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Abstract — Main scattering mechanisms affecting electron

transport in MOS/SOI devices are considered within the

quantum-mechanical approach. Electron mobility components

(i.e., phonon, Coulomb and interface roughness limited mobil-

ities) are calculated for ultrathin symmetrical DG SOI tran-

sistor, employing the relaxation time approximation, and the

effective electron mobility is obtained showing possible mobil-

ity increase relative to the conventional MOSFET in the range

of the active semiconductor layer thickness of about 3 nm.
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1. Introduction

Silicon devices based on the MOS structure are still the

dominating group of semiconductor devices that are sub-

jected to continuous technological progress – in terms of

both dimension downscaling and modifying the basic struc-

ture of the device and/or developing new ones. The latter

tendency is exemplified by silicon-on-insulator (SOI) tech-

nology, which is a growing up advantageous alternative

to the conventional bulk CMOS technology. In addition

to overcoming some of the drawbacks and limitations of

the CMOS technology, the SOI concept gives direct en-

try to nanoelectronics, which is achieved in various forms

of ultrathin SOI devices (especially in fully depleted sin-

gle gate (SG) or double-gate (DG) SOI transistors) by de-

creasing the thickness of the semiconductor active layer

far below 10 nm [1, 2]. Figure 1 shows schematically

structural differences between conventional n-channel bulk

MOS, SG SOI and DG SOI transistors.

Since transport properties of charge carriers determine their

mobility and the overall current – voltage behavior of the

device, scattering processes are of special interest when

modeling the device operation. Therefore channel carri-

ers mobility models have been continuously developed for

decades along with MOS technology growth, with main

goals to reflect the actual/measured device performance as

well as to investigate the physical phenomena experienced

by carriers in the channel area. The physical approach is

particularly important since it allows for better understand-

ing of the device operation and is necessary if one wants

to make reliable predictions when changing the device op-

eration conditions and/or its configuration, as is the case

with the transition from the conventional CMOS to SOI

technology.
Fig. 1. Schematic cross-sections of (a) bulk MOS, (b) SG SOI

and (c) DG SOI transistors.
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Because in MOS transistors carriers are spatially confined

within a near-surface layer of very small thickness (tens

of nanometers), quantum-mechanical effects occur affect-

ing the spatial distribution of the carriers and imposing

quantization of their energy [3, 4]. Therefore one of the

milestones in MOS transport modeling was the inclusion

of the quantum-mechanical phenomena into the device the-

ory after which one could distinguish between “classical”

and “quantum-mechanical” descriptions.

Whereas the “classical” approach based on the solution to

the Poisson’s equation alone was acceptable to a certain ex-

tent when modeling the conventional bulk MOS transistors,

the quantum-mechanical approach is rigorously imposed in

the case of SOI devices with ultrathin active layers and

solution to the Schrödinger equation must be included self-

consistently with that to Poisson’s equation. In the nano-

metric range of the active layer thickness, quantum effects

determine the behavior of the SOI device and substantial

differences arise between the bulk MOSFETs and ultrathin

SOI transistors with respect to potential and carriers distri-

butions, as well as the dynamics of scattering mechanisms,

which additionally depend now on the semiconductor thick-

ness [5–8].

In this paper we present some aspects of scattering pro-

cesses in MOS/SOI transistors following the quantum-

mechanical modeling approach and concentrating on elec-

tron mobility in ultrathin n-channel symmetrical double-

Al-gate SOI transistors with uniform substrate doping. The

main mechanisms, i.e. the phonon, Coulomb and interface

roughness scattering, limiting the channel electron mobil-

ity, will be discussed briefly, pointing out the most im-

portant differences between the cases of bulk NMOSFETs

and ultrathin DG SOI devices, as well as showing the in-

fluence of the semiconductor thickness variation. The scat-

tering rates will be obtained and analyzed within the per-

turbation theory after obtaining the self-consistent solution

within the effective mass approximation. Next, electron

mobilities corresponding to particular scatterers will be

obtained utilizing the relaxation time approximation, and

eventually the effective electron mobility will be assem-

bled and plotted vs. the transverse effective field in the

channel.

2. Two-dimensional electron

gas (2DEG) in MOS/DG SOI

transistor channel

As already mentioned, the spatial confinement of electrons

within a very narrow layer of MOSFET as well as SOI

transistor channel area, defined in terms of energy by the

potential energy barrier of Si/SiO2 interface and the con-

duction band bottom, results in quantization of kinetic en-

ergy corresponding to motion in the direction z perpendic-

ular to the surface. The total electron kinetic energy wave

vector relationship near the energy band minimum may be

approximated as:

E(k) = Ei +
h̄2 k2

x

2mx
+

h̄2 k2
y

2my
(1)

being a set of energy subbands with discrete minima Ei
and quasi-continuous energies of motion in the two re-

maining directions (x,y) parallel to the surface (hence the

2DEG term). Moreover, the electron spatial distribution

within the potential well follows now quantum-mechanical

principles and is defined by envelope wave functions ξi(z).
Assuming that the potential energy V (z) varies in the z di-

rection only, the eigenstates (En, ξn(z)) may be obtained

by the solution to the system of Poisson’s and the time-

independent Schrödinger one-dimensional equations:

d2φ
dz2 =

e
εSi

(
NA(z)+n(z)− p(z)

)
, (2)

(
− h̄2

2m
d2

dz2 +V (z)
)

ξi(z) = Eiξi(z) (3)

along with the equations describing the electron distribu-

tion n(z) and the number of electrons Ni in each subband:

n(z) = ∑
i

Ni
∣∣ξi(z)

∣∣2 +∑
i

N′
i
∣∣ξ ′

i (z)
∣∣2, (4)

Ni =
nvmdKBT

π h̄2 ln
(

1+ exp
(EFn −Ei

KBT

))
. (5)

Because of the conduction band energy minima configura-

tion in k-space (Fig. 2), one obtains two series of eigen-

states when the Si-SiO2 interface is the (100) plane –

the first one (nonprimed) corresponding to twofold val-

leys of the effective mass in the quantization direction

m = ml = 0.916 m0 and the second one (primed) corre-

sponding to fourfold valleys of the effective mass in the

quantization direction m = mt = 0.19 m0.

Fig. 2. Constant energy surfaces (E(k) = const) in the vicinity

of the silicon conduction band minima.
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In this paper we assume infinite potential barrier height at

the SiO2-Si interface, which is a common practice. In other

words we do not consider here a possible penetration of

electron wave functions into the dielectric layer. Figures 3

and 4 show examples of the distributions of energy levels

and eigenfunctions obtained within this approximation for

both the conventional bulk NMOS and DG SOI transistors,

respectively. The envelope functions have been scaled for

illustration purposes, since:

∞∫

0

∣∣ξi(z)
∣∣2dz = 1 . (6)

Fig. 3. Energy diagram of a bulk NMOS transistor (T = 300 K,

NA = 1017 cm−3, tox = 3 nm, VGS = 1.8 V, VFB = −0.922 V,

Al- gate).

Fig. 4. Energy diagram of a symmetrical DG SOI transistor

(T = 300 K, NA = 1017 cm−3, tox = 3 nm, tox = 9 nm, VGS = 1.5 V,

VFB = −0.922 V, Al- gates).

The difference between the ml and mt effective masses re-

sults in a split between the nonprimed and primed series

in the energy scale and hence leads to different electron

occupation of the corresponding energy subbands. More-

over, the density of states masses differ for both series

since md2 = mt = 0.19 ·m0 for the twofold valleys, while

md4 = (ml · mt)
1/2 = 0.417 · m0 for the four-fold valleys,

and the corresponding average conduction effective masses

are: mc2 = 0.19 ·m0, mc4 = 2/(1/ml + 1/mt) ≈ 0.315 ·m0.

These differences will strongly affect the resultant transport

properties.

The substantial difference between the bulk MOS and the

symmetrical DG SOI structure in terms of quantum effects

is the channel potential well shape. In the former case the

potential well is triangle-like, while in the latter it may be

additionally affected by the bias applied to both gates, as

well as the thickness of the semiconductor layer. Volume

inversion occurs in ultrathin structures of DG SOI, mean-

ing that the inversion charge distribution centroid moves

towards the center of the structure.

3. Theoretical approach

In this paper we focus on the main, usually considered scat-

tering mechanisms, i.e. the phonon, Coulomb and interface

roughness scattering, since these are believed to influence

the device performance to the highest extent at room tem-

peratures [4, 9, 10]. We do not consider here neither high-

energy nor ballistic transport problems.

Scattering processes are typically analyzed and modeled

within the perturbation theory treating a scattering mecha-

nism as a source of perturbation energy H′ introduced into

the regular periodic potential of the lattice, which generates

transitions of carriers between different quantum states. Ac-

cording to this approach, the transition probability per unit

time between the initial and final states ϕi and ϕ f , is given

in a general form by the Fermi Golden Rule:

Pf i =
2π
h̄

∣∣∣M f i

∣∣∣
2
δ
(

E f −
(
Ei ± h̄ω

))
, (7)

where the matrix element M f i depends on a particular scat-

terer and is defined as:

M f i =
∫

d3rϕ∗
f H′ϕi. (8)

The δ -function in (7) corresponds to the energy conserva-

tion law including the energy absorption/emission in the

case of inelastic scattering (e.g. with optical phonons),

as well as no energy exchange in the case of elastic scatter-

ing when h̄ω ≈ 0 (e.g. scattering by low-energy acoustic

modes, Coulomb centers and interface roughness). Elec-

tron transitions in silicon conduction band may be addi-

tionally divided into intravalley scattering processes and

intervalley scattering processes, depending on the target

valley. Intervalley scattering involves relatively high transi-

tion wave vectors and is mainly assigned to optical phonons

and high-energy acoustic phonons.

Furthermore, intrasubband and intersubband transitions

may be defined in the case of 2DEG in the MOS/SOI type

transistor channel. An example of a transition scheme be-

tween the initial electron wave vector k, the final wave vec-

tor k′ and the scattering wave vector q is shown in Fig. 5

for an intersubband elastic transition.
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Fig. 5. Illustration of wave vector exchange in 2DEG.

As opposed to a three-dimensional case, the momentum

conservation law in the above 2DEG system is fulfilled only

for momentum components parallel to the surface being the

plane of the considered transport, or in other words, for the

components perpendicular to the direction of quantization:

k′
|| = k||±q|| . (9)

One can define the energy dependent rate 1/τi j(E) of scat-

tering by a given scattering mechanism for transition be-

tween subbands i and j by adding all possible final states k′.
Similarly, the total scattering rate 1/τi(E) associated with

the ith subband is determined by adding transitions into

other subbands including intrasubband transitions (i = j)
and taking into account intervalley transitions by the appli-

cation of the corresponding valley degeneration factors.

Having the scattering rates, the Boltzmann equation may

be solved and electron mobility may be obtained either by

means of a precise full Monte Carlo analysis or within

much simpler relaxation time approximation. We follow

the second approach believing that in terms of the basic

scattering mechanisms it reflects the mobility behavior well

enough to recognize the most significant trends. Thus, we

calculate ith subband mobility for a given scatterer:

µi =
e

mci

〈
τi
〉

(10)

by averaging the subband relaxation times over the energy

distribution:

〈
τi
〉

=

∑
k

E(k)τi
(
E(k)

)(
− ∂ f

∂E(k)

)

∑
k

E(k)
(
− ∂ f

∂E(k)

) . (11)

Then, the average rth-scattering mechanism limited mobil-

ity is calculated depending on the relative subband occu-

pation:

µr =

∑
i

µr,i Ni

Ninv
, (12)

where Ninv denotes the inversion charge density. Finally,

the total effective electron mobility due to considered

scattering mechanisms may be derived by applying Mat-

thiessen’s rule:

1
µe f f

≈ 1
µph

+
1

µimp
+

1
µsr

(13)

and expressed as a function of effective transverse electric

field defined as:

Ee f f =

Z f∫

0
n(z)

(
∂φ(z)/∂ z

)
dz

Z f∫

0
n(z)dz

, (14)

where Z f is the integration range equal to Z f = ∞ for

MOSFET and Z f = ts/2 for the symmetrical DG SOI struc-

ture.

4. Phonon scattering

Due to lattice vibrations, which occur even at 0 K, phonon

scattering is an inherent mechanism limiting electron mo-

bility and is of particular importance at room temper-

ature. This type of scattering is described as collisions

between electrons and the vibrating lattice during which

the lattice energy quantum h̄ωq (a phonon) and quasi-

momentum h̄q transfer occurs. Phonons are believed to

cause local perturbations of the band structure affecting the

electron transport. This effect is conventionally described

within the deformation potential approximation. Because

of relatively small energies of long wavelength acoustic

phonons, electron transitions induced by those phonons are

typically treated as elastic and are believed to be mainly

intravalley processes.

For the z-direction momentum components, the conserva-

tion law is not fulfilled (see Eq. (9)). Instead, the matrix

element depends on the form-factor [11]:

Ii j
(
qz
)

=

∞∫

0

ξi(z)eiqzzξ j(z)dz . (15)

We stay here within frequently used energy equipartition

and isotropic approximations applying effective deforma-

tion potential Ξe f f value, irrespective of the phonon wave

vector direction [12, 13]. In such a case, the following

identity is utilized:

1
2π

∞∫

−∞

∣∣∣Ii j
(
qz
)∣∣∣

2
dqz ≡

∞∫

0

ξi(z)2ξ j(z)2dz = Fi j (16)

and the ith subband intravalley scattering rate is obtained:

1
τi(E)

=
KBT

h̄3ρu2 ∑
j

θ
(
E −E j

)
mdΞ2

e f f Fi j , (17)

where ρ is crystal density, u – sound velocity, and θ(E) is

the step function.
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Similarly, deformation potential constants Dr and phonon

energies Er are defined for intervalley transitions of differ-

ent types – g transitions between parallel valleys and f tran-

sitions between perpendicular valleys. The corresponding

intervalley scattering rate is given by:

1
τi(E)

= ∑
r

nv(Dr)
2md

h̄ρEr

(
nr

nr +1

)
∑

j
θ
(
E ±Er −E j

)
Fi j ,

(18)

where nr denotes a number of rth type phonons and nv is

the degeneracy factor of the final valleys.

The upper/lower symbols correspond to phonon absorp-

tion/emission. The deformation potentials are still a matter

of investigation and are taken as empirical or fitting pa-

rameters [13, 14]. Here we utilize typical phonon parame-

ters [15] (Table 1).

Table 1

Phonon parameters

Phonon type
Energy Er

[meV]

Deformation constant Dr

[108 eV/cm]

f1 19 0.3

f2 47.5 2.0

f3 59.1 2.0

g1 12.1 0.5

g2 18.6 0.8

g3 62.2 11.0

Acoustic deformation 12.0

potential Ξe f f [eV]

Following the theory outlined above, we have determined

phonon limited mobility of electrons for conventional bulk

NMOS transistor and DG SOI transistor, varying the ac-

tive semiconductor layer thickness. The results were then

plotted in Fig. 6 as a function of the effective field.

Fig. 6. Phonon mobility for NMOS (black dots) and DG SOI

transistor for different values of the semiconductor thickness.

One can observe that the obtained phonon-limited mobility

values are generally smaller for DG SOI than for NMOS

except for a particular semiconductor thickness, about 3 nm,

and in the range of lower fields. This tendency in mobility

behavior may be better seen when plotted as a function of

the semiconductor thickness (Fig. 7).

Fig. 7. Phonon-limited mobility of electrons in DG SOI transistor

vs. semiconductor thickness ts for different gate voltage biases

(tox = 3 nm).

Here, it can be seen that the calculated phonon-limited mo-

bility reaches a local maximum at the semiconductor thick-

ness of about 3 nm and for low gate voltages. The max-

imum decreases then gradually with increasing gate volt-

age and finally vanishes, following the general trend. The

phonon-limited mobility decrease for ultrathin SOI rela-

tive to the bulk NMOSFET values results from stronger

spatial confinement of carriers, which is a direct conse-

quence of the semiconductor thickness decrease for the SOI

case. The confinement broadens the electron wave func-

tion spectrum in the direction z allowing for the interaction

with a wider range of phonons, which increases the coeffi-

cient (16). The other observed tendency, i.e. the mobility

increase for ts ≈ 3 nm, is the effect of relative subband con-

figuration/occupation which, for the case of DG SOI, favors

the nonprimed series of lower density-of-states and conduc-

tion masses when decreasing the semiconductor thickness

and/or the gate voltage bias. Thus, the two counteracting

effects determine the resultant phonon-limited electron mo-

bility in ultrathin DG SOI transistor, giving a range of the

semiconductor thickness and the gate voltage values where

some increase of the mobility may be predicted.

5. Coulomb scattering

This type of scattering is associated with the presence of

electrostatic centers affecting the motion of channel carri-

ers. The scatterers are believed to be mainly impurity ions,

interface states, charges in the oxide and the gate material.
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Scattering potential of Coulomb centers is neutralized to

some extent by free carriers, which modify their spatial

distribution and screen the bare external scattering poten-

tial. Therefore, this screening effect substantially reduces

the scattering strength, particularly in the range of higher

inversion charge concentrations. Another phenomenon in-

herently connected with the electrostatic interaction be-

tween the scatterers and carriers in a MOSFET channel is

the image potential induced due to a sandwich-like struc-

ture of the device consisting of several layers with differ-

ent dielectric constants. Additional effects of Coulomb na-

ture are predicted and investigated when scaling down de-

vice dimensions to the nanometric range, such as remote

charge scattering, and a change of the image model is sug-

gested [16].

Here we concentrate on the image charge effect and briefly

report differences between the image potential influence on

the impurity-ion-limited mobility in conventional MOS and

DG SOI transistors [17].

Conventionally, semi-infinite SiO2-Si layers are assumed

and only one image charge Q′ = (εSi−εox)/(εSi +εox) ·Q of

a scattering center Q is taken into account in the MOSFET

theory, optionally with an image charge due to the finite

width of the space charge layer in the semiconductor [9].

In an ultrathin SOI structure, however, additional inter-

faces are present and the image charge model becomes

more complicated. Let us assume semi-infinite oxide lay-

ers as a first approximation, which corresponds to the

above-mentioned conventional MOS case. Due to the other

Si-SiO2 interface, the total image potential φ induced by

an impurity ion Q present in the channel at coordinates

(r0, z0) may be developed into an infinite series:

φ(r, z) = Q
4πεSi

{
ε̃

(
(r− r0)2 +(z+ z0)2

) 1
2

+

+ ∑
n=1

(
ε̃2n−1

(
(r− r0)2 + |z− (2nts − z0)|2

) 1
2

+

+
ε̃2n

(
(r− r0)2 + |z− (2nts + z0)|2

) 1
2

+

+
ε̃2n

(
(r− r0)2 + |z− (z0 −2nts)|2

) 1
2

+

+
ε̃2n+1

(
(r− r0)2 +(z+ z0 +2nts)2

) 1
2

)}
, (19)

where ε̃ = (εSi − εox)/(εSi + εox), which can be illustrated

by the series of induced image charges shown in Fig. 8.

As can be seen, one could expect the scattering image po-

tential to be higher for the case of a SOI device than for

a conventional MOSFET. The situation becomes however

more complex if the device is a truly ultrathin DG SOI

device, i.e. if the oxide layers are of ultrathin range. Then

oxide layers with the thickness comparable to that of the

Fig. 8. Image charges seen in SOI device with tox = ∞.

semiconductor layer, or even thinner, must be taken into

account, as well as the gate material influence. We uti-

lize the following solution for the image potential in the

Metal-SiO2-Si system (Fig. 9) [18]:

φ(r,z) = Q
4πεSi

∑
n=0

(
ε̃n+1

(
(r− r0)2 +(z+2ntox + z0)2

) 1
2

+

− ε̃n

(
(r− r0)2 +(z+2(n+1)tox + z0)2

) 1
2

)
. (20)

Fig. 9. Image charge affecting the potential felt in Si (Me-SiO2-Si

system).

Then we perform the superposition of the solutions (19)

and (20) in order to obtain the image-charge distribution

in the Me-SiO2-Si-SiO2-Me system, as shown in Fig. 10.

Now, both metallic gates affect the resultant image poten-

tial, inducing image charge of opposite sign, and thus re-

ducing the total scattering potential.

Next, we derive Coulomb scattering rates and the elec-

tron mobility limited by impurity ions (of assumed con-

centration of NA = 1017 cm−3) located in the channel area,

employing the model [4] and including the screening ef-

fect, which is also affected by the modified image-charge
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Fig. 10. Image charge affecting the potential felt in Si (Me-SiO2-

Si-SiO2-Me system).

distribution. The calculated mobilities are plotted versus

effective transverse electric field for DG SOI with various

values of semiconductor thickness (from 15 nm to 2 nm)

and for NMOSFET (Fig. 11), as well as for various gate

oxides (Fig. 12). As can easily be seen, the obtained mo-

bilities are much higher for ultrathin DG SOI devices than

for the NMOSFET. As already mentioned, this is the con-

sequence of energy level configuration in DG SOI, which

favors electron occupation of the non-primed E0 subband

when thinning the semiconductor layer and/or decreasing

the gate bias. Moreover, the surface density of impurity

ions is reduced in thinner semiconductor layers. How-

ever, no interface states have been included here, which

may change the overall picture due to doubled interface

influence.

Fig. 11. Coulomb electron mobility for the DG SOI and

NMOSFET transistors.

Figure 12 shows the mobility with the gate oxide as a pa-

rameter and it presents a comparison of different image

charge models in the case of a NMOS transistor and

a DG SOI transistor with the silicon layer thickness equal

to 2 nm. The “conv.” points (black dots) correspond to

the conventional model of “one real – one image” charge,

typically employed in MOSFETs, while the curve “∞”

(for DG SOI only) corresponds to the infinite thickness

of both oxide layers, as shown in Fig. 8. The curves for

different oxide layers were obtained including the influ-

ence of a metallic gate on the image potential. The image

Fig. 12. Coulomb electron mobility for different tox.

charge reduces the scattering potential introduced by an

impurity ion, but it also affects the inversion charge, and

thus reduces the screening effect controlled by the inver-

sion charge. Considering the screening, the image charge

induced in the gate material replaces the inversion charge.

Therefore, only a slight increase of the Coulomb mobility

relative to the conventional model is noticeable for oxides

below about 3 nm and mainly in the range of lower fields,

since for higher fields the inversion charge of high concen-

tration dominates as a screening factor. Here the model

taking into account the specificity of the DG SOI structure

gives results similar to those obtained with the conventional

MOSFET-dedicated model.

6. Interface roughness scattering

Since carrier transport in MOS/SOI devices takes place in

the near-surface layer of the semiconductor at the border

with the dielectric layer, surely all irregularities of this in-

terface, called surface roughness, must contribute to scat-

tering, thus limiting the effective carrier mobility. This

scattering mechanism is believed to dominate in the range

of higher fields, where the electrons are forced towards the

surface.

Statistical parameters of the Si-SiO2 interface, which de-

termine its scattering properties, are typically described

by the autocovariance function C(r) = 〈∆(r′)∆(r′− r)〉 and

the corresponding spectrum S(q||) = |∆(q||)|2 of the func-

tion ∆(x,y) (usually unknown) of local deviations from the

ideally smooth interface. The form of the auto-covariance

function is still a matter of investigation, and usually
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Gaussian or exponential forms are employed with some

modifications [19, 20]. Here we assume the exponential

one:

C(r) = ∆2 exp

(
−

√
2r

λ

)
, (21)

S(q||) = π∆2λ 2

(
1+

q2
||λ

2

2

)−3/2

. (22)

In each case the key parameters are ∆ – the rms value of

the deviations and λ – the correlation length.

The spatial deviations of the interface result in deviations

of the potential experienced by electrons in the channel.

The corresponding spatial shift of the potential energy:

∆V (z) = V ′(z)−V (z) (23)

(see Fig. 13) is treated as the perturbation and usually ap-

proximated by:

∆V (z) ≈ ∆(r)
∂V (z)

∂ z
. (24)

Fig. 13. Illustration of local deviation of the Si-SiO2 interface

from the ideal plane.

Therefore, taking into account this “geometrical” effect

only, the matrix element is expressed in terms of the trans-

verse electric field E(z):

Mi j = e
∫

ξi(z)∆(r)E(z)ξ j(z)d z . (25)

Assuming that only the lowest subband is occupied (as in

the low-temperature regime), one obtains a direct depen-

dence of the matrix element on the effective field:

M00 = e∆(r)Ee f f (26)

which is a commonly employed approximation when mod-

eling the surface roughness mobility.

It has been reported, however, that in the case of ultrathin

SOI devices the approximation (24)-(25) cannot be further

employed and the perturbation potential should be rather

derived based on the definition (23) [21]. On the other

hand, a still more complex description of surface roughness

scattering includes additional effects due to electron distri-

bution shift and extra electric field due to the deformed in-

terface, as well as the image-charge modification [4]. This

“full” matrix element is given by:

Mi j
[
q||(β )

]
=

∞∫

0

d z
(

ξi(z)
∂V (z)

∂ z
ξ j(z)

)
+

+
e2

εSi

εSi − εox

εSi + εox

∞∫

0

dzξi(z)γ(q||)ξ j(z) , (27)

where:
γ(q||) =

(
Ninv +Ndepl

)
e−q||z+

+
q2
||

16π

(
K1(q||z)

q||z
− (εSi − εox)

2(εSi + εox)
K0(q||z)

)
(28)

and K1, K0 are the modified Bessel functions.

The surface roughness scattering rate is given by:

1
τi j
(
E(k)

) =
2π
h̄

1
2π h̄2 θ

(
E(k)−E j

)
×

×
2π∫

0

dβ
2π

md S
[
q||(β )

]∣∣Mi j
∣∣2 (1− cosβ ) . (29)

In this work we compare the three models mentioned

above employing them in the case of an ultrathin DG SOI

transistor. We denote them as: Model 1, corresponding to

the simplified form (25) of the matrix element, Model 2,

corresponding to the matrix element derived using defini-

tion (23), and Model 3, which not only employs the matrix

element according to Model 2 but also includes additional

Fig. 14. Surface roughness mobility – Model 1.

effects (expressions (27)-(28)). In all these cases screening

by inversion electrons is included. The interface parame-

ters employed are ∆ = 0.2 nm and λ = 1.3 nm. The results
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are shown as surface roughness mobility plotted vs. effec-

tive field for various semiconductor thicknesses of DG SOI.

The results corresponding to a NMOS transistor serve as

a reference. Figure 14 shows the mobility obtained using

Model 1. As can be seen, the calculated dependencies for

the DG SOI transistor follow approximately the (Ee f f )
−2

slope, as is typically recognized for MOSFETs. However,

when analyzing these results in terms of the active semi-

conductor layer thickness, the observed tendency is some-

what surprising and doubtful. Here, the mobilities increase

with the thinning of the semiconductor layer in DG SOI.

Fig. 15. Surface roughness mobility – Model 2.

Fig. 16. Surface roughness mobility – Model 3.

Moreover, they exceed the mobility of the NMOS, even in

the range of the thinnest layers (2–3 nm). One may intu-

itionally expect the SOI devices to exhibit a quite opposite

trend, since the second SiO2-Si interface is also rough and

surely contributes to the scattering. Additionally, a given

roughness height ∆ becomes of higher importance when

decreasing the semiconductor thickness, particularly in the

ultrathin range. Better results, in this regard, are obtained

with a more precise Model 2 (Fig. 15), since all the DG SOI

points lie below the NMOS curve. However, still no un-

equivocal and strong enough trend is observed in terms of

the semiconductor thickness. Model 3, being of the high-

est complexity, “improves” the picture accordingly to our

expectations – the calculated surface roughness mobility

strongly decreases with the semiconductor layer thickness

decrease (Fig. 16).

7. Conclusions

Having derived the mobility components, we compose, ac-

cording to (13), the effective electron mobility for the sym-

metrical DG SOI and NMOS transistors and plot it vs. the

effective field (Fig. 17) and as a function of the semicon-

ductor thickness (Fig. 18).

Fig. 17. Effective electron mobility versus transverse effective

field.

The effective mobility is mainly determined by the phonon

scattering at room temperatures, and it is additionally sup-

pressed by the Coulomb scattering in the range of lower

fields and by the interface roughness scattering in the range

of higher transverse fields.

The phonon scattering is generally more intense in ultra-

thin DG SOI structures than in the conventional bulk MOS

transistor and its impact increases with the thinning of the

active semiconductor layer due to stronger spatial confine-

ment of electrons in narrowed potential bounds.

However, another effect affecting transport properties of

electrons may be observed in ultrathin symmetrical DG SOI

devices oriented in the (100) plane. The energy separa-

tion between the primed and nonprimed eigenstates series

increases when the semiconductor layer becomes thinner

and/or the gate bias is relaxed, thus favoring the occu-

pation of the lower nonprimed series (the lowest energy

level E0 subband, to be precise) of lower electron mass
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Fig. 18. Effective electron mobility in DG SOI transistor versus

semiconductor layer thickness.

in the transport direction. This is illustrated in Fig. 19,

where it can be seen that in the ultrathin range of the

semiconductor thickness the combined population of the

subbands E0 and E1 relative to the total inversion charge,

reaches nearly 100%. Because of the two counteracting

effects mentioned above, a certain increase of the phonon

mobility may be expected to occur in the ultrathin range

(here, according to our calculations, for the semiconductor

thickness of about 3 nm), which has also been reported by

other researchers [6, 8].

Fig. 19. Relative fraction of electrons in subbands E0, E1 (the

nonprimed series) in the total inversion charge for DG SOI versus

semiconductor thickness (tox = 3 nm).

The discussed “transport-facilitating” effect of the subband

configuration plays an important role also in the case of

Coulomb scattering, which suppresses the mobility more

strongly in the conventional bulk MOSFET than in the

DG SOI transistor, as analyzed here for the impurity-ion

scattering. On the other hand, ultrathin DG SOI devices

suffer much more from the interface roughness scattering

than bulk MOSFETs due to the presence of another inter-

face. This effect increases strongly when the semiconductor

thickness is scaled down.

In this work we obtained results suggesting a possible in-

crease of electron mobility in the symmetrical DG SOI

transistor for the range of semiconductor layer thickness

of about 3 nm. This effect is justified by theoretical postu-

lates.

Furthermore, we have shown that conventional MOSFET

dedicated models, particularly simplified ones, need to be

reconsidered when applied to ultrathin SOI devices, al-

though the modeling results may not be very sensitive to

the model employed (as here in the case of image charge

models), or, on the contrary, very sensitive (as for the in-

terface roughness modeling).

Therefore, due to structural specificity, which allows for

the semiconductor layer thickness variation and the corre-

sponding change of the quantum structure across the chan-

nel area, ultrathin SOI and in particular DG SOI devices

may be very efficient tools enabling verification of the car-

rier scattering theory.
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