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Abstract—This paper concerns the possibilities of applying

wavelet analysis to discovering and reducing distortions occur-

ring in time series. Wavelet analysis basics are briefly reviewed.

WaveShrink method including three most common shrinking

variants (hard, soft, and non-negative garrote shrinkage func-

tions) is described. Another wavelet-based filtering method,

with parameters depending on the length of wavelets, is in-

troduced. Sample results of filtering follow the descriptions

of both methods. Additionally the results of the use of both

filtering methods are compared. Examples in this paper deal

only with the simplest “mother” wavelet function – Haar basic

wavelet function.

Keywords— wavelet transform, WaveShrink, filtration, noise re-

duction, Haar basic wavelet function.

1. Introduction

Foundations of wavelet-based analysis methods were laid

in the beginning of the 20th century. Back then, in the

year 1909 Hungarian mathematician Alfred Haar intro-

duced his two-state function in appendix to his doctoral

thesis published later on [3]. Today a slightly modified ver-

sion of this function is regarded as the first basic wavelet

function. In the nineties of the 20th century a very swift de-

velopement of wavelet enforced methods began. Wavelets

turned out to be very useful when applied to many prob-

lems, including analysis and synthesis of time series [9]

(in acoustics, geology, filtration and forecasting [5, 11] in

meteorology and economics), effective data storage, espe-

cially images [10] (computer graphics, image animation in

movie industry). Lately a very fast development of wavelet-

based data mining [6] techniques may be observed.

One of the tasks of knowledge discovery preprocessing is

noise reduction. The goal of this sub process is to separate

the noise from the signal and then to reduce or remove the

noise. The definition of a noise stays imprecise because for

some physical processes it is difficult to clearly define it.

In this paper it is assumed that the goal of filtering is to

change the input signal in such a manner that the values of

a time series, which differ a lot from others, are changed

but the characteristic of signal stays the way it was. Most

commonly used methods consider statistical approach or

involve Fourier transform. In this paper it will be shown

why wavelet transform may be considered valuable for

this task.

The paper is organized as follows. Section 2 presents ab-

solute basics of wavelet analysis, including basic wavelet

functions and discrete wavelet transform. Section 3 reviews

WaveShrink methodology and presents results obtained by

its application to the example data. In Section 4 the rea-

son for searching for another method is clarified. A genuine

method, also based on wavelets, is introduced. The results

of application of the new methodology to the same exam-

ple data are presented and compared with WaveShrink’s

results. Section 5 concludes the paper.

2. Wavelet theoretical background

Wavelets are functions which result in values different than

zero in a relatively short interval. In this regard they differ

from “normal”, long waves, such as sinusoidal ones, which

are determined on a whole time domain (−∞,∞).
Let ψ be a real function of a real variable u which satisfies

two conditions:
∞

∫

−∞

ψ(u)du = 0 (1)

and
∞

∫

−∞

ψ2(u)du = 1. (2)

Condition (2) means that for any ε from an interval (0,1)
there is an interval (−T,T ) such that:

T
∫

−T

ψ2(u)du = 1− ε.

If ε is close to 0, it may be seen that only in an interval

(−T,T ) corresponding to this ε values ψ(u) are different

than 0. Outside of this interval they must equal 0. Inter-

val (−T,T ) is small compared to an interval (−∞,∞), on

which a whole function is determined. Condition (1) im-

plies that if ψ(u) has some positive values, it also has to

have some negative ones (a function “waves”). Therefore

Eqs. (1) and (2) introduce a concept of a small wave, or

shorter, wavelet. If Haar function φ , which is a two-state

function of real variable (Fig. 1a):

φ(u) =







−1 for −1 < u ≤ 0
1 for 0 < u ≤ 1
0 for other u

would be transformed into:

ψ(H)(u) =











− 1√
2

for −1 < u ≤ 0
1√
2

for 0 < u ≤ 1

0 for other u

then the resulting function ψ(H) satisfies conditions (1)

and (2), and is called Haar basic wavelet function (Fig. 1b).
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Fig. 1. Haar function (a), modified Haar function – the first basic

wavelet function (b), and wavelet-based on Haar basic wavelet

function with λ = 2 and t = 3 (c).

Introducing two parameters, namely scale (λ ) and loca-

tion (t) into the above definition of Haar basic wavelet func-

tion we get a family of scaled and transformed wavelets:

ψ(H)
λ ,t (u) =











− 1√
2λ

for t −λ < u ≤ t
1√
2λ

for t < u ≤ t +λ
0 for other u

as one on Fig. 1c, based on ψ(H). Figure 1b considers

wavelets with scale λ equal to 1 (λ = 1) and is defined in

point t equal to 0 (t = 0).

Wavelets ψ(H)
λ ,t (u) may be established based on ψ(H)(u)

according to the formula:

ψ(H)
λ ,t (u) ≡ 1√

λ
ψ(H)(

u− t
λ

).

There are of course many other basic wavelet functions

such as Mexican hat, Gauss wavelets, Morlet wavelet [8],

family of Daubechies wavelets [1] just to name a few.

As a result of wavelet transform we obtain a set of wavelet

coefficients calculated at different levels (scales) and in

a wide range of observation points (locations). There are

many ways of doing this. Two most often applied are

(orthonormal) discrete wavelet transform (DWT) and its

slightly modified version which preserves scales but calcu-

lates wavelets in more densely chosen observation points.

For an DWT Mallat [7] proposed a very fast algorithm for

calculating wavelets. With minor modifications it may be

applied to other wavelet transforms. An important feature

of DWT is that it may be reversed. Having wavelet coeffi-

cients it is possible to calculate original time series. This

possibility is fundamental for a majority of current wavelet

applications.

3. WaveShrink

3.1. WaveShrink method

One of the most explored signal smoothening or cutting

method utilizing wavelets is Donoho’s and Johnstone’s [2]

WaveShrink method.

The method is composed of three main steps. At the begin-

ning observed time series is transformed into the wavelet

space by DWT. In step two wavelet coefficients are modi-

fied, reduced according to the selected shrinkage function

and a given threshold value. To accomplish this one of

three shrinkage functions (presented below) may usually

be used to establish how to modify wavelet time series co-

efficient. In the end inverse DWT is applied on wavelet

coefficients and as a result smoothened original signal

(with reduced noises) is derived.

3.2. Shrinkage functions

Shrinkage functions are formulas that define a correction

coefficient δλ (x), which is subtracted from the correspond-

ing wavelet coefficient. Calculated correction is relevant

(different from 0) for those wavelet values, which exceed

a given threshold parameter λ .

Hard shrinkage function

δ H
λ (x) =

{

0 |x| ≤ λ
x |x| > λ . (3)

Subtracting this correction reduces those wavelet coeffi-

cients of the wavelet time series, which exceed threshold

value, to zero.
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Soft shrinkage function

δ S
λ (x) =







0 |x| ≤ λ
x−λ x > λ
λ − x x < −λ

. (4)

By subtracting δ S
λ correction considered wavelet time series

coefficients are reduced to λ for positive coefficients and

to −λ for negative ones.

Non-negative garrote shrinkage function

δ NN
λ (x) =

{

0 |x| ≤ λ
x− λ 2

x |x| > λ
. (5)

Results of δ NN
λ function subtracted form wavelet time series

coefficients modify them directing to zero in such a manner

that the more a coefficient exceeds the threshold value the

more it is reduced towards zero.

3.3. Estimating threshold value

The clue of WaveShrink method is to correctly estimate

λ parameter. It may be achieved in various ways. Two of

those are presented below.

Min-max approach

The first one is so called min-max threshold solution task.

It is defined by Eq. (6).

inf
λ

sup
θ

{

Rλ (θ)

n−1 +min(θ 2,1)

}

. (6)

Rλ (θ) is defined as

Rλ (θ) = E(δλ (x)−θ)2 (7)

and

x ∼ N(θ ,1).

What follows is it is assumed that the signal is of a normal

distribution with expected value θ and a standard deviation

equal to one. Solving this problem analytically requires, at

least, altering signal so that it suits this assumed condition.

Standard deviation approach

In the following example another method was applied. Pa-

rameter λ is derived as a value of standard deviation’s es-

timator (calculated for each wavelet level) multiplied by

parameter n.

3.4. Illustrative example

Both this example and the example in next section are per-

formed on data (shown in Fig. 2) collected from a network

router. It is a traffic time series observed in one of the ports

throughout the day.

In Fig. 3 there are the results of filtering using different

values of a parameter n supplied for procedure of evalua-

ting λ (one, two, and three) “within” the same shrinkage

function (δ H
λ – hard shrinkage function).

Fig. 2. Original time series.

Fig. 3. The result of denoising by WaveShrink with δλ = δ H
λ

and λ estimating parameter n equal to one (a), two (b), and

three (c), respectively.

Figure 4 is organized in the same way but in this case

δλ = δ S
λ – soft shrinkage function is used.

Fig. 4. The result of denoising by WaveShrink with δλ = δ S
λ

and λ estimating parameter n equal to one (a), two (b), and

three (c), respectively.
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And finally Fig. 5 is obtained as a result of application of

non-negative garrote shrinkage function δ NN
λ .

Fig. 5. The result of denoising by WaveShrink with δλ = δ NN
λ

and λ estimating parameter n equal to one (a), two (b), and

three (c), respectively.

One can easily see that for all shrinkage functions the

“power of shrinkage” gets weaker as parameter n rises. On

the other hand the fit of shrinkaged function to the original

time series increases as parameter n rises.

In all cases this algorithm distorts the signal not only in

noise spots but also in neighboring observation points. This

is an obvious result of transforming altered wavelet coeffi-

cients into the original domain.

4. New method of denoising

4.1. Wavelet noise suspect approach

The final observation from the previous section is a di-

rect reason for introducing another method of filtering. As

wavelet domain offers great opportunities and we do not

intend to drop the wavelet approach, it is necessary to de-

sign the methodology in a different way. The results of

the wavelet transform are used as pointers of noise only.

Wavelet coefficients are not altered and inverse transforma-

tion is not used at all. Wavelet coefficients may be consid-

ered as proportional to the difference between weighted (in

case of Haar wavelet the weights are equal) sums of ob-

servations, in neighboring intervals of an equal length, and

wavelet transform’s multiscale provides multilevel analysis.

The new method also consists of three main steps. In the

first one given time series is orthonormally converted into

the wavelet domain. Then, for each wavelet level, wavelets

qualified as noises are determined. Each wavelet coeffi-

cient, which is qualified as noise, is marked and considered

as wavelet noise suspect (precisely a coefficient calculated

of original time sub series, which includes suspected noise).

Having all wavelet coefficients passed wavelet noise suspect

marking procedure the second step may be processed.

Every original time series point which “is covered” by the

wavelet noise suspect is marked as the point noise sup-

spect on the level which corresponds to the level of this

wavelet noise suspect. Then for each observation point of

original time series the depth of distortion is found. This

depth D is the biggest level to which point is continuously

(from level 0) marked as point noise suspect. In step three

only these observation points, which have D greater than

given threshold value Dmin and are also marked as point

noise suspects in time series space should be considered

as noise (of strength D). Finally, each of these considered

observation points is reduced by replacing original time

series values with results of a function b(D,Dmin, f [, ...]),
where f is an original time series function.

This method leaves a lot of space for heuristics as it comes

to designating methods of identifying distortion point and

marking them, definition of function b, and method of de-

termining D itself. One of the possible approaches is pre-

sented below.

4.2. Illustrative example

This example is performed on the same data set as the

example in previous section. Function b is defined as

b(D,Dmin, f ,x) =

{

f (x) D ≤ Dmin

f (x)/D D > Dmin
, (8)

and Dmin equals 1. Results are presented in Table 1 and

Fig. 6.

Table 1

Parts of table used in the process of introduced method

of denoising

0 1 2 3 4 5 ...

... ... ... ... ... ... ... ... ...

94 0 0 1 0 0 0 1 ...

95 1 1 1 0 0 0 1 ...

96 0 1 1 0 0 0 1 ...

... ... ... ... ... ... ... ... ...

101 1 1 1 0 1 0 1 ...

102 0 1 1 0 1 0 1 ...

103 0 0 1 0 1 0 1 ...

104 0 0 1 0 1 0 1 ...

105 0 0 0 1 1 0 1 ...

106 1 0 0 1 1 0 1 ...

... ... ... ... ... ... ... ... ...

114 1 1 1 1 1 0 1 ...

115 1 1 1 1 1 0 1 ...

... ... ... ... ... ... ... ... ...

129 1 1 1 0 1 0 1 ...

... ... ... ... ... ... ... ... ...

174 0 1 1 1 1 1 0 ...

175 1 1 1 1 1 1 0 ...

176 0 0 1 1 1 1 0 ...

... ... ... ... ... ... ... ... ...
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Table’s rows correspond to the results of original time se-

ries’ point identifications and columns correspond to orig-

inal time series point number, original time series’ noise

identification mark, and wavelet coefficients series’ noise

identification mark respectively (1 in cell means that point

was identified as noise suspect at column’s level).

Numbers of rows 95, 101, 114, 115, 129, and 175 are

numbers of observation points from original time series

which are qualified as noises. In these cases D equals j.
Rows 96, 102, 174 are not qualified as noises, despite the

fact that they are qualified as noise within wavelet domain,

because they were not qualified this way in original time

series domain. Similarly row 106 is not qualified as noise

(despite that it is qualified this way in the original time

series space and in wavelet levels 2, 3, and 5) because

there were qualification gaps (at wavelet levels 0 and 1).

Fig. 6. Result of denoising by the new method.

Figure 6 shows the original time series transformed by fil-

tration. Additionally it illustrates to what extent selected

noise observation points were altered (the height of peek

below horizontal axis equals δ ). The first two peaks cor-

respond to almost least reduced (D = 2) rows (observation

points) 95 and 101 in Table 1. The last peak corresponds

to most reduced (D = 4) observation point 175. In case of

the two close, middle peeks (114 and 115) noise has propa-

gated to the D = 3 wavelet level so observation points were

reduced with power of something in between previous re-

ductions. In case of point 129, D equals 1 and observation

point 129 was the one, which was the least reduced.

5. Conclusions

Introduced method, together with WaveShrink, provide

a complementary tandem of filtering based on wavelets.

The main difference between introduced genuine method

and WaveShrink method is that the reduction is performed

on a signal, not on wavelet coefficients. These are only

a tool for determining parameters of function reducing as-

sumed noise. Therefore, the introduced method does not in-

duct distortions into noise-neighboring observation points,

what WaveShrink features.

WaveShrink suits better time series distorted in general,

by malfunction for example, as it adjusts wide time series

characteristics’ intervals. The method introduced is better

in cases where it is intended to remove “irregularities” from

series as it does not change anything but the observation

points qualified as noise.

Of course, this paper does not cover some other important

issues. For example the order of complexity of calculations

and reduction of their number was not discussed. Also the

possibility of application of “more dense” wavelet trans-

forms in case of the wavelet noise suspect method is not

discussed here. Although this kind of transformations re-

quire a larger number of calculations, they seem to be an

interesting direction of applications of wavelets to time se-

ries denoising.
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