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Abstract—A new approach is proposed to select a predeter-

mined number of “reasonable” (the best in a certain sense)

alternatives from the considerable (maybe a vast) set of initial

alternatives according to an arbitrary number of optimiza-

tion criteria and accounting for uncertainty factors. The ap-

proach is based on using a special intuitive methodology, de-

veloped to account for uncertainty factors when solving such

multiple criteria decision making (MCDM) problems. This

methodology is based on performing multi-variant computa-

tions (MVC) and finding their “stable-optimal” solutions, and

it’s realized as a multi-level hierarchical system of MVC series.

It’s possible to use this methodology for solving various real

problems.
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1. Introduction

An approach [1–6] is proposed to select a predeter-

mined number of “reasonable” alternatives (their set is

named RAS) from their considerable (maybe vast) ini-

tial set (ISA) according to multiple criteria, presented by

an arbitrary number of optimization criteria. This selec-

tion is performed as accounting for uncertainty factors,

inherent in both the considered problem and its solution

process.

The solution process considered should include the fol-

lowing basic stages: (1/2) creating the ISA/ISCAV, where

the ISCAV, interrelated with the ISA, should reflect the

problem solution objectives, expressed by multiple crite-

ria; (3) multi-criteria optimization in the ISCAV/ISA space

to reach the RAS by decreasing ISCAV/ISA and account-

ing for uncertainty factors. The methodology to perform

the stages (1/2) is specific to each considered problem,

but for the stage (3) a quite universal intuitive method-

ology was developed, based on accounting for uncertainty

by performing multi-variant computations (MVC) and find-

ing their “stable-optimal” solutions. This MVC process is

realized as a multi-level hierarchical system of MVC se-

ries, where each its level includes a totality of scenar-

ios, having the same specific nature for this level. These

scenarios reflect varying problem conditions and parame-

ters. Such varying allows to account for uncertainty fac-

tors using procedures specific to each level of the multi-

level hierarchical system considered. So, one type of pro-

cedures to account for uncertainty consists of varying the

assigned (a priori) different versions of ISA and ISCAV

as well as multi-criteria optimization techniques, used in

computations for the upper (exterior) levels of the hier-

archical system. Other types of such procedures involve

some directed or random sorting out of possible values

of problem parameters. This corresponds to the system

intermediate and interior levels, where these parameters

might be considered as any intervals of random variables.

In this case a Monte Carlo simulation is used. Another

aspect of accounting for uncertainty is using only such

versions of multi-criteria optimization techniques, which

were especially modified (by us) to account for uncertainty

factors.

Generally, the main aspect of accounting for uncertainty in

the proposed methodology is use of the multi-level hier-

archical system of MVC series itself to reach the required

solutions. It is what precisely allows to account for uncer-

tainty factors, having different nature, by a way of finding

“stable-optimal” solutions of MVC series, formed for each

level of scenarios. Moving this way, subsets of “stable-

optimal” alternatives are formed for each level of the sys-

tem, based on analysis of such “stable-optimal” subsets,

obtained before for the preceding (lower) level. In the end

of this moving “from bottom to top” of the system, the re-

quired RAS is reached as a “stable-optimal” subset for the

first (top) level of this hierarchical system. For each suitable

real problem, based on processing vast amount of initial

information, the final solution may be found by a way of

the RAS (or the RAS series) analysis (usually, non-formal)

using additional qualitative and quantitative criteria and

estimates.

Various investigations have been performed to apply the

proposed approach to solving several real problems, actual

for conditions prevailing in Israel [1–6].

Although several methods were developed to solve vari-

ous multiple criteria decision making problems, our intu-

itive approach might be considered as an original one. In

our opinion, this approach might be used to solve prob-

lems for which other methods are not convenient. With

this point of view, we will compare it with the well-known
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AHP methodology of Prof. T. Saaty [8, 9]. Concerning

this comparison, it’s possible, on our opinion, to say the

following:

1. At first glance both these methods use the same

multi-level structures to solve the appropriate prob-

lems. However, we see different essence of the levels

in these structures:

– in the AHP, such levels represent only objects

(criteria and alternatives), considered as obvi-

ous parameters in the solution process;

– in our approach, these levels reflect the series

of multi-variant computations, which are per-

formed to account for uncertainty factors, spe-

cific only to the considered level objects, having

various nature.

This is the main difference between both methods

and their solution methodologies, leading to the dis-

crepancy between their fields of application.

2. The AHP methods consider, mainly, the MCDM

problems with small number of initial alternatives,

but our approach is oriented to solve the MCDM

problems with a considerable number of initial al-

ternatives. The areas of MCDM problems suitable

to application of these methods are very different.

3. The AHP is based on use of expert estimates of ob-

jects’ priorities, but our approach can practically

avoid use of such estimates. Use of our approach ex-

pands possibilities for solving various MCDM prob-

lems, but AHP methods (when they can be practically

used) can give more reliable results.

4. The AHP considers one top goal and small number

of objects (criteria or alternatives) on other hierar-

chy levels; in our approach the number of versions

(scenarios) on each hierarchy level may be arbitrary.

5. It’s possible to include the criteria multi-level hierar-

chy system, used in the AHP, in our solution method-

ology as well.

Let’s consider further some basic features of the proposed

methodology.

2. Calculation process peculiarities

In accordance with an available uncertain situation, the pro-

cess to solve the considered problem is treated as a two-

step one. In its first step, a “reasonable” alternatives set

(RAS) should be selected from all initial alternatives in

accordance with joint accounting for multiple criteria, as-

signed a priori. This first step might be completed also

by finding a totality of such RAS, including several ones,

that depends mainly on organization of the second step of

solving the whole problem. In this second step, the final

solution of the whole problem, ready to be used in a prac-

tical decision making process is found, basing on the RAS

analysis obtained, performed basically in a non-formal way

using additional qualitative (including subjective) and quan-

titative information, criteria and procedures.

Thus, the proposed approach allows to sharply decrease the

amount of information needed for decision making.

This first step includes the following basic stages:

(1-2) constructing the initial sets of alternatives (ISA) and

criteria assessment vectors (ISCAV); (3) decreasing the

considerable (maybe vast) ISA/ISCAV to the required (usu-

ally small) RAS.

The calculation methodologies used to construct the

ISA/ISCAV should be specific to each MCDM problem

considered, elaborated especially to account for specific

features of this problem. These elaborations can have var-

ious basic directions and “bottlenecks”. In our experience

of solving the appropriate problems, we have encountered

situations, when the basic information and calculation dif-

ficulties were related to the ISA construction as well as

when the ISA was formed in obvious and easy way, but the

ISCAV construction required considerable efforts.

In our experience with the ISA construction process [1–6],

we had very difficult case of forming the vast initial set

of alternatives for the problem of power generation system

expansion (PGSE) planning [1–3, 5], where each such al-

ternative reflected the dynamic PGSE strategy. The case of

implicit assignment of initial alternatives is linked with the

problem of stock buying on the stock market [6], where

each initial alternative reflects the natural operation of

a stock buying.

The ISCAV construction process consists of the following:

(a) assignment of the criteria totality; (b) development of

the criteria calculation models, allowing to determine crite-

ria assessment vector for each considered alternative, where

this vector is represented for this alternative by one numer-

ical value for each alternative from the ISA; (c) forming

the initial set of such vectors (ISCAV), interrelated with

the ISA. For this ISCAV construction process, we can have

the opposite situations: (a) there are the natural criteria

(economic, technical, reliability, others), where the crite-

ria calculation models are developed, mainly, by using the

existing models, methods and procedures (e.g., [1–3, 5]);

(b) the necessity is raised to create principally new mod-

els to form the ISCAV (e.g., for the above considered stock

market problem [6]). We will consider in detail (Section 4)

the latter situation “(b)” for the same stock market problem,

where a new approach, different from one developed early

(see [6]), is described.

To implement stage (3) of the problem solution process, we

have developed a quite universal intuitive solution method-

ology [4–6] to reach the RAS by decreasing the ISA.

This methodology of accounting for uncertainty, appli-

cable to various MCDM problems, is based on perform-

ing multi-variant computations (MVC) and finding their

“stable-optimal” solutions.
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The developed methodology of accounting for uncertainty

is implemented as a multi-level hierarchical system of MVC

series. Each l-level (l = 1, . . . ,L) of this system includes

a totality of l-scenarios, having the same nature, specific

only to this l-level. Such l-scenarios reflect the possible

variations of parameters and conditions, corresponding to

this l-level. Each l∧-MVC series, corresponding to a fixed

l∧-level, reflects a combination of l∧-scenarios from their

totality and generates an appropriate subset of “stable-

optimal” alternatives. Forming a combination of l∧-MVC

series allows to find the appropriate set of “stable-optimal”

subsets, corresponding to this l∧-level (l∧ = 1, . . . ,L). On

a basis of this set processing, a “stable-optimal” subset

of the next upper (l∧–1)-level might be determined using

a special procedure. Its “key” operations are based on cal-

culating the highest frequencies of entering into this full

set for the alternatives from the “stable-optimal” subsets of

l∧-level, forming this set.

Thus, the multi-level hierarchical system of MVC series

performance, realizing the calculation stage (3) to reach the

resulting RAS, consists of a successive forming of sets of

“stable-optimal” subsets for all l-levels (l = 1, . . . ,L), begin-

ning with the lowest L-level (l = L) and ending with the top

l-level (l = 1). The resulting (one or several) RAS should

be also found as subset (subsets) of “stable-optimal” alter-

natives, where this finding represents a final operation in

the calculation process considered. In a case when several

RAS are derived, their non-formal analysis is performed in

the second step of the whole solving process in order to

find a final solution of the problem.

The multi-level hierarchical system of MVC series can have

various structures and content, differing by the number

of l-levels as well as the accepted system of l-scenarios.

We have already considered nine- and six-level hierar-

chical systems with some variations in their totalities of

l-scenarios [4–6].

At present, we use a six-level hierarchical systems [4–6]

based on the multi-criteria optimization technique TOP-

SIS [7], modified to consider the criteria weights as ran-

dom variables which are presented by the intervals of their

possible values [1–6]. These values are determined inside

these intervals by Monte Carlo simulations.

3. Illustration of the six-level

hierarchical system performance

on the sample

The process of this six-level hierarchical system perfor-

mance for the simple sample is illustrated in Fig. 1.

This process consists of successive forming of all possible

l-MVC series (l = 1, . . . ,6), from the lowest 6-level (l = 6)

to the top 1-level (l = 1), and determination of the “stable-

optimal” subset for each such l-MVC series, reflecting

a combination of full Scenarios. Each full Scenario is

a combination of l-scenarios, taken one at a time for each

of all l-levels (l = 1, . . . ,6). We will present this calcula-

tion process to reach the RAS, performed from “bottom”

(l = 6) of the hierarchical system to its “top” (l = 1), for

the conditions of the considered sample.

The initial data of the considered simple sample are pre-

sented in Fig. 2, where 40 points reflect all initial al-

ternatives, i.e., the ISA includes 40 i-alternatives (points

{i = 1−40}). Each such i-point (i-alternative) has two co-

ordinates (the criteria values {Ci j, j = 1,2}), for example

in Fig. 2 we can see that 1-point (1-alternative) has the

coordinate (criteria) values {C11 = 1.0, C12 = 13.5}.

We will consider this MCDM problem according to the

above mentioned principle, where multi-criteria optimiza-

tion (MCO) on all l-levels of this six-level hierarchical

system is based on finding the following minimal (for

all i) scalar sums with the random j-criteria weights

{W j, j = 1, . . . ,J}:

min
{i=1,...,I}

{Ci1W1 + . . .+Ci jW j +CiJWJ} . (1)

Here, these random variables are presented by the inter-

vals {[wmin
j ,wmax

j ], j = 1, . . . ,J} of their possible values

{w j, j = 1, . . . ,J}, where each such value is chosen within

its interval using a Monte Carlo simulation.

According to our sample conditions, we have {i = 1, . . . ,40;

I = 40} and { j = 1,2; J = 2}, that leads to the necessity to

solve the following minimization problem:

min
{i=1,...,40}

{Ci1W1 +Ci2W2} . (1′)

The considered six-level hierarchical system of MVC se-

ries, applicable to the sample conditions, should include

the following l-scenarios for all l-levels (l = 1–6) of this

system:

• l = 1. Single 1-scenario, representing a version of

MCO technique TOPSIS (see [1–3]), modified to

consider the criteria weights as random variables

and to use Monte Carlo simulations (the appropriate

MCDM problem was reflected above by formula (1′).

• l = 2–3. Single 2-, 3-scenarios, reflecting single ver-

sions for the ISA/ISCAV, both corresponding to data

represented in Fig. 2 and reflecting 40 initial alterna-

tives, having the numbers {points i = 1, . . . ,40}, as

well as 2 criteria with the numbers { j = 1,2}.

• l = 4–5. The totalities of 4-, 5-scenarios reflect the

accepted (see [6]) 9 versions of possible values’ in-

tervals for the random criteria weights W1,W2:

(1) {[0.475,0.525}, [0.475,0.525}};

(2) {[0.45,0.55}, [0.45,0.55}}; . . .
(4) {[0.6175,0.6825}, [0.3325,0.3675}}; . . .
(9) {[0.2975,0.4025}, [0.5525,0.7475}}.

• l = 6. The totalities of 6-scenarios represent 90 com-

binations of possible values of random criteria

weights, obtained within the above 9 intervals using

the 10 assigned series of Monte Carlo simulations.

Each series of 2 Monte Carlo simulations generates
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Fig. 1. Results of the calculation process for the considered sample: ninety (90) of “sub-optimal” subsets (l = 6), deriving

nine (9) “stable-optimal” subsets (l = 5), from them–three (3) “stable-optimal” subsets (l = 4), and finally–the resulting subset RAS =

S∧[1] = S∧[2] = S∧[3].
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one combination of 2 weight values {w1,w2} inside

the appropriate intervals {[wmin
1 ,wmax

1 ], [wmin
2 ,wmax

2 ]}
(e.g., we have such intervals (4) {[wmin

1 = 0.6175,

wmax
1 = 0.6825], [wmin

2 = 0.3325, wmax
2 = 0.3675]}

and their inside values {w1 = 0.6643, w2 = 0.3412}).

Fig. 2. Points and their coordinates reflecting ISA and ISCAV.

Consideration of all l-scenarios mentioned above allows

to form the totality of 90 full Scenarios {1,1,1,k,m,q},

corresponding to single l-scenarios for three of the first

l-levels (l = 1–3), K (k = 1, . . . ,3; K = 3) 4-scenarios,

M (m = 1, . . . ,3; M = 3) 5-scenarios and Q (q = 1, . . . ,10;

Q = 10) 6-scenarios.

Each full Scenario defines a mono-optimization prob-

lem (1′) and its solution–a subset, including a prede-

termined number of “sub-optimal” alternatives. Anal-

ysis of sets of such subsets allows to find the

“stable-optimal” subsets. All this forms the solu-

tion process to reach the RAS, implementing the con-

sidered six-level hierarchical system performance for

this sample. This solution process is presented

in Fig. 1.

According to Fig. 1, the above mentioned solution process

includes the following operations:

a) Choosing the first full Scenario–combination

{1,1,1,1,1,1}, reflecting 1-scenarios taken one at

a time for each of all l-levels (l = 1–6) {k = 1,

m = 1, q = 1}; we form a mono-optimization

sub-problem (1′) using 2 Monte Carlo simulations

to determine the values of scalar sums for 40 (the

number of alternatives) criteria assessment vectors.

b) A predetermined number (e.g., N = 12) of minimal

values are selected among these scalar sums, that

allows to form the subset S[1,1,1,1,1,1] or S[1,1,1]
(in Fig. 1) of sub-optimal alternatives, including only

their numbers (e.g., {11,9, . . .}).

c) In the same way, by varying all ten 6-scenarios

and leaving unchanged l-scenarios for all upper five

l-levels (l = 1–5), we determine the set of “sub-

optimal” subsets {S [1, 1, 1], . . . , S [1, 1, 10], k = 1,

m = 1, q = 1, . . . ,10}. It defines a MVC series, for

which a subset S∧[5.1,1]{l = 5, k = 1, m = 1} of

“stable-optimal” alternatives is determined using the

special procedure.

d) Repeating the preceding operations, while varying all

three 5-scenarios {l = 5, m = 1,2,3} and leaving un-

changed l-scenarios for all upper four l-levels (l =
1–4), a set of “stable-optimal” subsets {S∧[5.1,1],
S∧[5.1,2], S∧[5.1,3], l = 5, k = 1, m = 1,2,3} is

determined. This allows to find (on a basis of

this set analysis) the “stable-optimal” subset S∧[4.1]
{l = 4, k = 1}, corresponding to the next 4-level.

e) Continuing this process, we can define the

set of “stable-optimal” subsets {S∧[4.1], S∧[4.2],
S∧[4.3], l = 4, k = 1, 2, 3} and for it–the “stable-

optimal” subset S∧[3] {l = 3}, corresponding to

the next 3-level. Since we have only single version

for each of three upper l-levels (l = 1–3), their

“stable-optimal” subsets are the same ones: S∧[3] =
S∧[2] = S∧[1]. This is the resulting RAS, includ-

ing 12 (S = 12) i-points/“reasonable” alternatives

{9, 11, 10, 8, 20, 7, 16, 12, 5, 6, 13, 18}, which are

picked out in Fig. 2.

We would like to underline that in this RAS, all selected

“stable-optimal” alternatives gain their priorities on a ba-

sis of frequency of their presence in all “stable-optimal”

subsets, obtained for the preceding l-level, as well as ac-

counting for the sum of places, which they have in these

subsets.

Thus, the result we obtain for this sample is not an obvious

one (with general positions). It becomes more illustrative if

we locate all 40 alternatives-points in the Euclid space and

estimate their distances to the Origin of the coordinates.

We see in Fig. 2 that the best alternatives–points 9, 11, 10

are the nearest to the Origin of the coordinates.

4. The implementation for a problem

of buying on the stock market

This implementation has two main purposes: (1) to ap-

ply our approach to the problem, where good statistic data

allowing to reach the “reasonable” solutions using the pro-

posed methodology are available; (2) to demonstrate the

possibility of overcoming the difficulties of the ISCAV

modeling in case of a real problem, where it’s required

to apply analytical methods of such modeling since it isn’t

possible to construct any natural (implicit) optimization cri-

teria. Such an attempt was made early [6], but in this paper

a new approach is demonstrated, where another totality of

such criteria is considered, linked with other approach to

construct a greater part of them.
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4.1. Statement of the problem

The following problem is considered: to select (in the cur-

rent T -day) a holding of stock, including a predetermined

number of stocks, proper for buying on the stock market for

the next prognosis (T +1)-day. Such selection is performed

on a basis of processing the appropriate statistical data,

where such data are considered for the period [1, . . . ,T ] of

T days, as well as for expert estimates’ use. All this con-

cerns two parameters of stock market process: deal sums,

stock prices. Thus, the problem solution purpose is to de-

termine a proper quantity of each type of stock to be bought

for the prognosis (T +1)-day.

These resulting proper stocks might be selected in accor-

dance with one of two purposes: (a) to be sold on the days

(t = T +1,T +2, . . .), nearest to the prognosis (T +1)-day

(this is the speculative Model A); (b) to be kept for a long

period as a part of decision makers’ available capital (the

keeping Model B).

The accent on this statistical data processing is more con-

venient in a framework of the Model A use; applying the

Model B should be based, first of all, on using the expert es-

timates of production conditions for the enterprises, whose

stocks are bought. However, the principal peculiarity of

the considered problem, connected with the competition of

great quantity of stocks, seriously limits the possibility to

take such expert estimates for all considered stocks. Ac-

counting for it, we are more closely focused on using the

Model A, considering quite long period of the appropriate

statistical data, especially if this period is characterized by

“a stable behaviour” of the stock market considered. In this

situation it’s possible to expect that these observed statisti-

cal data are a sum of various aspects, affecting the “stock

market behaviour of each considered stock”, like the sta-

tus of production, psychology, interaction of stock market

buyers and sellers, etc.

The choice of this problem to apply the proposed approach

of MCDM accounting for uncertainty is caused, first of

all, by availability of required initial (statistical) data as

well as of specific methodological difficulties to apply such

approach to this real situation. Such difficulties were related

mainly to criteria modeling and ISCAV construction.

4.2. Methodological peculiarities of ISA construction

For the problem considered, the operations necessary to

construct the ISA have not been of our main methodologi-

cal interest, since: (a) an initial alternative concept is very

implicit–a stock itself is such alternative; (b) it was not

needed to develop the special calculation procedures to con-

struct a vast ISA. The latter (case (b)) is explainable by the

measurable quantity of stocks, which can be considered in

each existing stock market. In our opinion, this situation

is very different from the one we met solving the prob-

lem [1–3, 5], with a practically non-measurable quantity of

initial alternatives.

Thus, in the considered problem of stock buying the ISA

(each its version) may be presented as the set {i = 1, . . . , I}
of i-alternative’s numbers.

4.3. Methodological peculiarities of criteria modeling

(ISCAV construction)

The main methodological peculiarity of ISCAV construc-

tion in the considered problem is related to non-implicit

character of criteria, which should express the optimization

process in the problem. This aspect differentiates this prob-

lem from others (e.g., see [1–3, 5]), where there is a full

possibility to assign (a priori) such natural criteria (e.g.,

economic, reflecting profit maximization or expenditure

minimization; environmental–pollution minimization, etc.).

Thus, the modeling process for the present problem is

linked with necessity to perform some analytical research to

express the required optimization criteria. Such approach

allowed to define some basic concepts for modeling of var-

ious types of such criteria, providing the choice of “rea-

sonable” stocks for buying on the prognosis (T + 1)-day

in order to sell them in the future in a short/long time

(Model A and Model B).

4.3.1. Constructing the criteria, related to estimates

of stock deal sums (DS) values [6]

The i-stocks, having the greatest expected prognosis (for

(T + 1)-day) absolute values {Apr(i, T + 1), i = 1, . . . , I}
for deal sums (DS), are preferable in both Model A and

Model B. Such confirmation is based on the following sen-

tence: the stocks with the greatest values Apr(i, T + 1)
might be in great demand on (T + 1)-day and few follow-

ing days. Expected values {Apr(i, T + 1), i = 1, . . . , I} are

determined on a basis of the appropriate statistical data

processing to define their trends as well as by an implicit

assigning of expert estimates. The first way corresponds

to Model A, since it allows to estimate the conditions for

selling the stocks on the days nearest to the (T +1)-day; the

second expert way is more convenient to Model B, since

experts might predict more long-term tendencies. However,

this expert way is difficult to implement for a large quantity

of stocks. In such case, the first trend way might also be

used for the Model B, if we could determine reliable long-

term trends. In both cases (for Model A and Model B),

when the trends might be used to find the required progno-

sis, various trend types are found, and the required values

{Apr(i, t), i = 1, . . . , I; t = T +1, T +2, . . .} are determined

as the weighted values of these trends’ continuations. Fur-

ther, we will consider the criteria for Model A only.

Thus, we use the maximization (on all i-stocks, i =
1, . . . , I) of absolute prognosis (on T + 1-day) DS values

Apr(i, T +1) as the Criterion 1, formulated as follows:

max
{i=1,..., I}

{Ci1} = max
{i=1,...,I}

{Apr(i, T +1)} , (2)

where these values {Apr(i, T + 1), i = 1, . . . , I} are deter-

mined by constructing various types of trends and weight-
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ing these trend prognosis (on T +1-day) values. Let’s con-

sider the appropriate method.

These trends should be calculated on a basis of statistical

data processing. The period of statistical data, intended for

such processing, could be arbitrary, and its optimal duration

could be established after many tests.

At present, the following 6 types of trends may be used

to obtain the following prognosis (for any t-day) values

for all i-stocks (i = 1, . . . , I), based on statistical data pro-

cessing for the period [1, . . . , t−1]: (1) Linear (Lin) A(1)(t),

(2) Exponential (Exp) A(2)(t), (3) Logarithmic (Log) A(3)(t),

(4) Polynomial (Pol) 3rd (third) order A(4)(t), (5) Power

(Pow) A(5)(t), (6) Hyperbolic (Hpr) A(6)(t).

When all these trend prognosis values {A( j)(t), j =
1, . . . , 6} are obtained, the required prognosis (for any

t-day) values Apr
i (t) of the Criterion 1 are calculated for

all i-stocks (i = 1, . . . , I) as follows:

Apr(i, T +1) =A(1)(i, t)w(1) +A(2)(i, t)w(2) + . . .

+A(5)(i, t)w(5) +A(6)(i, t)w(6) , (3)

where the weight values {w(1), w(2), w(3), w(4), w(5), w(6)}
are assigned by experts or calculated using appropriate

models. In both cases, we can’t consider these weights

as random variables.

For the latter case, the special heuristic multi-step pro-

cedure was developed early [6] to calculate weights

{w(1), w(2), w(3), w(4), w(5), w(6)}, using the same statisti-

cal data. This procedure is based on finding the val-

ues Apr(i, T +1) from formula (3) for the days {t = T +
1−k, 0< k�T}, preceding the basic (T +1)-prognosis day.

In this case, the weight values, needed for (3), should re-

flect the validity of all trend-prognosis values Apr(i, T +1)
by the following way of their calculation for all preceding

t-days, corresponding to the assigned (a priori or in the

calculation process itself) integer numbers k, and of the

comparison of these calculated values with the appropriate

actual (statistical) data:

Step 1: Stepping k∗-days back from the prognosis

(T +1)-day (where 0 < k∗ � T is a fixed integer num-

ber), we determine the DS values {A( j)(i, t∗), j =
1, ..,6} from (3) for the chosen prognosis t∗-day (t∗ =
T +1−k∗) and each i-stock (i = 1, . . . , I), according to

all 6 trends considered.

Step 2: Comparing these values {A( j)(i, t∗), j =
1, . . . ,6} with the appropriate fact (statistical) DS val-

ues A f act(i, t∗), we can calculate the aberration values

D( j)(i, t∗) as follows:

D( j)(i, t∗) =
∣

∣[A( j)(i, t∗)−A f act(i, t∗)]
∣

∣

/

A f act(i, t∗),

j = 1, . . . ,6; i = 1, . . . , I . (4)

Step 3: Comparing the derived aberration values (4)

with the limits L(t∗), assigned (a priori) for deal sums

(DS) and t∗-day, we select the “good” i-stocks, hav-

ing these absolute aberration values lower than limits

(D( j)(i, t∗) < L(t∗)). The numbers (quantity) of “good”

i-stocks, corresponding to each considered j-trend and

reflecting its validity, are designated as {N( j)(t∗), j =
1, . . . ,6}.

Step 4: We determine the weights {w( j)(t∗), j =
1, . . . ,6} from (3) as follows:

w( j)(t∗) = N( j)(t∗)
/[

N(1)(t∗)+N(2)(t∗)+ . . .

+N(5)(t∗)+N(6)(t∗)
]

, j = 1, . . . ,6 . (5)

This four-step procedure might be repeated for several (R)

t-days {t = t1, . . . , tR}, corresponding (t = T − k) to the

assigned values k{k = k1, . . . , kR}. Thus, we obtain R to-

talities of weights (5). On their basis, we can find the

following weighted average weights to obtain the criterion

values Apr(i, T +1), according to (3):

w( j)[R] = d(t1)w( j)(t1)+d(t2)w( j)(t2)+ . . .

+d(tR)w( j)(tR), j = 1, . . . ,6 , (6)

where {d(t1), . . . , d(tR), . . .} are the assigned (a priori)

weights of t-days and sum of these weights’ sum for all

such days should be equal to 1. This leads to the following

formula:

w(1)[R]+w(2)[R]+ . . . +w(6)[R] = 1 . (7)

It’s possible to exclude some j-trends from consideration,

if it is possible to take a priori their weights w( j) = 0 in

formula (3). Besides this, we could vary the totalities of

{w( j)[R], j = 1, . . . ,6} from (6), (7), considering various

totalities of j-trends as well as k-days {k = k1, . . . , kR}.

To estimate the quality of the derived DS prognosis abso-

lute values {Apr(i, T +1), i = 1, . . . , I}, they are compared

with the DS fact absolute values {A f act(i, T ), i = 1, . . . , I},

taken for the last T -day from the appropriate statistical

data. The minimization of relative estimates Apr∧(i, T +1),
reflecting for each i-stock the ratio of absolute value of

this pair values’ difference to the last (fact) of them, is

Criterion 2:

min
{i=1,..., I}

{Ci2} = min
{i=1,..., I}

{Apr∧(i, T +1)},

Apr∧(i,T+1)=
{∣

∣(Apr(i,T+1)−A fact(i,T ))
∣

∣

/

A fact(i,T )
}

,

i = 1, . . . , I . (8)

Use of this Criterion 2 is based on the following principle:

when the value Apr∧(i, T + 1) is less, the appropriate DS

prognosis absolute value Apr(i∗, T +1) may be considered

more reliable.

7
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4.3.2. Constructing the criteria, connected with

estimates of stock prices values

The approach to form the criteria for stock prices (SP) for

Model A should be, in principle, different from the one

for DS considered above. If we consider Model A, ori-

ented on the stock buying for the prognosis (T + 1)-day

and their selling for the next t-days {t = T +2, T +3, . . .},

we should account for the sinusoidal character of chang-

ing the SP values during the whole period of SP values

observation (the days [1, . . . , T ]). This sinusoidal pattern

is dictated by the nature itself, of stock buying on stock

market when the SP falls, volumes of such stocks buying

increase, and this tendency remains up to the day of reach-

ing SP minimum. After this, another picture is observed,

when the SPs go up, and holders of these stocks begin to

sell such stocks, that leads again to SPs fall, and so on.

Accounting for it, in a framework of Model A, it’s expe-

dient to buy those stocks, which is expected when the cur-

rent minimum of its SP sinusoid is close to the prognosis

for (T +1)-day. Such aspect might be reflected by Crite-

ria 3–5, having very specific methodology of their con-

struction, based on accounting for sinusoidal pattern of the

initial data used.

In accordance with the sinusoidal character of changes

to SP values, the set of all “ j-sinusoidal Hills” {H[i, j],
j = 1, . . . , J[i]}, corresponding to each i-stock, is defined

as one, reflecting the SP values, given on a totality of

time j-intervals {
[

T l[i, j], Tr[i, j]
]

, j = 1, . . . , J[i]}, mea-

sured in integer numbers of days of the period [1,T ]. Each

such j-interval includes t-days from interval [1,T ], arranged

between the left/right bounds (T l[i, j] < Tr[i, j]) of this

j-interval. These bounds (for j = 1, . . . , J[i]) correspond-

ing to the neighboring minimal SP values, observed for the

period [1,T ], are subject to the following conditions:

1≤T l[i,1] < Tr[i,1]<T l[i,2], . . . , T l[i, j]<Tr[i, j], . . .

. . . , T l[i,J[i]] < Tr
[

i,J[i]
]

≤ T . (9)

Let’s consider a heuristic algorithm of these j-intervals con-

structing, defined for each i-stock and based on considering

the appropriate indicators, where t[ j] is the number of cur-

rent day [ j-interval] in the observed period [1, . . . ,T ] of

statistical data, SP[t] is the SP value for this t-day, and

Di f [t] = SP[t]−SP[t −1]:

1. Establishing the initial conditions: Di f [1] = 0, t = 2,

j = 1, Di f [2] = SP[2]−SP[1].

2. Going to the next (t + 1)-day with calculation

Di f [t +1] = SP[t +1]−SP[t].

3. Performing the joint analysis of signs for the differ-

ences Di f [t +1], Di f [t]; the following cases may be:

3.a) If Di f [t + 1] > 0, Di f [t] ≤ 0, we fix the up-

per limiting day T c = t +1 for this cycle 3.a of

finding the first preceding (T c−t1)-day, when

the value Di f [T c−t1] < 0 (t1 = 1, . . . , T c−1).

If this value is reached, the right bound-day

Tr[i, j] = t of j-Hill is established to reflect

the current minimal SP value in the sinu-

soid considered (for i-stock), and we go to

its next ( j + 1)-Hill with fixing its left bound-

day T l[i, j + 1] = t + 1. Thus, the j-interval
[

T l[i, j],Tr[i, j]
]

is completed. However, in the

process of executing this cycle, we can en-

counter two particular cases:

3.a1) Di f [T c − t1] > 0 for some value t1
(t1 = 1, . . . , T c−2);

3.a2) T c− t1 = 1, i.e., we reached in this cycle

the beginning of sinusoid (the 1-day).

In both these cases (3.a1) and (3.a2), operations

of cycle 3.a end without completion of the in-

terval, and we go to operation 2 for the next

(t +2)-day.

3.b) If Di f [t + 1] < 0, Di f [t] ≥ 0, we execute the

cycle 3.b (it’s similar to the cycle 3.a) of find-

ing the first preceding (T c − t1)-day, when

Di f [T c− t1] > 0 (t1 = 1, . . . , T c−1). If this is

reached, we fix the day T max[i, j] = t of max-

imal SP value for j-Hill with saving j-Hill and

its other indicators without changes. In this case

we can also encounter two particular cases:

3.b1) Di f [T c− t1] < 0 for some value t1 (t1 =
1, . . . ,T c− 2) and execution of cycle 3.a

is stopped on (T c−t1)-day without estab-

lishing T max[i, j];

3.b2) cycle 3.b ends, reaching (Tc−t1=1)-day,

and we fix the day T max[i, j = 1] = t.

4. After completion of all these 3 operations and for

all other cases of relationship between Di f [t +1] and

Di f [t], we go to the next (t + 2)-day of the period

[1, . . . ,T ] (t < T ) to perform the next operation 2.

We bring the following appropriate parameters into opera-

tions to construct the Criteria 3–5:

– The summary distances DsSHw[i] or DsSH p[i] (both

in days) of all j-intervals or their part, corresponding

to the full period [1,T ] or its continuous part, includ-

ing the assigned number K(> 1) of j-intervals from

the fixed j∗-interval to the J[i]-interval ( j∗ = J[i]−K).

It’s calculated as follows:

DsSHw[i] = Tr[i,J[i]]−Tl[i,1]+1,

DsSH p[i] = Tr[i,J[i]]−Tl[i, j∗]+1,

i = 1, . . . , I . (10)

– The average distances DsAHw[i], DsAH p[i] (both

expressed in days, maybe with 0.1 day resolution),

8
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determined as the quotient from division of the sum-

mary distances (10) on the appropriate numbers of

j-intervals, forming these summary distances:

DsAHw[i] = DsSHw[i]
/

J[i],

DsAH p[i] = DsSH p[i]
/

K,

i = 1, . . . , I . (11)

– The residual distance DsRHl[i] (in days) reflects the

last non-completed (J[i]+1)-Hill ( -interval), includ-

ing all t-days after Tr[i,J[i]] (the J[i]-day of the last

minimal SP value) up to the final T -day of the pe-

riod [1,T ], where:

DsRHl[i] = T −Tr
[

i,J[i]
]

, i = 1, . . . , I . (12)

Using these parameters, we can define Criteria 3–5 as fol-

lows:

1. According to the formulas (9)–(11), the average dis-

tances DsAHw[i], DsAH p[i] from (11) are calcu-

lated for all i-stocks considered. By comparing them,

the relative coefficient C f Awp[i], characterizing their

closeness, is calculated as the quotient from divi-

sion of the absolute value of these average distances’

difference on their maximal value; the appropriate

formula is as follows:

C f AwAp[i] =
∣

∣

(

DsAHw[i]−DsAH p[i]
)∣

∣

/

/

max
{

DsAHw[i],DsAH p[i]
}

, i = 1, . . . , I . (13)

2. The final average distance DsAHF [i], determined as

weighted sum of both average distances from (11),

should reflect (as well as the Criterion 3 itself) the

prediction of the expected day Tr
[

i,J[i]+1
]

(maybe

with 0.1 day resolution) of current minimal SP value

(this prognosis day of (J[i]+1)-SP minimum should

be the next one after the last fact day of SP mini-

mum). Thus, DsAHF [i] is calculated as:

DsAHF [i]=DsAHw[i] ·WAw+DsAH p[i] ·WAp,

i = 1, . . . , I , (14)

where the expert weights WAw, WAp (WAw +
WAp = 1) are assigned according to the follow-

ing principle: when making the prognosis for the

nearest future it’s more important to take into ac-

count what happened in the last fact days. According

to it, we take WAp > WAw (it’s possible to take:

WAw = 0.4, WAp = 0.6).

3. We formulate the Criterion 3, based on the above

considered principles, as minimization (on all to-

tality of i-stocks) of closeness for the i-stock ex-

pected (J[i]+ 1)-day of its SP sinusoid minimum to

the accepted prognosis (T + 1)-day. This expected

(J[i] + 1)-day is calculated (maybe in with 0.1 day

resolution) for each i-stock as the end of its last non-

completed (J[i]+1)-sinusoidal Hill H
[

i,J[i]+1
]

:

Tr
[

i,J[i]+1
]

= Tr
[

i,J[i]
]

+DsAHF [i],

i = 1, . . . , I , (15)

where: Tr
[

i,J[i]
]

is the last fact day of SP minimum,

DsAHF [i] is from (14).

Thus, the Criterion 3 is minimization of the value,

calculated as the corrected (using (13)) absolute value

of difference between the rated day from (15) and the

prognosis (T +1)-day:

min
{i=1,...,,I}

{Ci3} = min
{i=1,..., I}

{Csin
3 [i,T+1]}, Csin

3 [i,T+1]

=
∣

∣

(

Tr[i,J[i]+1]−T−1
)∣

∣ · (1+C f AwAp[i])},

i = 1, . . . , I . (16)

4. The Criterion 4 should reflect the accordance be-

tween the last fact non-completed (J[i]+1)-sinusoidal

Hill H
[

i,J[i]+ 1
]

and the prognosis of (T + 1)-day.

This accordance may be estimated as follows: we

find the day T max
[

i,J[i]+ 1
]

of maximal value on

this last non-completed Hill, and the Criterion 4 is

considered as minimization of relative difference be-

tween this maximal day and this Hill initial day

Tr
[

i,J[i]
]

; thus, the Criterion 4 value is calculated

as the quotient from division of this difference on

this Hill full distance DsRHl[i] (see (12)):

min
{i=1,..., I}

{Ci4}= min
{i=1,..., I}

{Csin
4 [i,T +1]}, Csin

4 [i,T +1]

=
(

T max
[

i,J[i]+1
]

−Tr
[

i,J[i]
])/(

T−Tr
[

i,J[i]
])

,

i = 1, . . . , I . (17)

Such minimization approach is based on the fol-

lowing principle: if the relative value Csin
4 [i,T + 1]

is small, it is possible to expect the great distance

(T −T max
[

i,J[i]+1
]

), i.e., the next (out [1, . . . ,T ])
SP minimum value could be expected as one closer

to the prognosis of (T + 1)-day. Thus, such stocks

are good for buying (only with these positions) on

this (T + 1)-day. However, if the required value

T max
[

i,J[i]+1
]

isn’t found on the Hill H
[

i,J[i]+1
]

,

we assume the Criterion 4 value as follows:

Csin
4 [i, T +1] = 1+E ps[i], i = 1, . . . , I , (18)

where the values {E ps1[i] > 0, i = 1, . . . , I} are some

expert estimates E ps[i] (or they may be accepted as

{E ps[i] = 1
/(

T −Tr
[

i,J[i]
])

, i = 1, . . . , I}).

5. The Criterion 5 estimates the difference between the

fact and rated values of SP maximal value on the last

9
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non-completed Hill H
[

i,J[i]+1
]

. It may be accepted

as an additional estimation of agreement between the

fact and rated data. If there is the fact maximum

T max
[

i, J[i]+1
]

, the Criterion 5 value is calculated

by defining the absolute value of difference between

the value T max
[

i,J[i] + 1
]

and the rated maximal

value of this Hill, derived using a half of distance

DsAHF [i] from (14), where this difference is cor-

rected using the value C f AwAp[i] from (13). Thus,

we have the following minimization Criterion 5:

min
{i=1,..., I}

{Ci5} = min
{i=1,..., I}

{Csin
5 [i, T +1]} , (19)

where:

Csin
5 [i,T +1] =

∣

∣

(

T max
[

i,J[i]+1
]

−Tr
[

i,J[i]
]

−0.5DsAHF [i]
)∣

∣ · (1+C f AwAp[i])

i = 1, . . . , I . (19′)

If T max
[

i,J[i] + 1
]

does not exist, the Criterion 5

value is accepted as in (18):

Csin
5 [i,T +1] =

∣

∣

(

T +E ps1[i]−Tr[i,J[i]
]

−0.5DsAHF [i]
)∣

∣ · (1+C f AwAp[i]),

i = 1, . . . , I , (20)

where the values {E ps1[i] > 0, i = 1, . . . , I} are some

expert estimates.

4.3.3. Illustrative sample of Criteria 1–5 constructing

We will illustrate the above considered methods of Crite-

ria 1–5 constructing on the real sample of data for one

stock (3-stock) of the holding “Tel-Aviv-100” on the Israeli

stock market. The appropriate statistical data for this stock

are considered for the period 11/11/01–01/01/02, which in-

cluded 32 working days (T = 32, t = 1, . . . ,32). The prog-

nosis day (T +1 = 33) corresponds to 02/01/02. All these

data present the deal sums (DS), shown in Fig. 3, and the

stock prices (SP), presented in Table 1.

Construction of Criterion 1, reflecting the prognosis (for

33-day) of absolute value Apr(3, 33) for deal sums (DS),

is performed according to (3), where only the linear (Lin)

A(1)(3, 33), logarithmic (Log) A(3)(3, 33) and polynomial

(Pol) 3rd order A(4)(3, 33) trends are taken into account

(it corresponds to w(2) = 0, w(5) = 0, w(6) = 0, w(Ex) = 0
in (3)). These trends for 3-stock are presented in Fig. 3,

where they are shown by bold (Lin), stroke (Log) and dot-

ted (Pol) lines. In this Fig. 3, we can see that their progno-

sis (for 33-days) values are very close to Log- and Pol-

trends (A(3)(3, 33) = 3757.9; A(4)(3, 33) = 3754.4), but

they differ from Lin-trend (A(1) (3, 33) = 5029.1). Ac-

cording to it and the closeness of values A(3)(3, 33) and

A(4)(3, 33) to the known (statistics for 02/01/02) fact

DS values (y f act(3, 33) = 3840.8), we can expertly assign,

to realize calculations according to formula (3) for this

3-stock, the following weight values: w(1) = 0.2, w(3) =
w(4) = 0.4 (we would like to underline that such assign-

ing is performed conditionally accounting only for this

situation and for this 3-stock). Using these weight val-

ues and in accordance with (3), we calculate this Crite-

rion 1 value C31 = Apr(3, 33) = 5029.1 ·0.2+3 757.9 ·0.4+
3754.4 ·0.4 = 4010.7 (= 1.04 y f act(3, 33) is very closed to

the fact).

Fig. 3. Lin (bold), Log (stroke) and Pol (dotted line) trends

( j = 1,3,4) and statistic curve for DS of 3-stock.

Using the derived value of Criterion 1 and the fact DS

value for the T -day A f act(3, 32) = 1293.7, the Crite-

rion 2 value is calculated according to formula (8): C31 =
Apr∧(3, 33) = |(Apr(3, 33)− A f act(3, 32))/A f act(3, 32)| =
|(4010.7−1293.7)|/1293.7 = 2.10.

We illustrate construction of Criteria 3–5 through the

analysis of 3-stock price (SP) sinusoidal data, presented

in Table 1. Such construction is performed according

to (9)–(20) and the special procedure described before.

The procedure defines the basic parameters of the cri-

teria C33–C35 construction, reflecting the “ j-sinusoidal

Hills” {H[3, j], j = 1, . . . , J[3]} and their j-intervals

{[T l[3, j], Tr[3, j]], j = 1, . . . , J[3]}. So, according to oper-

ation 1 in this procedure, we establish the following initial

conditions: t = 2, j = 1, Di f [2] = SP[2]−SP[1] = 3283−
3290 =−7 (see Table 1). Executing operations 2–3, we find

t = 3, Di f [3] = 63, and the case 3.a (Di f [3]> 0, Di f [2]≤ 0)

is established. Performing the appropriate cycle (t1 = 1,

Di f [t− t1] = Di f [2] < 0), we fix the first minimal SP value

for t = 2 (Tr[3,1] = 2) and go to the next 2-Hill H[3,2]
( j = 2, T l[3,2] = 3). Through the operation 4 going to the

next day t = 4, we repeat again the operations 2–3, reaching

Di f [4] = −127 and the case 3.b (Di f [4] < 0, Di f [3] > 0),

where the maximal SP value in 2-interval is fixed for

t = 3 (T max[3,2] = 3). Continuing this process, we define

the following full totality of j-intervals for this 3-stock:

[1, 2], [3, 7], [8, 12], [13, 17], [18, 22], [23, 24], [25, 26],

[27, 32], including the following t-days of maximal SP val-
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Table 1

SP values for 3-stock and their differences Di f [t] for all t-days (t = 1, . . . ,32)

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SP 3 290 3 283 3 346 3 219 3 144 3 097 3 040 3 050 3 437 3 424 3 417 3 388 3 478 3 427 3 368 3 36

Di f [t] −7 63 −127 −75 −47 −57 10 387 −13 −7 −29 90 −51 −59 −12

t 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

SP 3 310 3 361 3 489 3 482 3 415 3 387 3 404 3 399 3 412 3 226 3 261 3 315 3 412 3 406 3 353 3 330

Di f [t] −46 51 128 −7 −67 −28 17 −5 13 −186 35 54 97 −6 −53 −23

ues: {1,3,9,13,19,23,25,29}. Thus, we can obtain the val-

ues needed for (9)–(20): J[3]=7, T l[3,1]=1, Tr[3,7]=26,

DsSHw[3] = 26−1+1 = 26, K = 3 (it’s assigned a pri-

ori), j∗= 7−3 = 4, DsSH p[3]= Tr[3,7]−T l[3,4]+1 = 14,

DsAHw[3] = DsSHw[3]/J[3] = 26/7 = 3.714, DsAH p[3] =
DsSH p[3]/K=14/3=4.667,DsRHl[3]=T−Tr[3,7]= 32−
26=6 (for non-completed 8-interval [27,32]), C f AwAp[3]=
|(DsAHw[3]−DsAH p[3])|/max{DsAHw[3], DsAH p[3]}=
|3.714−4.667|/4.667=0.204. According to (11), (14) and

the above accepted expert weights (WAw=0.4,WAp=0.6),

we find the values DsAHF [3] = 3.714 · 0.4+4.667 · 0.6 =
4.286, Tr[3,8]=26+4.286=30.286.

Thus, in accordance with the above calculated parameter

values using formulas (16)–(20) and accounting for the SP

maximum T max [3, 8] availability in the last non-completed

8-interval [27, 32], the following Criteria 3–5 values are

calculated:

C33 = Csin
3 [3,33] = |(30.286−33)| ·1.204

= 2.714 ·1.204 = 3.268;

C34 = Csin
4 [3,33] = (29−26)/(32−26) = 3/6 = 0.5;

C35 = Csin
5 [3,33] = |(29−26−0.5 ·4.286)| ·1.204

= 1.032.

We could perform some preliminary analysis of these cri-

teria values obtained {4010.7,2.10,3.268,0.5,1.032} with

the intent to estimate quality of these results in accordance

with these criteria. As is evident from the foregoing, the

concordance with the fact data for the prognosis 33-day pe-

riod is very good (104%) for the Criterion 1 and very bad

(210%) for the Criterion C2. The first characterizes the

good reflection of general tendencies of DS statistical data

by the chosen totality of trends and their weight values, the

second–the sharp fall of fact DS on day 32 (see Fig. 3).

The good values of Criteria 3–5 characterize a good es-

timate of current SP minimum, calculated taking into ac-

count the fact 3-sinusoid “behaviour” in the average and in

the last t-days.

4.3.4. Peculiarities of the six-level hierarchical system

performance for the problem considered

The above considered (Section 3) six-level hierarchical sys-

tem of MVC series is applied, at present, to reach the re-

quired “reasonable” solutions for the problem of stock buy-

ing on the stock market. We will not comment here on the

aspects of this application contents and results, but we will

accent only the methodological aspects of this application.

With these positions we will consider the peculiarities of:

(a) forming this hierarchical system; (b) performance of the

appropriate computations.

To solve the problem considered, we accepted performance,

in principle, of the same six-level system that was presented

above (Section 3). The totalities of possible scenarios for

all 6 levels (l = 1, . . . ,6) of this six-level system of MVC

series as applied to this problem of stock buying are as

follows:

• l = 1. Only one 1-scenario is accepted, intended to

use the same modified TOPSIS method [1–3], based

on considering the following scalar goal function (the

partial case of the above general function (1))

min
{i=1,...,I}

{(−Ci1W1)+Ci2W2 +Ci3W3 +Ci4W4 +Ci5W5},

(21)

where the first component, reflecting the maximizing

Criterion 1, is considered with the sign “-”.

• l = 2. Various 2-scenarios correspond to different ISA

versions, whose variation might reflect the change of

the observed stock groups, where this changes may

include: (a) types of stocks; (b) period of observa-

tion; (c) number of considered stocks inside the same

group, etc.

• l = 3. At present, we consider only one 3-scenario,

reflecting the Criteria 1–5, presented in (21).

• l = 4−5. Various combinations of 4- and 5-scenarios

should reflect different versions of weights of pos-

sible value j-intervals {[wmin
j , wmax

j ], j = 1, . . . ,5},

whose construction is linked with assigning (a priori)

their “central points” {w∧
j , j = 1, . . . ,5} (4-scenarios)

and their quite standard surroundings by the bounds

(5-scenarios). In a framework of multi-variant com-

putations performed, we consider different versions

of such “central points”, reflecting: (a) expert esti-

mates, where the weight w∧
1 of Criterion 1 is more

preferable than others (w∧
1 > w∧

j , j = 2, . . . ,5) and

11
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the weight w∧
2 of Criterion 2 is the least one; (b) es-

timates, opposite to the preceding case (a); (c) the un-

certain situation (w∧
1 = w∧

j = w∧
3 = w∧

4 = w∧
5 = 0.2).

The totality of 5-scenarios used presents 4 types of

interval bounds (see [6]), surrounding these “cen-

tral points” on: (1)5%, (2)10%, (3)15%, (4)20%

(e.g., we consider the interval [0.95w∧
j , 1.05w∧

j ]).

• l = 6. The quantity of 6-scenarios depends upon the

assigned number of Monte Carlo simulation series

(each such series includes 5 Monte Carlo simulations

according to the number of criteria). This quan-

tity might be considerable according to our wishes

(e.g., it’s varied from 10 to 100 to estimate the sen-

sitivity of results to such variations).

Thus, the above considered variations of 2-, 4-, 5- and

6-scenarios lead to a considerable number of multi-variant

computations, related to reaching different RAS totalities.

Their analysis allows, in principle, to research the influ-

ence of varying the problem conditions on the final so-

lutions, but this analysis of varied results have led to the

necessity to perform extensive research before the develop-

ment of pithy (rich in content) methodology for behaviour

on stock market. However, the research already performed

shows viability of our MCDM approach as applied to this

real problem.

5. Conclusions

An original, intuitive methodology to solve various real

MCDM problems is proposed. This methodology reflects

the approach, focused primarily on accounting for uncer-

tainty factors in the process of selecting a predetermined

number of “reasonable” alternatives from their considerable

(maybe vast) initial set in accordance with an arbitrary num-

ber of optimization criteria, considered jointly as a multi-

ple criteria. The methodology allows to take into account

the uncertainty factors of different nature in a framework

of multi-level hierarchical system of multi-variant compu-

tation series.

At present, the main purpose of promotion of this method-

ology is the research connected with application of this

approach to real MCDM problems. The “bottlenecks” of

such application may result from creating the initial sets of

alternatives or criteria assessment vectors (ISA or ISCAV).

From this point of view, the problem considered in this

paper is a very suitable one, since it reflects the rich sta-

tistical data, which could be used to apply the proposed

approach. Besides, this problem is connected with a lack

of implicit optimization criteria, creating difficulties in

ISCAV construction.

Thus, the main purpose of this paper was to show the possi-

bility of applying the quite general methodology of MCDM

accounting for uncertainty to real problem proposed, using

the quite reliable initial data regarding the construction of

initial alternatives and multiple criteria (the ISA/ISCAV).

An important aspect of this application is related to model-

ing the totality of non-implicit criteria (ISCAV), based on

reliable statistical data processing.

Other aspects of modeling the problem of stock buying

on the stock market are linked to practical usage of the

appropriate calculation results. Here, we can suggest two

directions of work:

1) developing the methods of successful “behaviour” on

stock market in buying the “reasonable” stocks;

2) accumulating the experience in researching such “be-

haviour” by performance of multi-variant computa-

tions to estimate the influence of various factors on

the choice of “reasonable” solutions.

At present, we carry out work in the second direction, per-

forming a lot of multi-variant computations while varying

the problem conditions and parameters. In this way, we

hope to start the “self-education” process, leading in the

future to a development of successful “behaviour” on the

stock market in buying the “good” stocks.
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