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Abstract—In the paper the ID-based digital signatures with

signer’s protection in case of the private key compromising is

investigated. The proposed protocols have two main ingredi-

ents. First is the application of the credential system for the

suitable verification key approval. Second is the application

of the subliminal channel together with the interactive gen-

eration of the secret key, to obtain the increased resistance

of the system against the powerful adversary. The particular

interest was turned towards the significance of the deniable

encryption in creation of the corresponding protocols.

Keywords—cryptography, deniable encryption, ID-based
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1. Introduction

The critical point joining the functionality of the digital
signatures is the management and authentication of the cor-
responding public keys. The potential way of cheating of
(certificated) public key causes the risk that the identity of
the user may be stolen. The concept of the ID-based public
key cryptography introduced by Shamir implied the signif-
icant simplification of the corresponding management and
authentication process.
In this concept the role of public key has been replaced
by the user identity on the network (user-ID) like e-mail
address, phone number, etc. More precisely there is the
secret key of the private key generator (PKG), called the
master key that is involved in the creation of the entity’s
secret key sk = sk(ID,s), by means of some trapdoor func-
tion. In order to keep the consistency, the public key Ω of
PKG (known by each entity) should be related to the secret
key sk(ID,s), so that the proof of knowledge of sk(ID,s)
could be checked by any verifier with the aid of Ω.
When comparing with the certificate based cryptosystems
the elimination of the public key certificates results here
with the evident drawback. It implies that PKG knows
the user secret key sk(ID,s). Moreover, loosing the mas-
ter key s would compromise the secret keys of all enti-
ties. This obstacle make favorable the application of the
ID-based schemes only in the systems with intermediate
level of security.
In this paper we will encounter this problem suggesting
some further ideas towards enhancing the security of some
ID-based signature schemes. The first idea is to include in
the entity’s secret key its private part k generated by the
user. The corresponding public part K sent in advance to
PKG allows him to approve the corresponding verification
key vk = vk(ID,K) related to Ω. As a result, in the sub-
sequent step the signer is able to compute the new secret

key sk = sk(ID,s,k) related to the suitable verification key.
Such general scheme is described in Section 6.
Many ID-based signature schemes use a random parame-
ter r in the signature generation process. This admits to
hide the suitable private value k in the corresponding pseu-
dorandom value r = r(m,k). Certainly the corresponding
commitment R = R(r,m, ID,Ω,K) depends implicitly on k.
Recovering this dependence allows the suitable party T

(sharing the key k with the signer) to read the hidden (in the
subliminal channel) information, with the aid of some trap-
door information t (known only by T ). Since R is a one
way function of r, its extraction from R is rather unrealistic
task. We will show that the one-wayness may be replaced
by the suitable trapdoor function depending on the param-
eters k and t that allows to recover the hidden information
by the trustee from the corresponding signature Sig.
The above idea can be further enhanced in order to protect
the signer against quite powerful adversary (that forces the
signer to unveil his secret key sk = sk(ID,s,k)). We assume
that r = r(m,k,ρ) with a random value ρ and the value
of k that can be verified only on the basis of some trapdoor
information t known only by T . In case of attack the signer
show the “fake” values k′ and ρ ′ instead of k and ρ leading
to the same value r = r(m,k′,ρ ′).

Therefore the signer, when forced to unveil the signature
parameters is able to get persuaded the adversary to believe
that all of them have a real-looking data. Concluding, any
verifier (except T ) is not able to distinguish between the
random r and a pseudorandom r(m,k,ρ) even if he knows
the signer secret key sk(ID) = sk(ID,s,k). The resulting
signature is to be called the deniable signature.
To construct the suitable pseudorandom function, the no-
tion of deniable encryption r = Eden(h(m,k)) is applied
similarly as in [1], with h being the secure hash func-
tion. The corresponding trapdoor information t applied in
the decryption algorithm D, allows the trustee to check if
Dt(r) = h(m,k). On the other hand, even the signer (who
does not known the trapdoor value t) is not able to find
the evidence if a given pseudorandom value has actually
the form r = Eden(h(m,k)). Hence the deniable signature
protects the signer against the coercion attack when the ad-
versary demands him to unveil the secret key sk = sk(ID)
and the corresponding pseudorandom parameters. The suit-
able protocol is constructed in Section 8. Summing up we
are able not only to extend the basic ID-based signature
scheme against the compromising the PKG master key s,
but also the signer private key sk = sk(ID,s,k) when being
coerced by the adversary. Throughout the paper we will
illustrate the related ideas on digital signatures with secu-
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rity based on hardness either of the factorization problem
or the computational Diffie-Hellman problem in the gap
Diffie-Hellman groups (GDH groups).

2. Related Work
The ID-based cryptosystems were introduced by
Shamir [2]. The idea of gap Diffie-Hellman group
based on the Weil pairing has its origin in the paper [3].
Boneh and Franklin [4] have proposed the first provably
secure ID-based cryptosystem relating to GDH groups.
In [5]–[7] the ID-based digital signatures from the gap
Diffie-Hellman groups were given. The proxy ID-based
digital signature with derandomized Weil pairing computa-
tion was proposed in [8]. The general concept of transform-
ing the standard signature schemes into the correspond-
ing identity-based signatures (IBS) was the subject of pa-
per [9].
In this paper we investigate the extensions of ID-based sig-
nature schemes having in mind the security requirements.
The suitable improvements are based on the idea of sub-
liminal channels investigated by Simmons [10] and applied
in [11] for IBS scheme from the bilinear pairing. This
approach was enhanced in [1] for the standard (certificate-
based) signature schemes, referring to the concept of deni-
able encryption [12], [13].
The approach developed here deals with the ID-based dig-
ital signatures of the suitable form. We start from the stan-
dard IBS schemes and investigate the subsequent improve-
ments by adding some “space” for the subliminal transfer
and applying subsequently the concept of deniable signa-
ture.
The development is illustrated on the standard IBS schemes
referring to [14] and [15]. At first we propose the exten-
sion of the standard IBS by including the signer private
part to the secret key sk(ID) and the corresponding ap-
proval by PKG (c.f. [16], [17]). Next we investigate the
deniable encryption idea in standard signatures [1] to make
the relevant transformation to IBS with the suitable security
requirements.

3. Gap Diffie-Hellman Groups
and Weil Pairing

Let G = (G,+) be a group of prime order q and P, Q be any
nontrivial elements of G. The discrete logarithm problem
(DLP) in G may be stated as follows:

Find a ∈ Zp such that aP = Q.

Let us formulate the following related problems.

• The computational Diffie-Hellman problem (C-DH) –
given the triple (P,aP,bP) find the element abP.

• The decisional Diffie-Hellman problem (D-DH) –
given a quadruple (P,aP,bP,cP) decide whether
c = ab(mod q) (in which case we shall write that
(P,aP,bP,cP) = DH).

We call the group G = (G,+) a gap Diffie-Hellman (GDH)
group if (roughly speaking) the D-DH problem is compu-
tationally easy, while the C-DH problem is hard.
Let us recall briefly the construction of the gap Diffie-
Hellman group based on the elliptic group structure ap-
plying the Weil pairing [4]. Let E be an elliptic curve over
a finite field K of characteristic p and let n an integer not
divisible by p. Denote by cl(K) the algebraic closure of K.
It can be shown that the group E[n] of n-torsion points
of E/cl(K) is isomorphic to Zn ×Zn. The Weil pairing is
a map

e : E[n]×E[n]→ cl(K)∗,

satisfying the following properties:

– alternation: for all P,Q ∈ E[n], e(PQ) = e(QP)−1;

– bilinearity: for any P,Q,R ∈ E[n] we have e(P +
Q,R) = e(P,R)e(Q,R);

– non-degeneracy: if P ∈ E[n] is such that for all Q ∈
E[n], e(PQ) = 1, then P = O;

– computability: there exist an efficient algorithm to
compute e(P,Q) for any P,Q ∈ E[n].

We now turn our attention to a more concrete situation. Let
p be prime, a ∈ Z∗

p. Consider the elliptic curve E over Fp

and the map Φ : E/cl(Fp) → E/cl(F p) defined by

E : Y 2 = X3 + a,Φ(O) = O; Φ(x,y) = (ζx,y),

where
ζ ∈ F∗

p2\{1},ζ 3 = 1, p = 2 (mod 3)

or

E : Y 2 = X3 + aX ,Φ(O) = O; Φ(x,y) = (−x, iy),

where
i ∈ F∗

p2 , i2 = −1, p = 3 (mod 4).

One can easily check that Φ is an automorphism. Pick up
a point P ∈ E/Fp of prime order q,q|p + 1 = card E/Fp.
Then E[q] = 〈P, Φ(P)〉. We define the modified Weil pair-
ing ê by

ê : G×G → G′, ê(R, S) = e(R,Φ(S)),

where
G1 = 〈P〉, G′ = F∗

p2 .

It easy to show that for every R∈ 〈P〉 such that ê(R, P) = 1,
we have R = 0. It is known that the C-DH problem in G

is hard (cf. [4]), but as it is shown in [18] not harder
than the DLP in G′. The existence of Weil pairing implies
directly that D-DH problem is easy in G. The randomized
algorithm computing the Wail pairing was first proposed
in [19]. The corresponding derandomized algorithm was
shown in [8]. In what follows we will consider the bilinear
structure (G,G′,e,P) with G,G′ and P as defined above and
e being the suitable modified Weil pairing.
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4. ID-Based Signature Schemes

The standard ID-based signature scheme considered in this
paper is the tuple: IBS = (Setup, Extract, Sign, Verify).
The corresponding algorithms are described below:

Setup of the system

The algorithm takes as input the security parameter and
returns the description of the system, algebraic structure,
the suitable hash functions and the pair (s,Ω), where s is
the master key and Ω the corresponding PKG-public key.

Extract

Given the user identity (ID), PKG computes and sends
(by a secure channel) the corresponding secret key for the
signer sk(ID) = sk(ID,s).

Signing

Having as input the message m, the secret key sk(ID) and
a random element r, the signer computes the signature of
m : Sig = [m,R,σ ], where R = R(m,r, ID) is the suitable
commitment of r and σ = σ(m,r,sk(ID)).

Verification

Any entity (verifier) having as input the signer identity ID,
the signature Sig and PKG-public key Ω outputs “accept”
or “reject” according to the verification process.

As an example we give the ID-based signature scheme from
G-DH groups proposed in [7] (see also [15]), which will
be the initial bilinear pairing based protocol for the further
improvements.

Example 1: ID-based signature schemes from bilinear

pairing

The protocol (IBSBP) consists of the following algorithms:

Setup of the system

Having as input the security parameter, it returns:
the bilinear structure (G,G′,P,e), the pair (s,Ω = sP) and
the suitable hash functions h and Q

h : {0,1}∗ → Zq,

Q : {0,1}∗ → G.

Extract

Private key generator takes as input the identity ID of the
user and returns the secret key sk(ID) = sQ(ID).

Signing

Given a message m ∈ {0,1}∗ the signer generates a random
r ∈ Zq and computes the signature of m : Sig = [m,R,σ ],
where R = rP and σ = rΩ + h(m,R)sk(ID).

Verification

To verify the signature [m,R,σ ] any user checks if e(P,σ) =
e(Ω,R + h(m,R)Q(ID)).

5. Strong ID-Based Signature Scheme

In this section the enhance the IBS scheme to protect the
signer against the compromising of the PKG master key s.
This is due to the additional interactive protocol between
the user U and PKG. The user generates a random (secret) k

and the corresponding commitment K sends to PKG. This
is the input for PKG to compute the suitable (public) ver-
ification key vk and the corresponding secret part for the
signer. Consequently, the signer computes the final secret
key sk = sk(k,s, ID) not available for PKG. The protocol
SIBS consists of the following algorithms: SIBS = (Setup,
U-PKG, PKG-U , Keygen, Sign, Verify).

Setup

Having as input the security parameter, the algorithm re-
turns the descryption of the system with the suitable hash
functions and the pair (s,Ω).

U-PKG

The signer U having as input the identity ID and Ω, gen-
erates the random secret key k = kID and publish the cor-
responding commitment K = K(k, ID,Ω).

PKG-U

PKG having as input the master key s and K computes
and publish the verification key vk = vk(s, ID,K) and the
corresponding secret part sPKG−U sends to the signer by the
secure channel.

Keygen

The signer U having as input the private value k = k(ID)
and the secret part sPKG−U computes the secret key skU =
skU (k,sPKG−U) relating to the verification key vk(s, ID,K).

Sign

The signer having as input the message m and the secret
key skU computes the suitable signature Sig = Sig(m,skU ).

Verify

Any entity having as input the signature and the ver-
ification key vk = vk(ID,K,Ω) returns as output: ac-
cept or reject according to the verification process.

Example 2: Strong bilinear pairing based signature

with credential delegation

Referring to Example 1 the above protocol is specified as
follows:

Setup

Having as input the security parameter the algorithm returns
the bilinear structure (G,G′,e,P), the master key s ∈ Zq

together with PKG-public key Ω = sP and suitable hash
functions h,H and Q as below:

h : {0,1}∗ → Zq,

H : G → G,

Q : {0,1}∗ → G.
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U-PKG

The algorithm is performed by the signer. Having as in-
put P and random element k ∈ Zq the value K = kP is
computed and sent to PKG.

PKG-U

Having as input the master key s and the pair: (K,ID),
PKG computes the credential approval sH(vk) = sH(kΩ) =
sH(ksP) = sH(sK), the corresponding secret part sQ(ID)
and send them to the signer.

Keygen

The algorithm is performed by the signer. Having as input
the tuple (k,sQ(ID)) the signer computes the secret key
sk = sk(ID,k,s) = ksQ(ID)

Sign

The algorithm is performed by the signer. It has as in-
put the message and signer’s secret key sk = ksQ(ID) and
returnes the signature: [Sig,vk(ID), sH(vk(ID))], where
vk(ID) = kΩ, Sig = [m,R,σ ], with R = rP and σ =
r[vk(ID)]+ h(m,R)sk(ID).

Verify

The algorithm is performed by any verifier. First he
checks the credential: (vk(ID),sH(vk(ID)) using the
PKG-public key Ω. The credential is accepted provided
e(H(vk(ID)),Ω) = e(sH(vk(ID)),P). If so he verifies the
signature returning “accept” as output provided e(P,σ) =
e(vk(ID), R + h(m,R)Q(ID)).

Example 3: Strong Fiat-Feige-Shamir ID-based

signature scheme

The above protocol is the tuple: SFFSIBS = (Setup,
PKGKeygen, U-PKG, PKG-U , Keygen, Sign, Verify) and
is specified as follows:

Setup

Having as input the security parameter the algorithm returns
the ring Zn, the secure hash functions: g,H : {0,1}∗ → Zn

with n to be specified latter on and the pair (s,Ω) =
((p,q), pq), where p, q are random prime numbers of suit-
able size.

U-PKG

Having as input the identity ID of the signer, the algorithm
returns the private key k = (p′,q′) and the corresponding
commitment K = p′q′.

PKG-U

The algorithm is performed by PKG. Having as input
the triple (ID,Ω,K) and the master key s = (p,q), it re-
turns the verification key vk = vk(ID,K,Ω) = (v1,v2, . . . ,vl)
mod KΩ, with v j = H(ID‖ j) and the secret value sPKG−U =
(s′1, . . . ,s

′
l) satisfying the equalities (s′j)

2 = v j mod Ω, j =
1,2, . . . , l. The secret value sPKG−U is sent to the signer by
the secure channel. Here H is the given hash function with
the corresponding value of n being equal to KΩ.

Keygen

Having as input the value of sPKG−U and k =
(p′,q′) the signer computes the secret key sk =
sk(ID,k,s) = (s1, . . . ,sl), satisfying the inequalities (s j)

2 =
v j mod KΩ, j = 1,2, . . . , l.

Sign

The algorithm has as input the message m, secret key sk =
(s1, . . . ,sl) and a random element r ∈ ZKΩ. As an output it
returns Sig = [m,R,σ ]. Here σ = r(sb1

1
, . . . ,s

bl
j ) with R =

(b1, . . . ,bl) and b j( j = 1,2, . . . , l) are the subsequent bits of
g(m,U), with U = r2 mod KΩ, where g is the given hash
function with the corresponding value n = KΩ.

Verify

Having as input the message the signature Sig = [m,R,σ ]
and the verification key vk = vk(ID,K,Ω) the algorithm
outputs “accept” provided σ2(vb1

1
,vb2

2
, . . . ,v

bl

l )−1 mod KΩ
is equal to U ′, such that g(m,U ′) has the subsequent bits
equal to b j, j = 1,2, . . . , l.

6. T-Shared Key ID-Based Signature
Scheme (T -SKIBS)

Some types of digital signatures require the presence of the
selected third party in the verification process (see, eg., [20]
and [21] – relating to the IBS schemes from bilinear pair-
ing). We recall that we consider the signatures of the form
Sig = [m,R,σ ], where R denotes the suitable commitment
of the pseudorandom element r = r(m,k, ID) involved in the
generation of σ . Now we will create the relevant sublim-
inal channel to hide in R the information readable only
for some third party T that shares the secret key k with
the signer U . We assume that R is the commitment of
r derived by the application of one-way (trapdoor) homo-
morphism Φ and H is a suitable hash function with the
image included in the domain of Φ. The general scheme
is the following: T -SKIBS = (Setup, ShareU-T , Extract,
Sign, Verify, Verify*), where the algorithms are described
as follows:

Setup

Having as input the security parameter, the corresponding
algebraic structure, the suitable hash functions and the pair
(s,Ω) are given as output.

ShareU-T

This is an interactive protocol between the signer U and
the trustee T , at the end of which the secret shared key k

is computed.

Extract

The algorithm is performed by PKG. It takes as input the
pair (ID,s) and outputs the secret key of the signer sk =
sk(ID,s).
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Sign

The input is the tuple (m,k,sk(ID),r), where r =
H(m,k,Ω). The output is the signature that has the form
Sig = [m,R,σ ], where σ = σ(m,k,sk(ID),r).

Verify

The algorithm is performed by any entity. Having as input
the signature Sig and the PKG-public key Ω. The algorithm
outputs “accept” if σ is consistent with the pseudorandom
parameter R and the message m.

Verify*

The algorithm is performed by the trustee T . Having as
input the tuple (σ ,k,Ω), the output is “accept” provided R

is consistent with the value of Φ(H(m,k)).

The algorithm Verify* provides us with the additional pro-
tection of the signer against the compromising of the secret
key sk = sk(ID), since it is no more equivalent to loosing
the identity of the signer.

Example 4: T-shared key ID-based signature with

bilinear pairing

Let (G,G′,e,P) be a bilinear structure and Φ : Zq → G be
the corresponding additive one-way group homomorphism.
We let R = Φ(r) and H : {0,1}∗ → Zq be the suitable hash
function. Using this specification for the protocol from
Section 4, we see that the suitable changes will concern
only the algorithms: Sign, Verify and Verify*. Namely
the signer selects a random r′ ∈ Zq and computes the com-
mitment R′ = r′P. Next he computes r′′ = H(m,k,R′) and
the generated signature has the form: Sig = [m,R′,r′′,σ∗],
where σ∗ = σ(m,sk(ID),r′ + r′′). The verification algo-
rithm (Verify) is actually the same as in the basic scheme
with the commitment R replaced by R′+R′′. The additional
(strong) verification (algorithm Verify*) checks if actually
Φ(H(m,k,R′)) = R′′.
The additional information r′′ (superfluous for any verifier
except T ) is just the “hint” for the trustee to decide if the
signature was generated by the authorized signer or not
(algorithm Verify*).

7. Strong T -Shared ID-Based Signature
Scheme (ST-SIBS)

Joining the concept of T -shared key (Section 6) with the
extended communication (U-PKG, PKG-U) between the
signer and PKG (Section 5) we arrive at the following
protocol: ST-SIBS = (Setup, ShareU-T , U-PKG, PKG-U ,
Keygen, Sign, Verify, Verify*).

Setup

Having as input the public data, the algorithm returns the
corresponding algebraic structure suitable hash functions
and the pair (s,Ω).

ShareU-T

This is an interactive protocol between the signer U and
the trustee T , at the end of which the secret shared key κ
is computed.

U-PKG

The signer U having as input the identity ID and Ω, gen-
erates the random secret key k = kID and publish the cor-
responding commitment K = K(k, ID,Ω).

PKG-U

PKG having as input the master key s and K computes
and publish the verification key vk = vk(s, ID,K) and the
corresponding secret part sPKG−U sends to the signer by the
secure channel.

Keygen

Having as input the private value k = k(ID) and the se-
cret part sPKG−U the signer U computes the secret key
skU = skU (ID,k,sPKG−U) relating to the verification key
vk(s, ID,K).

Sign

Having as input the message m, the secret key skU and the
corresponding pseudorandom value r = r(m,k) the signer
computes the suitable signature Sig = [m,R,σ ], where σ =
σ(m,k,r,skU ) and R = R(m,k,r,Ω) is the corresponding
commitment of r.

Verify

Any entity having as input the verification key vk =
vk(ID,K,Ω) and signature Sig returns as output accept or
reject according to the verification process.

Verify*

Having as input the tuple (σ ,κ ,Ω), the trustee (T ) outputs
“accept” provided R is consistent with the value of Φκ(m)
and “reject” otherwise.

The validity of the signature is checked by two kind of
verification-weak verification which can be made by any
entity and strong verification performed only by the trustee.
The secret key of the signer sk(ID) = sk(ID,sPKG−U ,k) is
computed with the aid of PKG master key s and the secret
key κ shared with T . Therefore neither PKG nor T is able
to forge the signature. Moreover, even in the case when
the secret key sk(ID) is compromising (but not the shared
key κ), trustee can still distinguish between the signature
generated by the real signer and the forger. This is due
to the algorithm Verify* in the above protocol. Below we
show the suitable example based on the Fiat-Feige-Shamir
signature.

Example 5: Strong FFS T-shared key ID-based

signature scheme

The protocol follows the above steps with the suitable spec-
ifications (see Example 3), i.e., SFFST-SKIBS = (Setup,
ShareU-T, U-PKG, PKG-U , Keygen, Sign, Verify, Verify*).
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The only changes when compared with Example 3 concern
the additional algorithms ShareU-T, Verify* and the suit-
able modification in algorithm Sign (related to the depen-
dence of the pseudorandom value r on the shared key κ).
Namely:

ShareU-T

The signer (U) and trustee (T ) proceed the interactive pro-
tocol which outputs the shared secret key κ .

Sign

The algorithm takes as input the message m, secret key sk =
(s1, . . . ,sl) and a random element r′ ∈ ZΩ. Applying the
chineese remainder theorem we compute r mod KΩ : r =
h(m,κ) mod K and r = r′ mod Ω. As an output it returnes
Sig = [m,R,σ ]. Here σ = r(sb1

1
, . . . ,s

bl

l ) mod KΩ, where
R = (b1, . . . ,bl) and b j( j = 1,2, . . . , l) are the subsequent
bits of g(m,U), with U = r2 mod KΩ and g being the
suitable hash function g : {0,1}∗ → Zn(n = KΩ).

Verify*

The trustee applying the verification key vk =
vk(ID,K,Ω) = (v1,v2, . . . ,vl) mod KΩ computes first
the value r2 mod KΩ then using the secret value
k = (p′,q′) corresponding to the commitment K computes
the square root r mod K and check if r = h(m,κ), where
κ is the secret key shared between the signer and trustee.

8. Deniable T -Shared Key ID-Based
Signature (DT-SKIBS)

The signature scheme considered in Section 7 has the fol-
lowing (sometimes undesired) properties:

– the same message signed twice has the same signa-
ture;

– given the valid signature (satisfying both algorithms
Verify and Verify*) the signer can check (prove an-
other party) that the signature satisfies indeed the
strong verification algorithm.

The second property might be used by the adversary in
the so called coercion attack considered in the context of
an encryption process in [12]. Suppose that the sender
encrypts the message and sends it to the receiver. After
some time the sender can be coerced by an adversary to
give up the plaintext message together with the random
choices involved in the encryption process. We can pose
the question: can the sender protect himself against such an
attack? The original idea of translucent sets applied in [12]
was then exploited in [13] to give the more practical so-
lution. Here we adopt the idea of deniable encryption in
the context of the signature schemes that allows to avoid
the above weakness. The idea is as follows. We let the
pseudorandom element r be depending on some “random”

factor ρ , so that for any fixed m,κ ,κ ′ and ρ , there exists
a corresponding ρ ′ satisfying r = r(m,κ ,ρ) = r(m,κ ′,ρ ′).
In the case of the coercion attack the signer could recover
the “fake” value κ ′ still keeping the real value of κ secret.
This idea was investigated in [1] in the case of the certifi-
cate based signature schemes. Below we adopt it for the
ID-based signature schemes. In the following protocol we
incorporate the deniable encryption affecting merely the al-
gorithms ShareU-T, Sign and Verify* in the above ST-SIBS
scheme. The corresponding protocol runs as follows:

Setup

Having as input the security parameter the algorithm re-
turns the corresponding algebraic structure of the system to-
gether with the suitable hash function h : {0,1}∗ →{0,1}∗,
and the pair (s,Ω).

ShareU-T

In this part the suitable deniable encryption function Eden :

Zn → Zn and the corresponding decryption function Dt :

Im(Eden) → Zn are defined. Moreover, the signer and
trustee (T ) compute the shared secret key κ , while the cor-
responding trapdoor information t is known only for T .

U-PKG

The signer U having as input the identity ID and Ω, gen-
erates the random secret key k = kID and publish the cor-
responding commitment K = K(k, ID,Ω).

PKG-U

PKG having as input the master key s and the commit-
ment K computes and publish the verification key vk =
vk(s, ID,K) and the corresponding secret part sPKG−U sends
to the signer by the secure channel.

Keygen

Having as input the private value k = kID and the se-
cret part sPKG−U the signer U computes the secret key
skU = skU (ID,k,sPKG−U) relating to the verification key
vk(s, ID,K).

Sign

Having as input the message m the secret key skU and
the pseudorandom value r = Eden[h(m,κ ,ρ)] the suitable
signature Sig = [m,R,σ ], with σ = σ(m,k,r,skU ) and the
commitment R = R(m,k,r,Ω) of r is computed as output.

Verify

Any entity having as input the verification key vk =
vk(ID,K,Ω) and signature Sig returns as output “accept”
if σ is consistent with (m,R) or “reject” otherwise.

Verify*

Having as input the tuple (t,σ ,κ ,Ω) the trustee (T ) outputs
“accept” provided the (t,k)-“trapdoor” inverse of R agrees
with h[(m,κ)] and “reject” otherwise.
Below we illustrate the above protocol using the standard
ID-based signatures given in [7] and [14].

Example 6: Deniable T-shared ID-based signature from

bilinear pairing

The protocol consists of the following algorithms: Setup,
ShareU-T, Extract, Sign, Verify, Verify*.
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Setup

Given the security parameter the bilinear structure
(G,G′,e,P), the suitable hash functions h : {0,1}∗ → Zn,
H : Zn → Zq, Q : {0,1}∗ → G and the pair (s,Ω) are re-
turned.

ShareU-T

Here the suitable deniable encryption function Eden :

Zn → Zq and the corresponding decryption function Dt :

Im(Eden)→ Zn are defined. The signer (U) and trustee (T )
compute the shared secret key κ , while the corresponding
trapdoor information t (allowing to decrypt the deniably
encrypted message) is known only for T .

Extract

Having as input the signer identity ID the algorithm returns
the secret key for the signer sk(ID) = sQ(ID).

Sign

The signer selects a random r′ ∈ Zq and computes the com-
mitment R′ = r′P. Next he applies the deniable encryption
algorithm to compute r′′ = Eden[h(m,κ ,R′)]. The signature
is: Sig = [m,R′,r′′,σ ], where σ = (r′ + r′′)Ω + H(m,R′ +
r′′P)sQ(ID).

Verify

Any user checks if e(P,σ) = e(Ω,R′ + r′′P + H(m,R′ +
r′′P)Q(ID)).

Verify*

Using the trapdoor information t the trustee decrypts the
value r′′ and checks if it is equal to h(m,κ ,R′).

Example 7: Strong FFS deniable T-shared key

ID-based signature

Specifying the above general DT-SKIBS scheme with the
SFFST-SKIBS protocol (see Example 5) we obtain the
following protocol SFFSDT-SKIBS = (Setup, ShareU-T,
PKGKeygen, PKG-U , Keygen, Sign, Verify, Verify*). The
corresponding algorithms are as follows:

Setup

Having as input the security parameter the ring Zn together
with the suitable hash functions: H,g,h : {0,1}∗→ Zn (with
the values n = n(H), n = n(g), n = n(h) to be specified, re-
spectively) and the pair (s,Ω) = ((p,q), pq) with the suit-
able prime numbers p,q are given as output with the image
of h contained in the interval [M,M + K] for the suitable
values of M and K.

ShareU-T

Here the suitable deniable encryption function Eden :

Zn(h) → ZN and the corresponding decryption function
Dt : Im(Eden)→ Zn are defined. The signer (U) and trustee
(T ) compute the shared secret key κ , while the correspond-
ing trapdoor information t (allowing to decrypt the deniably
encrypted message) is known only for T .

U-PKG

Having as input the identity ID of the signer, the algorithm
returns the private key k = (p′,q′) and the corresponding
commitment K = p′q′ is sent to PKG.

PKG-U

The algorithm is performed by PKG. Having as input
the triple (ID,Ω,K) and the master key s = (p,q), it re-
turns the verification key vk = vk(ID,K,Ω) = (v1,v2, . . . ,vl)
mod KΩ, with v j = H(ID‖ j) and the secret value sPKG−U =
(s′1, . . . ,s

′
j) satisfying the equalities (s′j)

2 = v j mod Ω,
j = 1,2, . . . , l. The secret value is sent to the signer. Here
H is the given hash function with the corresponding value
of n(H) being equal to KΩ.

Keygen

Having as input the value of sPKG−U and k = (p′,q′)
the signer computes the secret key sk = sk(ID,k,s) =
(s1, . . . ,sl), satisfying the inequalities (s j)

2 = v j mod KΩ,
j = 1,2, . . . , l.

Sign

The algorithm has as input the message m, secret key sk =
(s1, . . . ,sl) and a random element r′ ∈ ZΩ. Applying the
chineese remainder theorem we compute r mod KΩ : r =
Eden(h(m,κ)) mod K and r = r′ mod Ω (with r belonging
to the interval [M,M + K]). As an output it returns Sig =

[m,R,σ ]. Here σ = r(sb1

1
, . . . s

bl

l ), where R = (b1, . . . ,bl)
and bl( j = 1,2, . . . , l) are the subsequent bits of g(m,U),
with U = r2 mod KΩ and n(g) = 21+1.

Verify

Having as input the signature Sig = [m,R,σ ] and the verifi-
cation key vk = vk(ID,K,Ω) = (v1,v2, . . . ,vl) mod KΩ, the
algorithm outputs “accept” provided σ2(vb1

1
,vb2

2
, . . . ,v

bl

l )−1

mod KΩ is equal to U ′, such that g(m,U ′) has the subse-
quent bits equal to b j, j = 1,2, . . . , l.

Verify*

Applying the verification key vk = vk(ID,K,Ω) = (v1,
v2, . . . ,vl) mod KΩ the trustee computes first the value r2

mod KΩ. Then using the secret value k = (p′,q′) corre-
sponding to the commitment K computes the square root r

mod K and check if Dt(a) is equal to h(m,κ), where κ is the
secret key shared between the signer and trustee, while a is
the unique number congruent to r mod K belonging to the
interval [M,M + K].

9. Concluding Remarks

In the paper we have investigated the possible improve-
ments of the ID-based signature schemes in a successive
way, from the simpler protocols to the more advanced ones.
To increase the clarity of presentation we have illustrated
the ideas by the examples of two basic schemes due to Fiat-
Feige-Shamir (see [14]) and bilinear pairing based protocol
due to X.Yi [7]. The security of the underlying schemes
relies on different computational problems namely the inte-
ger factorization problem and C-DH problem in the group
of n-torsion points of elliptic curve over the finite field,
respectively. Both the complexity and security of the ba-
sic schemes were studied in details in the literature. Here
we have focused our attention towards the protection of
the investigated schemes against the risk of compromising
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the private key of the signer and the so called coercion
attack (see, e.g., [1]). The main ingredient applied in this
approach was the construction of the suitable subliminal
channel in the underlying digital signatures.
This channel can be used to protect the signer in case
of force, blackmail, etc. The critical information leaked
subliminally can be read only by the pointed third party
that knows some trapdoor information. The given evidence
prove that some weakness of the ID-based digital signatures
could be overcome by application of the interactive secret
key generation and the idea of the deniable encryption.
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