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Abstract— The learning vector quantization (LVQ) network

was used to classify the ECG ST segment into different mor-

phological categories. Due to the lack of data in the ST el-

evation categories, the classifier was only trained to identify

different types of ST depressions (horizontal, upsloping and

downsloping). The accuracies were 91%, 85% and 65% re-

spectively for the training, validation and testing data respec-

tively. Despite the low accuracy for the testing data, most

of the mis-classifications were downsloping ST depression be-

ing classified as horizontal ST depression. We concluded that

more data and more training are needed in order to train the

LVQ to recognize other morphological types of ST deviation

and to improve the accuracy.

Keywords—learning vector quantization, ARTMAP, decision

support systems, ischemic heart disease.

1. Background

Cardiovascular diseases have long been recognized to be

one of the major causes of morbidity and mortality in de-

veloped countries and myocardial infarction is one of the

important causes of premature and sudden death in adults.

The early detection and diagnosis of myocardial ischaemia

allow early intervention and can improve the survival rate.

Electrocardiogram (ECG) is an important component of the

diagnosis of myocardial ischaemia. In the diagnostic pro-

cess, the clinicians look at the rhythm of the ECG, the

ST-segment deviation, the shape of the segment, the shape

of the QRS complexes and the shape of the T wave. Then

a decision will be made upon whether the ECG is sug-

gestive of ischaemia supported by the clinical guidelines.

Therefore, the diagnosis is usually made in a 2-stage pro-

cess. Firstly, symptoms, signs and features from the ECG

and laboratory investigations are sought. Then, a diagnosis

is made using the rules derived from previous research and

clinical guidelines.

The computer-assisted diagnosis of ischaemic heart disease

has been a subject of research in the past two decades due

to an increase in interests in artificial intelligence. How-

ever, most systems suffered from a lack of interpretability.

Baxt [1] used the presence of a list of medical history,

symptoms, signs and ECG features as inputs to an artifi-

cial neural network (ANN) but the ECG features were not

extracted automatically and no explicit rule could be ex-

tracted from the ANN. Other works [3, 4] used different

sets of input items but they still required the clinicians to

interpret the ECG. Another approach is to use a one-stage

approach (for example [2, 7]). The input is the ECG signal

and the output is the diagnosis. Neural networks are used

to classify the ECG into normal or ischaemic. However,

this approach is a black-box approach that does not offer

an explanation to the users as to why the system considers

the patient having or not having myocardial ischaemia.

In order to improve the interpretability, a rule-based ap-

proach is required but in order to use the rule-based ap-

proach, one requires information about the inputs to the

rules. The inputs to the rules, in the context of the di-

agnosis of ischaemia from the ECG, include the presence

of ST deviation, shape of the ST segment and pathologi-

cal Q wave, etc. The conventional approach of ST analysis

and most standard ECG monitors can give information re-

garding the magnitude of ST deviation. It is known that

ST deviation in itself can be due to other causes [9], there-

fore, it is important to take the shape of the segment and

other information into consideration. However, the recog-

nition of shape cannot be easily done using conventional

ECG wave detection method due to the low signal-to-noise

ratio. Although one can use a parametric approach by mod-

eling the ST segment by first or second order equations,

the segment is short and noisy and the parameters derived

can be unreliable. Therefore, a neural network approach is

adopted. We used the learning vector quantization (LVQ)

network to classify the shape of the ST-segment. The clas-

sification can in turn be used as one of the input features to

a rule-base system which is developed using the adaptive

resonance map (ARTMAP).

2. Overall architecture

Before presenting the use of LVQ in ST analysis, we would

like to describe first the overall architecture of the rule-

based disease-specific approach of automatic detection of

ischaemia from ECG signals. The overall scheme is shown

in Fig. 1. The ECG signals are first processed by the

ECG processor module. This module filters the ECG

and then uses a wavelet-based algorithm to identify the

ECG characteristic points (such as positions of R wave,

J-point, T wave, etc.) [6]. The module also divides the

ECG into segments containing only one beat based on the

position of the QRS complexes. These segments can then

by used as the inputs to the black-box ST morphology

classifier, which is based on the use of the LVQ network.
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The ST segment deviation and shape will then be supplied

as inputs to the diagnostic rules module. Other features

required by the rule-base can be derived from the positions

of ECG characteristic points. These features include heart

rate, T-wave inversion, tall R wave, widened QRS complex

and pathological Q wave, etc.

Fig. 1. The overall scheme for the ischaemic classification

from ECG. The black-box ST morphology classifier is based

on the LVQ network and the “diagnostic rule” module is based

on ARTMAP.

The diagnostic rules module consists of a set of “if-

then” rules. These rules were derived using the ARTMAP.

A graphic user interface (GUI) was implemented and used

for presenting the ECG to the cardiologists and recording

their classification. ECG segments were presented to the

cardiologists and they were asked to indicate on the screen

the presence or absence of the input features and the diagno-

sis (i.e., normal, probably ischaemia, ischaemia, abnormal

but not ischaemia, etc.). The data were then used for the

ARTMAP training. After training, the rules were derived

from the top-down weights of the ARTa module and were

reviewed by the cardiologists. Unacceptable rules were ex-

cluded. In this paper, we will not go into the details of the

ARTMAP as the primary focus is the use of LVQ.

3. Learning vector quantization

The LVQ network [5] is a neural network related to the vec-

tor quantization and can be used for pattern classification.

Here we will only present the LVQ1 which was used in our

system. The LVQ1 consists of an input layer and an output

layer. The dimension of the input layer is the same as that

of the input vector. Each node in the output layer represents

one output class. The activity of each output node is the

Euclidean distance between the input vector and the input

weight vector. The output layer is a competitive layer and

thus, the output from the node with the highest activity will

be 1 and the outputs from the rest will be zeros.

During the training, the weight vector is adjusted according

to the output class and the target class. The target class is

the desirable target. Let wc be the input weight vector of

the output class node, x be the target class. The weights

are adjusted according to the following equations:

wc(n+1) = wc(n)+α(n)
[

x(n)−wc(n)
]

if x and wc belong to the same class, (1)

wc(n+1) = wc(n)−α(n)
[

x(n)−wc(n)
]

if x and wc belong to different classes, (2)

where α(n) is the learning rate at the nth epoch. The

input weights of other nodes remain unchanged. Using this

algorithm, the input weight vector will get closer to the

input vector as time progresses.

The network is modified in the MATLAB neural network

toolbox. An additional layer of neurons is added to the

output layer so that the output layer becomes the hidden

layer. The number of nodes in this new hidden layer can

be greater than the number of output classes (named sub-

classes). The dimension of the new output layer is the same

as the number of output class. Therefore, a few subclasses

can be associated with the same output class using a binary

connection weight. This is the network structure that was

adopted in this paper.

4. Methodology

4.1. Training and testing data collection

The ECG signals from the European ST-T database were

used. Only those from V4 were used in the study as not

enough data can be retrieved for the training purpose from

other leads. The QRS complexes in the ECG signals were

located and used as reference points for the truncation of

the signals into individual beats. Each individual beat was

presented to a clinician for the classification of ST mor-

phological type. For the development and training of the

LVQ network, each input-target data set consisted of the

time-series voltage values from one ECG beat and the cor-

responding ST-morphology assigned by the clinician. The

data were divided into training data set, cross-validation

data set and testing data set.

4.2. Data preprocessing and network training

Each ECG beat was re-sampled to give 128 data points.

The signals were then normalized to zero mean and unity

standard deviation. The principal component analysis

(PCA) was then applied to the data and the coefficients

each principal component were used as the input to the LVQ

network. During the PCA, only components accounted for

more than 1% of the total variance were included. In this

way, the input dimension was reduced to 15 from 128.

LVQs with 16 to 30 hidden nodes were used and the LVQ

which showed the best performance was chosen. The train-

ing was done in series of 100 epochs until a maximum of
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1000 epochs. After every 100 epochs, the prediction error

in the cross-validation data set was calculated. The train-

ing stopped when an increase in the prediction error was

detected.

5. Results

The 486 beats were analyzed by the clinician; 7 beats were

unclassified (due to large signal noise) and only 37 out of

486 beats showed ST elevation. Therefore, a decision was

made not to include ST elevation as one of the output cate-

gories. The LVQ so developed could therefore only classify

the ECG beat into “normal”, “horizontal ST depression”,

“upsloping ST depression” and “downsloping ST depres-

sion”. The LVQ with 27 hidden nodes was found to give

Table 1

The performance of the LVQ network

with 27 hidden nodes

LVQ output

Target Training data Validation data Testing data

1 2 3 4 1 2 3 4 1 2 3 4

1 31 2 0 1 25 3 2 1 49 6 0 0

2 9 37 1 6 9 36 3 6 5 17 1 2

3 0 4 40 1 3 7 36 4 3 0 0 0

4 0 8 0 30 0 7 0 28 1 15 2 0

Target: 1 – normal, 2 – horizontal ST depression,

3 – upsloping ST depression, 4 – downsloping

ST depression.

the best performance. It gave the correct classification

in 91% of the training data, 87% of the cross-validation

data and 65% of the testing data (Table 1). Most of the

mis-classifications in the testing data were classified as

“downsloping ST depression” by the clinician and the net-

work classifications were “horizontal ST depression”.

6. Discussions and conclusions

The accuracy of the trained network on the training data

and the validation was satisfactorily however, the accuracy

on the testing data was poor. However, when one looks into

the details of the make-up of the testing data, one can see

that the data were not evenly distributed. Only three cases

were classified by the clinician as upsloping ST depres-

sion. The mis-classification of downsloping ST depression

into horizontal ST depression may indicate that the class

boundary should be shifted more towards the downslop-

ing ST depression. The performance may be improved

by further training. Another solution is to use the LVQ2.

In LVQ2, not only the weight vector closest to the input

will be modified but the one second closest to the input

may also be modified under defined circumstances.

As mentioned earlier, more data will be needed in order

to train the neural network to recognize different types

of ST elevation and to recognize the ST morphology in

more leads. The LVQ network was chosen in this paper for

this application because each ST-segment can only belong

to one morphological class and the LVQ network can be

trained to discover the class boundaries and the competitive

layer ensures that only one class is chosen as the output.

Despite this, the use of other types of neural network can

be investigated in the future.
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