hold about these objects, and rela-
tionships among them. This type of knowledge is
often represented by concepts, relations, hierarchies,
properties, rules, etc. A crucial property of this cat-
egory of knowledge is that it is represented as much
as possible independently from how it will be used.

The domain layer describes the formal model of a do-
main.

• The inference layer describes the roles of domain
expressions and specifies how these expressions are
to be used in the inference steps. One can say that the
inference layer is a meta-layer of the domain layer.

• The task layer enforces control over the inference
steps specified at the inference layer. Here it is de-
cided in which order the inferences should be ex-
ecuted. The procedural knowledge is used on this
layer and is concerned with sequences, actions, iter-
ations, etc.

In this hierarchy of layers only the domain layer formally
describes a particular domain of application and should be
adapted to textual form of knowledge sources. That is why
only languages of the first layer will be considered below.

Knowledge has many forms that have to be represented
by appropriate languages but the most important and fre-
quently used are three groups of demanded dependencies
between elements of representation.

• Logical dependencies between statements with val-
ues TRUE or FALSE determine principles for rule
based reasoning, the most popular method of infer-
ence. The long history of logics and its established
position as a tool for formal analysis help to solve
numerous problems.

• Hierarchical dependencies organize objects of a do-
main into class taxonomy. The ability to represent the
relationships between an object and its class or be-
tween a class and its superclass has proven to be very

useful in many applications. In some cases properties
of a class are passed on to its subclasses, simplifying
representation.

• Relational dependencies between concepts represent
connections linking together either concrete or ab-
stract elements of the domain. This can help in
searching for complex dependencies between given
concepts.

There are numerous languages describing some or all of
these dependencies. Short presentation of selected, repre-
sentative examples will help in farther considerations.

2. Languages for knowledge
representation

A common problem during the development of ontologies
and languages is a range of their applications. It is more
costly to create representations that will be reusable across
multiple domains than it is to create a language that is suit-
able for just one application. Languages described below
attempt to be more or less universal. The original termi-
nology from the source papers is preserved.

(ML)2. A formal language (ML)2 [2] has been developed
for the representation of KADS [1] models of expertise.
It uses an extended first order predicate calculus. Con-
cepts are represented by constants, i.e., nameable and dis-
tinguishable entities. All constants and variables have asso-
ciated sorts (types, classes), organized in a subsort hierar-
chy. Predicates and functions are also typed. The relation
between constants and sorts is the equivalent of the IS-A
relation. A knowledge base is divided into theories, consist-
ing of import relations, signature (sorts, constants, models
of functions and predicates), variables and axioms (instan-
tiations of predicates, production rules and functions).
The main ideas can be illustrated on the following example:
theory carFailure

signature

sorts number (vehicle (bus car (station-car
limousine))); the subsorts tree

constants

myCar, yourCar : car;
bus-412 : bus;

functions

noOfWheels : vehicle → number;
predicates

sameBrand : car × car;
greater : number × number;

variables a,b,c : number;
axioms

same Brand(myCar, yourCar);
greater(a, b) ∧ greater(b, c) → greater(a, c);
noOfWheels(yourCar) = 4;

endtheory

82

Structural representations of unstructured knowledge

Telos. A hybrid language Telos [3] supports three different
representation formats: a logical, a graphical (semantic net-
work with relations) and a frame representation. A Telos
knowledge base is a finite set of interrelated propositions

presented as vectors: 〈oid,x, l,y, tt〉. Their meaning is as
follows:

The object x has a relationships called l to the
object y. This relationship has identifier oid and
is believed by the system for the time tt.

A standard way to describe objects together with their
classes, subclasses and attributes is the frame syntax. It
groups the labels of propositions around the label of com-
mon source. If l ∈ {*instanceof, *isa, ...} then the triplet
〈x, l,y〉 is interpreted as 〈object, relation, class〉. All other
propositions describe aggregates 〈object, attribute, value〉.

Logical operations are performed on such aggregates.
There is also a natural interpretation of a set of propositions
as a directed graph (semantic network).

CycL. It is a formal language [4] whose syntax derives from
first-order predicate calculus and from Lisp. The vocabu-
lary of CycL consists of terms, combined into meaningful
expressions (sentences). Constants are terms that can de-
note collections of other concepts such as individual things,
classes, predicates and functions. Variables (e.g., ?X) stand
for constants whose identities are not specified. Sentences
have the structure of a Lisp list and consist of objects: pred-
icates and their arguments, logical connectives and quan-
tifiers. Predicates describe taxonomy relations (e.g., isa),
attribute names and many other relations or properties.
The following is a example of CycL expression:
(implies

(isa ?A Animal)

(thereExists ?M

(and (mother ?A ?M)

(isa ?M FemaleAnimal))))

ICONS. The intelligent content management system
(ICONS) [5] describes an ontology by the data model, that
allows to depict the “world”, and the knowledge representa-

tion language, through which one can extend the entities to
the schema, infer new knowledge and make some reasoning.
The data model contains a set of class names, described by
attribute-class pairs and linked to another class name by
the isa or partOf relation, for example:

student(name : string, age : integer, enrol : faculty)

isa person.

The language contains appropriate atoms (facts) with the
concrete values:

student(name : peter, age : 21, enrol : cs).

Internal class names can be substituted by the full atoms,
giving a sequence of dependencies. In production rules
with such atoms disjunctions are allowed in the rules’ heads
(so called disjunction logic programming), for modeling in-
complete knowledge. ICONS introduces also reasoning un-

der uncertainty (using Dempster-Shafer theory) and XML
as a serial syntax definition language.

F-Logic. In a deductive, object oriented language F-Logic
[6, 7] objects are organized in classes and methods repre-
sent relationships between objects. Facts are collections of
objects with classes and appropriate methods, e.g.,

peter:student[father−>john:man].

Rules use similar forms, often with quantifiers and vari-
ables:

FORALL X,Y X[son−>Y] <−Y:man[father−>X].

A query to the object base is formulated as follows:

FORALL X,Y X:women[son−>Y[father−>john].

Properties of objects can be described by predicates, ob-
jects denoting numbers are processed with comparison and
several arithmetic operators, special path expressions are
used to navigate through the large sets of objects.
The presented examples of languages for knowledge repre-
sentation, and many not presented here (e.g., SILO, CLAS-
SIC, ALLNR, Gellish, GOL, EULE, KIF, ALUNI) show
that:

– object-based approach is very popular,

– predicates and first-order logic are basic descriptions
of relations and properties,

– the forms of description are diversified,

– not all systems use a taxonomy,

– there are no special approaches simplifying con-
version from the unstructured textually-represented
knowledge to the formal representation.

The next section tries to collect more important proper-
ties of languages and to add textually-oriented elements, in
order to construct a useful system of representation.

3. The ontology for textual knowledge

3.1. Compositional representations

The main task of these considerations is to find a way for
conversion from unstructured, textual knowledge descrip-
tion to structured, formal knowledge representation. Such
a structured form enable processing by computers, reuse in
many applications and formal validation.
The conversion should not be to complicated and the
structured, final representation should be comprehensible.
Therefore a textual form of information should be pre-
served, if possible, through the whole process of conver-
sion.
Representations are easier for processing and more reusable
if they are compositionally constructed. A representation
is compositional if it describes each individual concept in
the domain of discourse, and the representation of complex

83

Wiesław Traczyk

concepts is obtained by composing representations of in-
dividual concepts. The following example illustrates this,
starting from the text:

The form PIT is intended for tax-payers

that obtain salaries, pensions

or scholarships.

The noncompositional representation of this might be

THE FORM PIT IS INTENDED FOR TAX-PAYERS THAT
OBTAIN SALARIES, PENSIONS OR SCHOLARSHIPS.

This statement can be interpreted as an individual concept
or as a logical proposition with the truth value (e.g., TRUE
or FALSE).

The simple decomposition gives

“THE FORM PIT IS INTENDED FOR tax-payer”
if “tax-payer OBTAINS SALARY, PENSION

OR SCHOLARSHIP”.

Now the two propositions with variables are connected by
the logical operator if, giving decision rule that can be
used for backward reasoning. This form is equivalent to
the logical rule

Q(x) ⇐ P(x) .

Another possible compositional representation can be de-
scribed, using the model

Q(x) ⇐ P1(x)∨P2(x)∨P3(x) ,

by the following two statements:

THE FORM PIT is intended for TAX-PAYERS GROUP,
person is a member of TAX-PAYERS GROUP if

[(person obtains SALARY) or (person obtains PENSION)
or (person obtains SCHOLARSHIPS)].

The elements of these statements have the special mean-
ings:

THE FORM PIT, SALARY, PENSION, SCHOLARSHIPS – object

names of the domain,
person – variable representing an object,
TAX-PAYERS GROUP – class name indicating a class
of objects,
is intended for, obtains – roles played by objects,
is member of – relation between object and class,
if, or – logical operators.

This representation of knowledge, contained in the source
text, can easily be used for reasoning, formally performed
by any agent. Having information (the fact):

Mr Brown obtains pension

and substituting MR BROWN for person, one can get the
conclusion:

MR BROWN IS A MEMBER OF TAX-PAYERS GROUP

and information that the form PIT is for him.

The second example shows some other elements of struc-
tural representation.

Wanted is employee from Warsaw, 20 to 30

years old, with MCS degree.

The compositional description of this is as follows:

“WANTED EMPLOYEE” [address: WARSAW, age: 20-30,
degree: MCS].

This structure contains object name and its properties in
the form of attribute-name: attribute-value pairs. It can be
considered as a special case (or instantiation) of a more
general description:

EMPLOYEE [address: TOWN, age: NUMERICAL
INTERVAL, degree: DEGREES].

Now the properties of a class are presented as attribute-

name: attribute-type pairs, showing some restrictions for at-
tributes. The object “WANTED EMPLOYEE” inherits attribute
names and types from the class EMPLOYEE.
The inheritance is sometimes continued, involving more
general classes. For example the class EMPLOYEE may
be considered as a subclass of the superclass PERSONS,
inheriting wanted attributes: general (e.g., nationality:
COUNTRY or concrete (e.g., number of legs: 2).
Presented examples show some possible structures, appli-
cable to a knowledge in textual form. To be useful these
structures should be described more formally.

3.2. Principles of structuring

Basic elements. Knowledge description language, as all
other languages, has many levels of a syntax. The lower one
(neglecting numerals and letters) usually contains numbers
and strings, but here we will introduce more specialized
elements:

– numbers;

– symbols – like x,P1(x),≤, USA – used in expressions,
as abbreviation or shortening;

– names – e.g., employee, Mr Brown – short descrip-
tions, more informative than symbols;

– texts – as “MR BROWN OBTAINS PENSION” – easy to
understand descriptions of concepts, comments,
source knowledge, etc., of special importance in this
paper.

Symbol, name and text can represent constant, variable,

relation and function.

Statements. Textual variable with a value from the set of
truth values will be called proposition. Textual function
with such values is known as propositional function. Some-
times propositions describe relations, but it is easier to rep-
resent relations between constants, variables and functions
using conventional symbols (<,≤,⊂, . . .) or names (lower,

cheaper).

84

Structural representations of unstructured knowledge

Some propositions have internal structure enabling shorter
and more elastic representation. For example the same
meaning as the proposition

MR BROWN HAS VERY HIGH INCOME

has the triplet 〈MR BROWN, income, “very high”〉

with a general structure

〈 object-name1, attribute-name, attribute-value 〉.

Such an aggregate has truth value (as a proposition), its
components can exist as variables, and the form can be
modified.
A truth value is a common property of proposition, re-
lation and aggregate, which together will be called state-

ments. They constitute basic elements of logical expres-

sions: statements connected by logical operators.

Frames. An object name (or shortly object-n) denotes an
element of the domain, physical (as BUILDING) or abstract
(as PROGRESS). Properties of an object are described indi-
vidually in aggregates or collectively in frames. A simple
object-frame contains information about an individual con-
cept and has a structure:

〈object-n [attr-name1: attr-value1,. . . , attr-namek:
attr-valuek]〉

and all components defined as constant names and values.
These names and values belong to certain families, that
should be defined.
The family of objects with common properties is called
class and is described by a class-frame (or prototype frame)
with a structure as follows:

〈class-n [attr-name1: attr-type1,. . . , attr-namek:
attr-typek]〉.

The type of attribute denotes a category of its values as:

– the set of concrete values, e.g., 5-9, Mon.-Fri.,
{white, red}, 2004;

– the class of values, e.g., CITIES, “ALL EVEN
NUMBERS”, strings.

An object-frame is instance-of a class-frame with the same
set of attribute names, what is indicated by the structure:

〈object [. . .] 〉 instance-of class.

Usually each class is a subclass of one or more classes
higher up in the hierarchy, called its superclass(es). The
relations between hierarchically organized classes, showing
specialization and generalization, can be presented in the
structure:

〈 class-a [. . .] 〉 ρ class-b

with ρ ∈ {is-a, part-of, member-of, ...}.

1In all cases described below the word text can be used instead of name.

Relation is-a causes inheritance of all properties from su-
perclass to subclass. In the case of part-of relation only
some special attributes are inherited (e.g., possession).
Properties of class-frames sometimes include also addi-
tional information concerning attributes (units of measure,
procedures used for value calculation, etc.).

Dependencies. In many cases objects and classes are re-
lated, but not organized in taxonomy. Such “horizontal”
relations are known as roles and described in the following
form, called dependence:

〈object-a - role - object-b 〉.

For example, if A. Smith is a manager of B. White then
the appropriate dependence will be:

〈B. WHITE – manager – A. SMITH 〉.

Dependencies describe relations, therefore have also truth
values and should be included in the set of statements.
Dependencies can be joined in path expressions in the
form:

〈object-a - role-k - object-b - role-l - ... - object-z 〉,

as in the example:

〈B. WHITE – manger – A. SMITH – english-teacher –
C. BLACK 〉.

The set of path expressions with some common objects de-
scribes a graph of dependencies, equivalent (if names of
objects and roles are properly chosen) to semantic net or
conceptual graph, typical tools of knowledge representa-
tion.
If dependencies describing the domain are stored in the
knowledge base, path expression with a variable (in the
place of an object or a role) can be used for navigation and
searching for appropriate value.
Objects and roles in dependencies are presented as names
or texts, directly describing some parts of a source docu-
ment.

Rules. The logical expression contains statements con-
nected by logical operators and, or, not. The special case
of it – and-expression – contains only and operator. Pro-

duction rules are described by one of the following forms:

if logical-expression then and-expression

if logical-expression then and-expression-A else

and-expression-B

and-expression if logical-expression.

Different types of a statement (proposition, relation, aggre-
gate, dependence) help in the rule adaptation to various
applications.

4. Conclusion

Since statements obtained from the source, textual knowl-
edge have also textual form, then frames, dependencies

85

Wiesław Traczyk

and rules, constructed from statements, contain structured
texts as well, according to the goal of these consider-
ations.

References
[1] B. Wielinga et al., “KADS: a modelling approach to knowledge en-

gineering”, ESPRIT Project P5248. Amsterdam: University of Ams-
terdam, 1992.

[2] F. van Harmelen and J. Balder, “(ML)2: a formal language for KADS
models of expertise”, Knowl. Acquis. J., vol. 4, no. 1, pp. 127–161,
1992.

[3] “Frame and network representation”,
www-i5.informatik.rwth-aachen.deĆBdoc

[4] “Ontological engineer’s handbook”, www.cyc.com/handbook

[5] “The ICONS knowledge representation features”, www.icons.rodan.pl

[6] M. Kifer et al., “Logical foundations of object-oriented and frame-
based languages”, J. Found. ACM, no. 42, pp. 741–843, 1995.

[7] F-Logic Tutorial. Karlsruhe: Ontoprise GmbH, 2003.

Wiesław Traczyk is a Profes-
sor of the National Institute of
Telecommunications and also
of the Warsaw University of
Technology, Institute of Control
and Computation Engineering.
His research interests include
expert systems, approximate
reasoning, failures in computer
networks and data mining.

e-mail: W.Traczyk@itl.waw.pl
National Institute of Telecommunications
Szachowa st 1
04-894 Warsaw, Poland

e-mail: traczyk@ia.pw.edu.pl
Institute of Control and Computation Engineering
Warsaw University of Technology
Nowowiejska st 15/19
00-665 Warsaw, Poland

86

