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Abstract — Closed-form 2D modeling of deep-submicron and

sub-100 nm MOSFETs is explored using a conformal map-

ping technique where the 2D Poisson equation in the deple-

tion regions is separated into a 1D long-channel case and

a 2D Laplace equation. The 1D solution defines the bound-

ary potential values for the Laplacian, which in turn provides

a 2D correction of the channel potential. The model has been

tested for classical MOSFETs with gate lengths in the range

200–250 nm, and for a super-steep retrograde MOSFET with

a gate length of 70 nm. With a minimal parameter set, the

present modeling reproduces both qualitatively and quantita-

tively the experimental data obtained for such devices.

Keywords — sub-100 nm MOSFET, two-dimensional device

modeling, conformal mapping, threshold voltage, subthreshold

regime, leakage current.

1. Introduction

Very important issues in the development of modern semi-

conductor device technology are the increasing levels of

complexity in the fabrication process and the many sub-

tle mechanisms that govern the properties of advanced de-

vices. These mechanisms, which are explained by a careful

consideration of the device physics, have to be formulated

and implemented into process modeling and circuit design

tools, to empower the circuit designers with means to fully

utilize the potentials of modern technology.

However, it is recognized that the development of commer-

cial circuit design tools lags significantly behind the pace

of progress in device processing. This time lag creates

a costly delay in the adoption of new technology in circuit

designs, especially for the many companies that depend on

chip foundries for the fabrication of their proprietary cir-

cuits. They consistently have to contend with designs based

on relatively conservative design rules. Hence, a strong im-

petus exists for focusing on advanced device modeling for

circuit simulators and other computer aided design (CAD)

tools.

For silicon CMOS technology, the present industry model-

ing standards for circuit simulation, such as BSIM3 [1, 2],

BSIM4 [3, 4], EKV [5], MOS Model 9 [6], and MOSA1

[7, 8], are based on one-dimensional (1D) theory, initially

developed for long-channel FETs. However, the steady re-

duction in feature size, with gate lengths presently well into

the sub-100 nm regime [9], has strongly enhanced a number

of phenomena, collectively known as short-channel effects,

related to the two- and even the three-dimensionality of the

device structures. To keep pace with technology, this has

necessitated extensive, phenomenological modifications of

the 1D models, resulting in a steady erosion of their phys-

ical basis and a plethora of model parameters, many of

which are of an obscure origin.

Therefore, as a prerequisite to obtaining very precise de-

scriptions of the next generations of MOSFETs, the con-

sideration of 2D models based on a self-consistent solution

of the 2D field-pattern in the device [10–15] has become

necessary. In such an approach, short-channel effects and

scaling properties will be intrinsic to the model, which,

accordingly, may require a minimum set of parameters of

clear physical origin. Hence, a close accord is established

with the fabrication process. For the same reason, such

models will represent a significant and needed improve-

ment for use in CAD tools aimed at the next generation of

circuit design. In particular, the 2D strategy is expected

to yields precise scaling information on important proper-

ties, such as threshold voltage and the subthreshold leakage

current. Above threshold properties will have to be solved

self-consistently using appropriate transport formalisms for

the channel current.

Here, we consider closed-form 2D solutions of the sub-

threshold properties of deep submicron and of sub-

100 nm MOSFETs. Following the procedure by Klös and

Kostka [15], the 2D Poisson equation for the depletion

regions is separated into a 1D long-channel problem and

a Laplacian with well-defined boundary conditions for the

2D region under the gate. The latter is solved using confor-

mal mapping techniques [16]. In this work, the definition

of the 2D boundary conditions and the mapping functions

used in the Laplace problem have been improved compared

to those of [15], and the technique has been extended to

sub-100 nm range MOSFETs.

This method applies to classical MOSFETs as well as

to non-classical structures [17]. We note that the clas-

sical MOSFET approach is directly applicable to super-

steep-retrograde (SSR) channel doped devices, to Si-Si/Ge

strained devices, and to sidewall vertical MOSFETs with

a partially depleted body. Likewise, the same approach,

with somewhat different boundary conditions for the Lapla-

cian, may be applicable to double-gate fully depleted ver-

tical MOSFETs and double-gate SOI MOSFETs.

The device geometry for the classical MOSFET and the

corresponding boundary conditions of the Laplacian are

discussed first. Next, the conformal mapping technique is
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presented. This approach is then applied to classical MOS-

FETs with gate lengths between 200 and 250 nm, where

results for the channel potential profile, the scaling of the

threshold voltage with the gate length, the drain induced

barrier lowering (DIBL) effect, and the subthreshold leak-

age current are presented and compared to experiments.

Finally, corresponding results for sub-100 nm SSR MOS-

FET are presented.

2. Modeling approach

Consider the schematic classical MOSFET geometry of

Fig. 1, which shows the actual source and drain contact

regions and the depletion region outlined by dashed lines.

Starting from the work by Klös and Kostka [15], the contact

regions in the present analysis are approximated by rectan-

gular boxes, and the potential distributions of the source

and drain depletion regions (Regions 2 and 3) are calcu-

lated by means of a 1D Poisson equation.

Fig. 1. Schematic MOSFET geometry. The lower dashed line

indicates the depletion boundary resulting from a 2D analysis.

A 2D analysis may be performed in the central region un-

der the gate, where the superposition principle allows us to

partition the actual 2D potential distribution into that corre-

sponding to a 1D Poisson equation and that of a Laplacian.

We note that the only adjustable parameter in this proce-

dure is the effective thickness used for the source and drain

contacts (to compensate for the rounded shape of the ac-

tual contacts near the gate). The threshold and subthreshold

properties of this device are largely determined by the chan-

nel potential profile Φo(x) = φo = ϕo(x), where φo is the

channel potential according to the 1D long-channel case

and ϕo(x) is the contribution from the 2D Laplacian in Re-

gion 1. All the potentials are measured relative to that of

the substrate interior.

The 2D contribution to the channel potential profile can

be determined by either considering Region 1 as consist-

ing of only the semiconductor slab under the oxide or by

including the gate oxide as well [15]. In the first case,

the channel is a boundary for the Laplacian. In the sec-

ond case, the oxide-metal interface is the boundary. It

is therefore necessary to scale the actual oxide thickness

tox to t ′ox = toxεs/εi, where εs and εi are the semiconductor

and the oxide permittivities, respectively. Also the “oxide”

part must remain neutral and non-conducting. Since the

second approach provides a better definition of the bound-

ary condition for the Laplacian, it will be used in the present

analysis.

From the channel potential profile Φo(x) resulting from our

analysis, we can determine the threshold voltage VT and

the subthreshold current Isub. VT corresponds to the gate-

source voltage VGS for which the minimum value in

the channel potential satisfies the threshold condition,

Φo,min = 2ϕb. Here ϕb = Vth ln(Ns/ni), where Vth is the

thermal voltage, Ns is the substrate doping, and ni is the

intrinsic carrier density in silicon. Isub for a given VGS is

determined by the channel potential profile and, in partic-

ular, by the value of Φo,min.

In practice, the channel potential Φo(x) has to be de-

termined from the normal electrical field En(x) pointing

into Region 1 from the channel. As will be shown below,

En(x) consists of the field contribution Eo from the 1D anal-

ysis and the contribution E2D(x) from the 2D analysis. The

latter is found by performing an integration over all the

boundaries of Region 1.

Here we assume for simplicity that the substrate is uni-

formly doped. Non-uniform doping profiles in the vertical

direction may be approximated by two or more horizontal

layers of different but uniform doping (see below). The

same would apply for strained Si-Si/Ge MOSFETs.

2.1. 1D boundary conditions

The boundary conditions for the 2D Laplace problem in

Region 1 (including the oxide) are defined in terms of the

potential distributions along at the oxide-metal interface

(y = 0) and at the vertical boundaries at x = 0 and x = L.

At the vertical boundaries, the potential distributions are

derived from the 1D Poisson equations in Regions 1–3, the

potentials of the source and drain contacts, and the potential

at the vertical sidewalls of the oxide.

1D potential distribution in Region 1. In the 1D ap-

proximation, the potential distribution φg(y) relative to the

substrate interior in Region 1 becomes:

φg(y) =































ϕg +(φo −ϕg)
y

t ′ox
, 0 ≤ y < t ′ox

φo +
qNs

2εs

(

y− t ′ox
)2−Eo(y− t ′ox)

t ′ox ≤ y < dg + t ′ox

0, y ≥ dg + t ′ox

, (1)

where ϕg is the potential at the gate-“oxide” interface,

dg =

√

2εsφo

qNs
(2)

71



Jarle Østhaug, Tor A. Fjeldly, and Benjamin Iñiguez

is the depletion depth, and

Eo =
qNs

εs
dg =

√

2qNsφo

εs
(3)

is the magnitude of the vertical 1D electric field contribu-

tion at the semiconductor-oxide interface.

At threshold, the 1D channel potential is φo = VSB + 2ϕb,

and below threshold it becomes:

φo = VGB −VFB +
qNs

εs
t ′ox

2
+

−2t ′ox

√

qNs

2εs

(

VGB −VFB +
qNs

2εs
t ′ox

2
)

, (4)

where VGB is the gate-substrate voltage and VFB is the flat

band voltage. It is assumed in Eq. (1) that the oxide thick-

ness is much smaller than the gate length.

We note that the total 2D potential distribution in Region 1

is

Φg(x, y) = φg(y)+ϕg(x, y), (5)

where ϕg(x, y) is the solution of the Laplacian.

1D potential distribution in Regions 2 and 3. The poten-

tial distributions in Regions 2 and 3 are initially approxi-

mated by 1D distributions of the following form:

φs,d(y)=
















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























φg +(Vs,d −φg)
y

t ′ox
, 0 ≤ y < t ′ox

VS,D , t ′ox ≤ y ≤ d j + t ′ox

VS,D +
qNs

2εs

(

y−d j − t ′ox

)2
−Eo(s,d)(y−d j − t ′ox)

d j ≤ y ≤ d j +ds,d

0 , y > d j +ds,d + t ′ox
(6)

Here VS ≡VSB +Vbi and VD ≡VS +VDS, are the potentials at

the source and drain contact regions relative to the substrate

interior, Vbi is the built-in voltage, and VDS is the drain-

source bias. The 1D depletion widths of the two regions

are given by

ds,d =

√

2εsVS,D

qNs
. (7)

Eos and Eod are the vertical electric fields at the interface

of the source and drain contact regions, respectively, at the

effective contact depth y = d j (see Fig. 1):

Eo(s,d) =
qNs

εs
ds,d =

√

2qNsVS,D

εs
. (8)

Boundary conditions of the Laplacian in Region 1. To

solve the Laplacian in Region 1, we must determine the

boundary conditions for the three interfaces indicated in

Fig. 2.

Fig. 2. Boundary conditions for the Laplacian of Region 1.

At the metal-“oxide” interface, we have

ϕg(x) ≡ ϕg(x, 0) = VGB −VFB . (9)

At the vertical boundaries, we require the potential to be

continuous. Hence, from Eqs. (1) and (5), we obtain for

the source and drain side interfaces:

ϕs,d(y) = φs,d(y)−φg(y) =

=


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
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










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
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
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(VS,D −φo)
y

t ′ox
, 0 ≤ y ≤ t ′ox

VS,D −φo +Eo(y− t ′ox)−
qNs

2εs

(

y− t ′ox

)2
,

t ′ox ≤ y ≤ d j + t ′ox

VS,D −φo +Eo(s,d)d j +
qNs

2εs
d2

j +

+
(

Eo −Eo(s,d)−
qNs

εs
d j

)

(y− t ′ox),

d j + t ′ox ≤ y ≤ dg + t ′ox

VS,D −Eo(s,d)(y−d j − t ′ox)+
qNs

2εs

(

y−d j − t ′ox
)2

,

dg + t ′ox ≤ y ≤ d j +ds,d + t ′ox

0 , y > d j +ds,d + t ′ox

(10)

We can see from Eq. (1) that the intitial 1D estimate for

the channel potential is Φo(x) = φo, or ϕo(x) = 0. As will

be discussed below, solving for the above boundary condi-

tions, we eventually will arrive at an improved Φo(x) that

is properly adjusted for the 2D effects.

3. Conformal mapping

As discussed by Klös and Kostka [15], the Laplacian in

the semi-infinite slab denoted as Region 1, can be solved

by conformal mapping, given the boundary conditions dis-

cussed above. This is done by considering the (x, y) plane

as a complex plane, and mapping Region 1 of this plane

(see Fig. 2) into the upper half of a transformed, complex

(u, v) plane, as shown in Fig. 3. The relative simplicity of

the boundary conditions in the transformed plane allows us

to derive potential distributions in this plane, from which

they can be transformed back to the (x, y) plane.
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Fig. 3. Conformal mapping of Region 1 of the (x, y) plane into

the upper half of the complex (u, v) plane.

The mapping between the two planes is achieved by means

of the following Schwartz-Christoffel transformation [16]:

z =
∫ dz

dw
dw =

L
π

∫ dw√
w−1

√
w+1

=

= 2
L
π

ln
(
√

w−1+
√

w+1√
2

)

. (11)

The solution of the Laplacian in the (u, v) plane is given

by the following integral along the u-axis:

ϕ(u, v) =
v
π

+∞
∫

−∞

ϕ(u′)
(u−u′)2 + v2 du′ , (12)

where ϕ(u) is the boundary condition transformed to

the u-axis. This result can then be transformed back to

the (x, y) plane by means of Eq. (11). Note that along the

u-axis, the transformation in Eq. (11) can be written as:

x =
L
π

Arcos(u), y = 0, for |u| ≤ 1, (13)

x = 0, y =
L
π

ln
(

|u|+
√

u2 −1
)

≡

≡ L
π

Arcosh(|u|), for |u| > 1 . (14)

For MOSFET modeling, we will only be needing the elec-

tric field component En normal to the channel. This field

includes the 1D electrical field Eo and the 2D vertical field

component E2D(x) associated with the Laplacian. Assum-

ing that the oxide thickness is much smaller than the gate

length, the latter can be taken to be the same at the channel

as at the metal interface. Hence, in the (x, y)-plane, we

have:

En(x) = Eo +E2D(x) . (15)

The contribution E2D(u) from the Laplacian can easily be

obtained from Eq. (12) as the mapped derivative of ϕ(u, v)
with respect to v in the limit of v → 0 (see also [15, 16]):

E2D(u) = lim
v→0

∣

∣

∣

∣

∂w
∂ z

∣

∣

∣

∣

dϕ(u, v)
dv

=

=
1
π

∣

∣

∣

∣

∂w
∂ z

∣

∣

∣

∣

+∞
∫

−∞

1
u−u′

∂ϕ
∂u

∣

∣

∣

∣

u′
du′ . (16)

The integral in this expression can be solved piecewise for

the various sections of the boundaries indicated in Fig. 1.

Along the u-axis, the integration limits are as follows:

−∞, −u4 = −cosh
(

π(d j +dd + t ′ox)

L

)

,−u2, −u1, −1 ,

1, u1 = cosh
(

π(d j+ t ′ox)

L

)

, u2 = cosh
(

π(dg+ t ′ox)

L

)

,

u3 = cosh
(

π(d j +ds + t ′ox)

L

)

,∞ (17)

We note that since ϕ(u) = 0 for u <−u4 and for u > u3, we

have no contributions to the integral from these intervals.

3.1. Some approximations

In order to find analytical solutions to the integral of (16),

we have to introduce some additional approximations.

Specifically, we have to replace the mapping functions for

x and y in the integrand by more manageable functions.

For the channel region (−1 ≤ u ≤ 1), we propose to use

the following approximation:

x =
L
π

Arcos(u) ≈

≈ L
π

[√
2
(√

1−u−
√

1+u
)

+
π
2

+
(

2− π
2

)

u
]

. (18)

The transformation and the error of the approximate func-

tion are shown in Fig. 4. We note that the maximum error

is about 0.2%.

We note that the derivative of x with respect to u has the

following exact form:

dx
du

= − L/π√
1−u2

. (19)

Outside the channel region (|u| > 1), we have the exact

mapping function shown in Eq. (14). Here we propose to

use the following approximate function:

y =
L
π

Arcosh(|u|) ≈

≈ L
π
×

{

√

2(|u|−1), for |u| < uo
√

2(|u|−1)− k(|u|−uo), for |u| ≥ uo
, (20)

where uo = 1.2 and k = 0.14.
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Fig. 4. Comparison between the exact (dots) and the approx-

imate (top solid curve) mapping functions for the channel re-

gion. The error of the approximate function is shown in the lower

curve.

Fig. 5. Comparison between the exact (dots) and the approximate

(solid curve) mapping functions for the channel region.

A comparison of these expressions is shown in Fig. 5 for

1 ≤ |u| < 20. We note that the derivative of y with respect

to u has the exact form:

dy
du

=
L/π√
u2 −1

. (21)

The error associated with the approximate mapping is very

small, less than 0.01 for |u| less than about 15, then in-

creases to about 0.05 at |u|= 20, and continues to increase

for higher values of |u|. However, we note that the contri-

butions from the boundaries to the potential and the elec-

trical field at or near the channel vanishes for values of

|u|> u3 (source side) and |u|> u4 (drain side) (see Eqs. (16)

and (17) and Fig. 1). For well-designed transistors, typical

values of u3 and u4 are within the range of u shown in

Fig. 5.

3.2. Channel potential profile

Using the above formalism, the partial integrals from all the

boundary sections of Eq. (16) have analytical solutions (al-

though with somewhat lengthy expressions in most cases).

The transformation from the (u, v)-plane to the (x, y)-plane

is straightforward using the inverse of Eqs. (13) and (14)

for the coordinate.

In order to determine the channel potential profile, Φo(x) =
= φo +ϕo(x), in the subthreshold regime, we have to con-

sider the layer of mobile channel charge with sheet den-

sity qn(x). Using Gauss’ law on a small section of this sheet

charge, we find the following relationship (see Eqs. (15)

and (16)):

qn(x) =
[

Ei(x)−En(x)
]

εs , (22)

where Ei is the total normal field in the “oxide”. Again,

noting that the oxide thickness is very small compared to

the channel length, we can safely assume that the vertical

field is constant inside the “oxide”, which means that it

can be expressed in terms of the difference between the

potentials at the metal boundary and at the channel, i.e.:

Ei(x) =
[

VGS −VFB −VBS −Φo(x)
]

/t ′ox , (23)

where VGS is the gate-source voltage. Combining (22)

and (23) and using elementary electron statistics, we ob-

tain the following expression for the total potential profile

Φo(x) in the channel:

q
n2

i
Ns

exp
(

− Φo(x ,0)

Vth

)

=

=

{

[

VGS−VFB−Φo(x)
]

t ′ox
−En(x)

}

εs , (24)

where ni is the intrinsic carrier concentration and Vth is the

thermal voltage. We observe that, except for the portions

of the channel close to the source and drain, the term on

the left side of this expression can be ignored. Hence, for

the central part of the channel, we obtain the following

potential profile:

Φo(x) ≈VGS −VFB −En(x)t ′ox =

= VGS −VFB −
εs

εi

[

Eo +E2D(x)
]

tox . (25)

A satisfactory, approximate, analytical solution of Eq. (24),

that covers the full length of the channel, is also available

using the “generalized diode equation” approach discussed

in [18].

3.3. Threshold voltage

We recall that the threshold condition is satisfied when the

minimum of the channel potential just reaches the value
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Φo,min = VSB + 2ϕb. From Eq. (25), we find the following

expression for the threshold voltage:

VT = VFB +VSB +2ϕb +En,maxt ′ox , (26)

where En,max is the maximum of the normal electric field

in the channel at threshold.

3.4. Subthreshold current

The subthreshold drain current Isub can be expressed either

in terms of a thermionic emission current Item in short-

channel devices, or as a drift-diffusion current Idd for longer

channels. To cover a wide range of channel lengths, we

may apply the following unified approximation [19], which

is always dominated by the “rate limiting” transport mech-

anism:

Isub ≈
(

1
Item

+
1

Idd

)−1

. (27)

The thermionic emission current is given by:

Item ≈W δ A∗T 2 exp
(

Φg,min −Vbi

Vth

)

, (28)

where Φg,min is the minimum value of the channel po-

tential, δ is the effective thickness of the channel at the

potential minimum, W is the width of the channel, A∗ is

Richardson’s constant. An expression for the drift-diffusion

current was discussed in [19], for which an approxima-

tion applicable to subthreshold MOSFETs was presented

in [15].

4. Quarter-micron MOSFET

We first consider conventional n-channel MOSFETs with

device lengths of 250 nm and 210 nm by comparing our

results with the experimental data by Chung et al. [20].

The experimental data used here came from devices with

Ns = 2 · 1017 cm−3 and tox = 8.6 nm, except for the sub-

threshold characteristics that came from a device with

Ns = 4 ·1017 cm−3 and tox = 5.6 nm. The junction depth in

all cases was about 0.16 µm, and the gate-junction overlap

was 0.1 µm. The devices from [20] were chosen since

they did not include any halo doping or LDD. Hence,

the devices displayed the type of short-channel behavior

expected also for classical sub-100 nm MOSFETs (see

below).

Figure 6 shows comparisons of the modeled and experimen-

tal results for the threshold voltage versus applied drain-

source bias and versus the gate length, respectively, for

MOSFETs with tox = 8.6 nm. To arrive at the experimental

data in the latter case, a calculated long-channel threshold

voltage of 0.42 V was used.

Fig. 6. Comparison of experimental (symbols) and modeled

(lines) variation in threshold voltage: (a) versus applied drain-

source bias for tox = 8.6 nm MOSFET with 210 nm and 250 nm

gate lengths, and (b) versus gate length for VDS = 0.05 V.

The modeled threshold voltages were determined from the

minimum channel potential for a set of gate-source volt-

ages, selecting the ones that comply with the threshold

condition. The calculations were based on processing and

geometric parameters for the two devices.

Figure 7 shows the corresponding central parts of the po-

tential distributions in the channel at threshold, calculated

using Eq. (27) for VDS = 0.05 V and at 3 V.

These curves clearly illustrate the lowering of the thresh-

old voltage (DIBL-effect) related to the reduction of
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Fig. 7. Model calculations of the channel potential relative to the

substrate for VDS = 0.05 V and 3 V for gate lengths of 210 nm

and 250 nm and tox = 8.6 nm.

Fig. 8. Measured (symbols) and modeled (line) subthresh-

old transfer characteristics for a 250 nm MOSFET with and

tox = 5.6 nm at VDS = 0.05 V.

the energy barrier with increasing drain-source bias. Also

the shift of the potential minimum in the direction of the

source with increasing drain-source bias is indicated.

A comparison of an experimental and modeled subthresh-

old transfer characteristics for a 250 nm device with

tox = 5.6 nm is shown in Fig. 8 for VDS = 0.05 V. Note

that this device has a different oxide thickness and dop-

ing than the 250 nm device discussed in Figs. 6 and 7.

However, except for Ns and tox, the same parameter values

were used in the simulations.

The data shown here indicate that the present 2D modeling

strategy is quite suitable for deep submicron MOSFETs op-

erating in the subthreshold regime. The deviations observed

can mostly be attributed to the deviations of the process-

ing variables from those reported. As indicated above, the

only adjustable parameter in the present modeling is the ef-

fective depth source and drain contact, which accounts for

the rounding of the contacts towards Region 1 (see Fig. 1).

Next, we will also test the approach for an experimental

MOSFET in the sub-100 nm range.

5. Sub-100 nm MOSFET

One of the problems of scaling classical MOSFETs into

the sub-100 nm range is that the substrate doping density

has to be increased into the 1018 cm−3 range in order to

contain the source and drain depletion layers. However, this

high doping has several detrimental effects on the MOSFET

properties, such as degradation of the channel mobility and

too large threshold voltages.

One solution to this problem is to use a much lower doping

in the substrate and instead ion implant a higher doping of

desired concentration under the surface. After annealing,

a thin layer of lower doping concentration remains at the

surface, typically to a depth of less than 100 nm. The

much higher doping needed to prevent severe short-channel

effects and punch-through stretches for another 100 nm or

so into the substrate. This is the so-called SSR (super-

steep-retrograde) channel MOSFET structure.

Here, we consider such an n-channel MOSFET with

a 70 nm gate length, reported by Xu et al. [21]. The dop-

ing at the surface of this device is about 2.8 · 1017 cm−3

and increases almost exponentially to about 1.8 ·1018 cm−3

Fig. 9. Schematic view of a super-steep-retrograde channel

MOSFET. For the modeling, we assume that the low-doped and

the high-doped regions each have a constant doping density.
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Fig. 10. Model calculations of the channel potential profiles in
70 nm SSR MOSFET relative to the substrate for (a) VDS = 1.6 V
at VGS = 0 V (lower curve), 0.1 V (middle curve), and 0.31 V
(upper curve), and (b) VGS = 0.1 V at VDS = 0 V (lower curve)
and 1.5 V (upper curve).

at a depth of 60 nm. It also has the added benefit of

very shallow source and drain extensions, with a thick-

ness of about 50 nm, realized by means of a SALICIDE

process.

The variable substrate doping of the SSR channel MOSFET

is modeled as a two-layer structure, as indicated in Fig. 9,

where each layer has a constant doping. The thickness and

the doping concentration in the shallow top region are cho-

sen to be 35 nm and 9.2 · 1017 cm−3, respectively, which

accounts for all the doping atoms in the graded region

near the surface. At threshold and zero drain-source bias,

the depletion layer stretches into the highly doped region.

The thickness of the highly doped layer is such that it is

never penetrated by the gate depletion layer.

The modeling of the SSR MOSFET proceeds as described

above for the 250 nm MOSFET, except that the verti-

cal boundaries of the central region under the gate (Re-

gion 1) now include an extra section to account for the

shallow layer of reduced substrate doping. Region 1, where

the Laplacian is defined, is still assumed to include the

gate oxide and a semi-infinite slab of semiconductor below

(see Fig. 2).

5.1. Modeling results for 70 nm SSR MOSFET

Again, the threshold voltages were determined from the

minimum channel potentials for a set of gate-source volt-

ages, selecting the ones that comply with the threshold con-

dition. Figure 10 shows the calculated channel potential

profiles for some combinations of drain-source and gate-

source biases in the subthreshold regime.

Fig. 11. Experimental (symbols) and modeled (lines) sub-

threshold transfer characteristics for a 70 nm SSR MOSFET

with tox = 3 nm. VDS = 0.1 V (lower curve) and 1.6 V (upper

curve).
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At zero drain-source bias we obtain the threshold voltage

VT = 0.3 V, in close agreement with the value reported

in [21]. From the calculated variation of the threshold

voltage with the applied drain-source bias, we find a DIBL

parameter of σ = ∆T/VDS = 80 mV/V. This value is rea-

sonably close to the value of about 70 mV/V obtained from

the experimental subthreshold transfer NMOS characteris-

tics of [21].

Figure 11 shows a comparison of the experimental

and modeled subthreshold characteristics of the 70 nm

SSR MOSFET.

6. Summary

A closed-form 2D modeling technique for deep-submicron

and sub-100 nm MOSFETs has been investigated. The

technique is based on conformal mapping, where the 2D

Poisson equation in the depletion regions is separated into

a 1D long-channel case and a 2D Laplace equation. From

the straightforward 1D solution, the boundary potential val-

ues of the Laplacian is obtained, from which a 2D correc-

tion to the channel potential is derived. The model has

been tested for classical MOSFETs with gate lengths in

the range 200–250 nm, and for a super-steep retrograde

MOSFET with a gate length of 70 nm. With a minimum

set of parameters, the present modeling reproduces both

qualitatively and quantitatively the experimental data ob-

tained for such devices.

This method applies to classical MOSFETs as well as to

non-classical structures. As shown here, the classical MOS-

FET approach is directly applicable to SSR MOSFETs, and

may also be applied to Si-Si/Ge strained devices and to

sidewall vertical MOSFETs with a partially depleted body.

We foresee that the same approach, with somewhat adjusted

boundary conditions for the Laplacian, may also be appli-

cable to double-gate fully depleted vertical MOSFETs and

to double-gate SOI MOSFETs.
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