
Paper ASimJava: a Java-based library

for distributed simulation
Ewa Niewiadomska-Szynkiewicz and Andrzej Sikora

Abstract—The paper describes the design, performance and

applications of ASimJava, a Java-based library for distributed

simulation of large networks. The important issues associated

with the implementation of parallel and distributed simula-

tion are discussed. The focus is on the effectiveness of differ-

ent synchronization protocols implemented in ASimJava. The

practical example–computer network simulation–is provided

to illustrate the operation of the presented software tool.

Keywords—parallel computations, parallel asynchronous simu-

lation, computer networks simulation.

1. Introduction

The main difficulty in networks simulation is the enor-

mous computational power needed to execute all events

involved by packets transmission through the network. Re-

cently computer network simulation has been an active re-

search area. Numerous software systems have been engi-

neered to aid researchers. The popular commercial and pub-

licly released packet-level simulators like OPNET, NS [10]

or OMNeT [11] require costly shared-memory supercom-

puters to run even medium size network simulation. Since

parallel and distributed simulation is fast becoming the

dominant form of model execution, the focus is on ex-

periments carried on parallel and distributed software plat-

forms. High level architecture (HLA) [2] standard for dis-

tributed discrete-event simulation was defined by the United

States Department of Defense. During last years numerous

integrated environments for parallel and distributed pro-

cessing were developed [13]. These software tools apply

different techniques for synchronization and memory man-

agement, and focus on different aspects of distributed im-

plementation. Many of them are built in Java. SimJava [6]

was among the first publicly released simulators written in

Java.

The paper deals with the description of an integrated frame-

work for distributed simulation. Asynchronous Simulations

Java (ASimJava) can be used to perform simulation ex-

periments carried out on parallel computers or computer

networks. It is general purpose environment that can sup-

port the researchers of different types of complex sys-

tems, but the focus is on communication and computer

networks. It targets a variety of potential simulation prob-

lems. Two types of networks simulators can be developed

using ASimJava:

– connection-level (involving no packet-level opera-

tion) simulator for supporting service level agree-

ment (SLA) negotiation process and resource man-

agement,

– detailed, involving packet-level operation simulator

for testing and analyzing all proposed decision mech-

anisms.

The paper describes the organization, implementation and

usage of ASimJava. Presented practical examples show the

range of applications of the discussed software tool.

2. Description of ASimJava

2.1. General description

The ASimJava general structure enables to do parallel and

distributed discrete-event simulations, [1] that can be de-

scribed in terms of logical processes (LPs) and communi-

cate with each other through message-passing. LPs sim-

ulate the real life physical processes PPs. Each logical

process starts processing as a result of event occurrence

(from the event list or having received a new message).

It performs some calculations and generates one or more

messages to other processes. The calculation tasks exe-

cuted in parallel require explicit schemes for synchroniza-

tion. Two simulation techniques are considered [5]: syn-

chronous and asynchronous. Synchronous simulation is

implemented by maintaining a global clock (global virtual

time–GVT). Events with the smallest time-stamp are re-

moved from the event lists of all LPs, for parallel execution.

Parallelism of this technique is limited, because only events

with time-stamps equal to that of the global clock can be

executed during an event cycle. Asynchronous simulation

is much more effective due to its potentially high perfor-

mance on a parallel platform. In asynchronous simulation

each logical process maintains its own local clock (local

virtual time–LVT). Local times of different processes may

advance asynchronously. Events arriving at the local input

message queue of a logical process are executed according

to the local clock and the local schedule scheme. Synchro-

nization mechanisms fall into two categories: conservative

and optimistic. They differ in their approach to time man-

agement. Conservative schemes avoid the possibility of

causality error occurring. These protocols determine safe

events, which can be executed. Optimistic schemes allow

occurrence of causality errors. They detect such error and

provide mechanisms for its removal. The calculations are

rolled back to a consistent state by sending out antimes-

sages. It is obvious that in order to allow rollback all results

of previous calculations have to be recorded.

1

Ewa Niewiadomska-Szynkiewicz and Andrzej Sikora

2.2. System architecture

One of the principle goals of the ASimJava was portabil-

ity and usage in heterogeneous computing environments.

Two versions of ASimJava are implemented: parallel and

distributed. It is possible to join both of them in one simu-

lator (Fig. 1). The Java messaging service (JMS) API pro-

vided by Sun Microsystems is used for interprocess com-

munication in the case of distributed version. The asyn-

chronous version of distributed simulation is applied in

ASimJava.

Fig. 1. Combined parallel and distributed simulation. Explana-

tions: 1–distributed connection, 2–parallel connection.

Four synchronization protocols are provided:

– conservative protocol with null messages (CMB),

– window conservative protocol (WIN),

– Time Warp (TW),

– Moving Time Window protocol (MTW).

The short description of these protocols is presented in the

Appendix.

2.3. Design overview

Current version of ASimJava is composed of five compo-

nents:

• Graphical user interface (GUI)–responsible for user-

system interactions.

• Basic library–a collection of classes implementing

basic elements of a simulator, such as: logical pro-

cesses, events, event lists, messages passing, etc.

• Synchronization protocols library–the library of

classes implementing four synchronization algo-

rithms (CMB, WIN, TW and MTW).

• Communication library–the library of classes that

provides communication between the user interface

and the simulator.

• Toolboxes–the collections of classes implementing

basic elements of different systems. Currently avail-

able: computer network toolbox that is the collection

of classes implementing elements of computer net-

works, such as router, hub, switch, etc. The package

is flexible and can be easily extended by other tool-

boxes of classes, which are specific to a chosen case

study.

The simulator built upon ASimJava classes has hierarchi-

cal structure. The simulated system is partitioned into

several subsystems (subtasks), with respect to functional-

ity and data requirements. They are implemented as LPs.

Next, each LP can be divided into smaller LPs. Hence,

the logical processes are nested (Fig. 2). Calculation pro-

cesses belonging to the same level of hierarchy are syn-

chronized.

Fig. 2. Simulator structure (example).

Two types of simulators can be distinguished:

1. The simulator consists only of classes provided in

ASimJava. The structure of the simulated system to-

gether with all model parameters is created using

ASimJava graphical interface or may be read from

an XML file.

2. New simulator. The user’s task is to implement

the subsystems’ simulators responsible for adequate

physical systems simulation. He can create his appli-

cation applying adequate classes from the ASimJava

libraries and including his own code–numerical part

of the application.

2

ASimJava: a Java-based library for distributed simulation

Fig. 3. The simulated system scheme inserting.

2.4. User interface

ASimJava provides the graphical environment (shell) for

supporting the considered case study implementation. The

most important tasks of the user interface are as follows:

– supporting the process of defining a considered ap-

plication,

– presenting of the calculation results,

– providing the communication with the user (during

design and experimental phases).

The main element of the interface is the graph editor–the

graphical tool for inserting the scheme of the simulated

system. It is organized in nested manner, too. The user

can start from dividing the considered system into several

subsystems and inserting the scheme of it. Next, he can

divide each subsystem into smaller ones (Fig. 3). For ex-

ample, in the case of computer networks we can start from

the decomposition of our application into local area net-

works (LANs), and next we can insert all elements that

form each LAN (work stations, routers, switches, etc.).

Within the next step the user is asked to provide some infor-

mation related to the nodes and arcs of the inserted graph.

In the case of nodes the required data are: parameters spe-

cific to the edited element and event list, in the case of

arcs–maximal and minimal flows. The created graph to-

gether with all inserted data can be saved into the XML

file.

2.5. Simulation under ASimJava

The experimental phase begins when all decisions regard-

ing the simulated system are made. The simulation starts.

The adequate programs corresponding to the nodes of the

system graph are executed. The results of the calculations

are displayed. The user employs monitoring and analysis

of the current situation. All results may be recorded into

the disc file during the experiment.

3. Case study results

The AsimJava library was used to perform simulation of

several systems. In this paper the applications of a sim-

ple manufacturing system and a computer network are pre-

sented. The objective of all tests was to compare the effec-

tiveness of considered synchronization protocols.

3.1. Manufacturing system

The first case study was related to simulation of a simple

distributed manufacturing system, as presented in Fig. 4.

A considered system consists of two sources P1 and P2,

eight work stations P3–P10 and one sink P11. Jobs enter

the manufacturing system at work stations P3 or P4. When

a job has been serviced at the work station Pi it proceeds

to the next work station. Service times at different work

stations are different. Jobs may be queued at a station

Fig. 4. Example 1: manufacturing system.

awaiting service. A work station takes one job from its

input queue when it is free, services that job, and then

sends it to the queue of the following work station. All

work stations service the jobs in a first come, first served

3

Ewa Niewiadomska-Szynkiewicz and Andrzej Sikora

basis. The job leaves the system after being serviced at

work station P9 or P10. It is collected at the sink P11.

Simulation experiments were performed under following

assumptions:

• Two variants of application were considered:

– variant A: each source generated 2 jobs;

– variant B: each source generated 25 jobs.

• The time intervals in which the sources generate jobs

and the service times at different work stations are

given in the Table 1.

• The experiments were performed in the network of

four Celeron 433 computers. The allocation of LPs

simulating adequate physical processes to the com-

puters was as follows: computer 1: LP1, LP3, LP5;

computer 2: LP2, LP4, LP6; computer 3: LP7, LP8;

computer 4: LP9, LP10, LP11.

Table 1

Service times (two variants of application)

Variant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

A 2 3 2 3 3 3 7 5 3 3

B 2 5 7 2 2 8 9 5 7 1

The sources, the sink and each work station were simulated

by 11 logical processes. If a job j arrived at Pi at time t
then its service begins either immediately (at time t), if Pi

is idle, or it begins right after the departure of the (j−1)

job from this Pi. Let tA j be the time of arrival of job j at

Pi, tD j the time of departure of job j from Pi and ∆t j the

service time at this Pi. Then we obtain:

tD j = max(tA j , tD j−1)+∆t j . (1)

The results of numerical experiments are presented in Ta-

bles 2 and 3. Different aspects were considered with respect

to (w.r.t.) applied synchronization protocols:

– time of simulation;

– number of additional messages sent by calculation

processes (CMB–null messages, WIN–global mes-

sages used for lengths of time windows calcula-

tion, TW–antimessages, MTW–antimessages and ad-

ditional messages used to synchronization);

– number of rollbacks at TW;

– different lengths of time window at MTW.

It can be observed (Table 2) that the speed of simulation

strongly depends on the applied protocol. The best results

were obtained for hybrid approach MTW, the worst for con-

servative CMB. This was connected with different degrees

of parallelism in the case of conservative and optimistic ap-

proaches, and overheads (additional messages, rollbacks).

The hybrid techniques seem to be promising w.r.t. opti-

mistic TW. It may be profitable to decrease degree of avail-

able parallelism, increase the number of additional mes-

sages but reduce the number of rollbacks. In the case of

Table 2

Simulation times

Variant CMB [s] WIN [s] TW [s] MTW [s]

A 247.83 25.81 34.55 20.93

B 316.86 88.43 52.34 41.25

combining TW and window techniques, the main problem

is to estimate the proper length of the window. The simu-

lation results strongly depend on this parameter (Table 3).

Table 3

Simulation results for different lengths of time window

(MTW algorithm, variant B)

Time window Simulation Additional Number

size time [s] messages of rollbacks

5 54.87 134 0

10 45.09 71 1

20 41.25 36 1

30 44.87 33 2

40 63.82 34 2

50 59.87 23 1

It seems that the length of each window should be calcu-

lated adaptively, taking into account the considered appli-

cation and available hardware platform. So, the degree of

parallelism reduction remains a topic of hot debate.

3.2. Computer network

The second case study was related to simulation of an

IP network. The library of classes implementing network

hardware (host, hub, switch, router, etc.) was developed.

The experiments were performed for the network consist-

ing of five LANs and one server room (13 servers), as

presented in Fig. 5. Two scenarios of traffic with small

packets of transmitted data (variant A) and large packets

(variant B) were considered.

Table 4

Simulation times–computer network

Variant WIN [s] MTW-1 [ms] MTW-10 [ms]

A 18 186 18 090 15 742

B 72 072 71 097 63 996

The experiments were performed in the network of four

Celeron 433 computers. The allocation of logical processes

simulating the considered computer network to the com-

4

ASimJava: a Java-based library for distributed simulation

puters was as follows: computer 1: LAN1, LAN2; com-

puter 2: LAN3, LAN4; computer 3: LAN5; computer 4:

server room.

The results obtained for two synchronization protocols–

conservative WIN and hybrid MTW are presented in Ta-

ble 4. Two lengths of the window in MTW (1 time unit

and 10 time units) were taken into account. The application

of CMB and TW synchronization protocols brought much

worse results–the computation time increased seriously.

Fig. 5. Example 2: computer network.

Similarly to the previous example the best results were ob-

tained for hybrid protocol.

4. Conclusions

Simulation plays an important role in the computer-aided

analysis and design of large computer networks. The

ASimJava software framework is suitable to solve many

small and large scale problems, based on simulation. The

package is flexible and can be easily extended by software

modules, which are specific to a chosen application.

Appendix

Synchronization protocols

A.1. CMB protocols

In the case of the CMB scheme [7] each process executes

events only if it is certain that no event with the earlier time

stamp can arrive. At current time t the ith logical process

LPi computes the minimum time LV Ti = min j=1,...,pi ti j,

where ti j denotes the time stamp of the last message re-

ceived from process LPj and pi is a number of processes

transmitting data to LPi. Next, every LPi simulates all

events with time stamps less than its LV Ti. The CMB

scheme in its basic form may lead to deadlock. Several

approaches were proposed to resolution of deadlock:

• Null messages. The additional messages (null mes-

sages) [7], are sent by each process to the others, after

completing the iteration. They are used to announce

absence of messages. The information about the ear-

liest possible time of the next event execution may

be appended to the null messages. The evident draw-

back is the high volume of null messages, especially

when we consider the high cost of message-passing

in distributed memory machines.

• Carrier null messages. The additional messages for

processes synchronization propagated through a sys-

tem carry more information: the list of visited logical

processes and pending event time [9].

A.2. Window protocols

Some of conservative algorithms assume constrain concur-

rent simulation activity to be within a window of global

synchronization [1, 8, 9]. A minimum time window is iden-

tified for all logical processes, which calculations may be

carried out concurrently. Typically, this calculation involves

lookahead of some kind. At current time t each logical pro-

cess LPi is asked to compute the time Ti(t) of the next mes-

sage it will send, based on its event list. The global time

window [t,T (t)) is defined; where T (t) = mini=1,...,p Ti(t),
and p is a number of logical processes. Every process can

simulate all events with time stamps within this window.

Next, t = T and new window is calculated. The evident

constraint on this scheme is that only the events within the

same window can be executed concurrently. The events

performed at the different windows are executed sequen-

tially. The efficiency of this algorithm strongly depends on

the calculations decomposition and allocation to the pro-

cessors.

A.3. Time Warp protocols

The optimistic scheme–Time Warp protocol [3, 4] allows

to each LPi keeps calculations in its local simulated time

(LV Ti) under the assumption that message communication

between processors arrives at proper time. In the case when

causality error occurs, e.g., because LPi receives a message

with a time stamp smaller than LV Ti, the calculations are

rolled back. The state of LPi is restored to that, which

existed prior to processing the event. Additional messages,

i.e., antimessages are sent to cancel the previously sent mes-

sages. After receiving the antimessage the receiver is rolled

back, possibly generating additional antimessages. In order

to allow rollback, all results of previous calculations has

to be recorded, which is connected with requirements of

extra resources for states of all processes storing during

calculation.

5

Ewa Niewiadomska-Szynkiewicz and Andrzej Sikora

A.4. Moving Time Window protocol

The principal advantage of Time Warp over presented con-

servative schemes is that it offers the potential for greater

exploitation of parallelism to the programmer. Despite this

advantage Time Warp has some drawbacks: an excessive

amount of wasted, rolled back computations and inefficient

use of memory. The danger is greatest when interaction be-

tween processors is light and processors loads are uneven.

It may result cascading rollbacks. Because of that, the is-

sue of combining conservative and optimistic approaches in

a hybrid protocols has received considerable attention in re-

cent years. MTW belongs to the group of protocols, which

reduce degree of available parallelism. It limits execution

of Time Warp to the defined time window [t, t + ∆t) [12].

Events with time stamps greater than or equal t + ∆t are

not executed. All processes are synchronized at time t +∆t
and a new window is simulated. The rollbacks may occur

only within the current time window. The problem is to

calculate adequate ∆t.

References

[1] Handbook of Simulation, J. Banks, Ed. New York: Wiley, 1998.

[2] “HLA (high level architecture)”, 1998,

http://www.dmso.mil/public/transition/hla/

[3] D. A. Jefferson, “Virtual time”, ACM Trans. Programm. Lang. Syst.,

vol. 7, no. 3, pp. 404–425, 1985.

[4] D. A. Jefferson, “Virtual time II: the cancelback protocol for storage

management in Time Warp”, in Proc. 9th Ann. ACM Symp. Princ.

Distr. Comput., New York, USA, 1990, pp. 75–90.

[5] Systems Modeling and Computer Simulation, N. A. Kheir, Ed. New

York: Marcel Dekker, 1996.

[6] W. Kreutzer, J. Hopkins, and van M. Mierlo, “SimJava–a frame-

work for modeling queueing networks in Java”, in Proc. 1997 Winter

Simul. Conf., Atlanta, USA, 1997, pp. 483–488.

[7] J. Misra, “Distributed discrete-event simulation”, Comput. Surv.,

vol. 18, no. 1, 1986.

[8] D. M. Nicol, “Performance bounds on parallel self-initiating discrete

event simulations”, ACM Trans. Model. Comput. Simul., vol. 1, no. 1,

pp. 24–50, 1991.

[9] D. M. Nicol and R. Fujimoto, “Parallel simulation today”, Ann. Oper.

Res., vol. 53, pp. 249–285, 1994.

[10] “NS-2 (network simulator)”, 1995,

http://www.isi.edu/nsnam/ns/ns-documentation.html

[11] “OMNeT++ (objective modular network testbed in C++)”, 1992,

http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

[12] L. M. Sokol, D. P. Briscoe, and A. P. Wieland, “MTW: a strat-

egy for scheduling discrete simulation events for concurrent execu-

tion”, in Proc. SCS Multiconf. Distr. Simul., San Diego, USA, 1988,

pp. 34–42.

[13] B. Szymański, A. Saifee, A. Sastry, Y. Liu, and M. Kiran, “Gene-

sis: a system for large-scale parallel network simulation”, in Proc.

Parall. Distr. Simul. Conf. PADS 2002. Washington: IEEE CS Press,

2002.

Ewa Niewiadomska-Szynkie-

wicz received her M.Sc. in 1986

and Ph.D. in 1996 in con-

trol and computer engineering.

Since 1987 she is with War-

saw University of Technology

and since 2000 with Research

and Academic Computer Net-

work (NASK). She is a lecturer

(adiunkt) on simulation tech-

nologies and optimisation tech-

niques in Institute of Control and Computation Engineer-

ing. She was involved in a number of research projects

concerned with development of simulation software and

techniques for design of on-line operational control. She

participated in three European projects within TEMPUS

Programme and QoSIPS of 5th Framework Programme

project. Her research interests concentrate on computer

simulation of large scale systems, data network manage-

ment and simulation, hierarchical and global optimization,

parallel calculations.

e-mail: ewan@nask.pl

Research and Academic Computer Network (NASK)

Wąwozowa st 18

02-796 Warsaw, Poland

e-mail: E.Szynkiewicz@ia.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

Andrzej Sikora received his

M.Sc. in 2002 from the Warsaw

University of Technology. Cur-

rently he is a Ph.D. candidate

in computer science at the War-

saw University of Technology

(Institute of Control and Com-

putation Engineering), Poland.

He is a specialist in the appli-

cation of control and simulation

of distributed systems. He has

experience in the use of parallel asynchronous computation,

modelling, computer simulation, computer networks, Inter-

net techniques, optimisation and decision support, work-

flow application (Lotus Notes&Domino). His computer

skills include programming using Java, C, C++, SQL,

HTML, XML, Perl, RMI, JMS.

e-mail: a.sikora@elka.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

6

