
Paper Primality proving

with Gauss and Jacobi sums
Andrzej Chmielowiec

Abstract— This article presents a primality test known as

APR (Adleman, Pomerance and Rumely) which was invented

in 1980. It was later simplified and improved by Cohen and

Lenstra. It can be used to prove primality of numbers with

thousands of bits in a reasonable amount of time. The running

time of this algorithm for number NNN is O((lnN)C ln ln lnN)O((lnN)C ln ln lnN)O((lnN)C ln ln lnN) for

some constant CCC. This is almost polynomial time since for all

practical purposes the function ln ln lnNln ln lnNln ln lnN acts like a constant.

Keywords— prime numbers, primality proving, cyclotomic ring,

Gauss sum, Jacobi sum, APR.

1. Introduction

Probabilistic primality tests are in fact compositness tests.

That kind of test gives us correct answer only if the number

has nontrivial factor. In other words this test gives two

possible answers:

– number is composite,

– number may be prime.

In the former case we are absolutely sure that the number

is composite, but in the latter one we receive only statisti-

cal information. That kind of unsertainty can be accepted

in RSA users keys. Situation is completely different with

certificate authority keys and elliptic curve parameters. In

those cases wrong verification of primality may compro-

mise all keys in cryptosystem.

We can avoid this problem using algorithm which proves

primality and always gives correct answer. There are

two very effective methods of primality proving. One of

them gives primality certificate and is based on elliptic

curves [2]. The second one – Gauss and Jacobi sums pri-

mality test [3] – is the topic of this paper. The test based

on Gauss sums [4, 7] is interesting only from theoretical

point of view and it doesn’t have practical implications. Its

improvement – Jacobi sums test [5, 6] – is much more ef-

ficient and can be used to prove primality of numbers with

thousands of bits in a reasonable amount of time.

In the following sections we will show how the theoretical

results can be interpreted in terms of computer program-

ming. It will allow to understand the basic idea of Jacobi

sums method and will be helpful for those who will try to

implement this test in practice. The article does not contain

any proof, as it can be easily found in references. Proba-

bly the best theoretical description of this algorithm can be

found in Henri Cohen’s book [6].

2. Theoretical background

In the whole article we will use the following notation:

N – number which is tested for primality,

p, q – small prime numbers.

2.1. Cyclotomic fields

We start from definition of algebraic structure in which the

test operations are performed.

Definition 1: If ζn ∈C is such that ζ n
n = 1 and for all k < n

we have ζ k
n 6= 1, then ζn is a primitive nth root of unity, and

field extension Q(ζn) is the nth cyclotomic field. �

Proposition 1: Let K = Q(ζn) be nth cyclotomic field.

1. The extension K/Q is a Galois extension, with

Abelian Galois group given by

G = Gal(K/Q) =
{

σa : (a,n) = 1, where σa(ζn) = ζ a
n
}

.

In particular, the degree of K/Q is φ(n), where φ is

the Euler function.

2. The ring of integers of K is ZK = Z[ζn]. �

Such a definition is good from a theoretical point of view,

but is also completely impractical. We need to find a way

that would allow us to represent elements of Q(ζn) and

Z[ζn] in a computer. This is possible by the definition of

a cyclotomic polynomial:

Φn(X) = ∏
(a,n)=1, 0<a<n

(X−ζ a
n).

It is possible to show that Φn(X) ∈ Z[X] and the following

lemma is true.

Lemma 1: If ζn is a primitive nth root of unity, and Φn(X)
is the nth cyclotomic polynomial, then

Q(ζn) ' Q[X]/Φn(X),

Z[ζn] ' Z[X]/Φn(X).

This isomorphism fixes elements of Q, and sends ζn on

to X . �

In this approach we only need to compute the nth cyclo-

tomic polynomial. The following formula gives us a very

effective way to do this for small values of n

Φn(X) = ∏
d|n

(

1−X
n
d

)µ(d)
, (?)

69

Andrzej Chmielowiec

where µ(d) is the Möbius function

µ(d) =















1 if d = 1,
(−1)k if d is product of k distinct

primes,
0 in other cases.

Example 1: Using formula (?) for a prime or a power of

prime, we can easily compute cyclotomic polynomials:

Φp(X) =
1−X p

1−X
=

p−1

∑
i=0

X i

= X p−1 + · · ·+X +1,

Φpk(X) =
1−X pk

1−X pk−1 =
p−1

∑
i=0

X ipk−1

= X (p−1)pk−1
+ · · ·+X pk−1

+1.

�

The main part of Jacobi sums test will be based on com-

putations in the ring Z[ζpk]. It is known from Lemma 1

that Z[ζpk] ' Z[X]/Φpk(X), and Φpk(X) can be computed

from (?). The next example shows how to do arithmetic

operations in such a ring.

Example 2: Let p = 2, and k = 2. The previous consider-

ations lead us to

Z[ζ4]' Z[X]/Φ4(X),

where Φ4(X) = X2 + 1. Of course every element of

Z[X]/Φ4(X) may be represented as polynomial of degree

< deg(Φ4). Suppose that

a(X) = a1X +a0,

b(X) = b1X +b0

are such representations. Addition and subtraction can be
done by coordinates:

a(X)±b(X) = (a1±b1)X +(a0±b0).

Multiplication is a little bit more complicated. To do
this we first have to compute a(X)b(X) in Z[X], and

then reduce the product modulo Φ4(X). Since (a1X +a0)
(b1X + b0) mod (X2 + 1) = a1b1X2 + (a1b0 + a0b1)X +
a0b0 mod (X2 +1) = (a1b0 +a0b1)X +(a0b0−a1b1), then

we have

a(X)b(X) = (a1b0 +a0b1)X +(a0b0−a1b1).

�

2.2. Group rings

In the previous section Galois group of extension Q(ζn)/Q
was defined as

G = {σa : (a,n) = 1, where σa(ζn) = ζ a
n }.

If we interpret Q(ζn) as Q[X]/Φn(X) then every ele-

ment σa ∈ G can be written as σa(X) = Xa mod Φn(X).

Group G is in fact the group of automorphisms of the

field Q(ζn) which fixes the base field Q [9]. There is a nat-

ural action of G on Q(ζn) and Z[ζn].

Example 3: Consider Q(ζ4) ' Q[X]/(X2 + 1) a Galois

group of extension Q(ζ4)/Q is defined as

G =
{

σ1,σ3
}

' (Z/4Z)∗.

Let b(X) = b1X +b0 be the representation of element from

Q[X]/(X2 + 1). Since every σa ∈ G fixes Q elements, we

have

σ1(b(X)) = b1σ1(X)+b0

= b1X +b0,

σ3(b(X)) = b1σ3(X)+b0

= b1X3 +b0 mod (X2 +1)

= −b1X +b0.

The same is true if b(X)∈Z[X]/(X2 +1). �

Now we will introduce the ring of Z-linear combinations

of elements of G. This structure plays a crucial role in the

extension of Gauss sums test to Jacobi sums test, and it

allows to apply the latter in practice.

Definition 2: Define group ring Z[G] as the set of elements

f = ∑σ∈G fσ σ , where all fσ ∈ Z. Operations in Z[G] are

defined in the following way:

f ±g = ∑
σ∈G

(fσ ±gσ)σ ,

f ·g = ∑
σ ,τ∈G

(fσ gτ)(στ).

�

Addition and subtraction is in Z[G] defined by coordinates.

Multiplication is a little bit more complicated. The follow-

ing example explains how to do this operation.

Example 4: Consider group ring Z[G] with G defined as in

previous example G = {σ1,σ3} ' (Z/4Z)∗. The following

table presents group law for G

· σ1 σ3

σ1 σ1 σ3
σ3 σ3 σ1

If f = f1σ1 + f3σ3 and g = g1σ1 + g3σ3 are elements

of Z[G], then we have:

f ±g = (f1±g1)σ1 +(f3±g3)σ3,

f ·g = (f1g1)(σ1σ1)+(f1g3)(σ1σ3)+

(f3g1)(σ3σ1)+(f3g3)(σ3σ3)

= (f1g1)σ1 +(f1g3)σ3 +

(f3g1)σ3 +(f3g3)σ1

= (f1g1 + f3g3)σ1 +(f1g3 + f3g1)σ3.

�

70

Primality proving with Gauss and Jacobi sums

Now we are ready to extend group action given by G to

action given by Z[G].

Definition 3: Let G be a Galois group of extension

Q(ζn)/Q, and Z[G] denote its group ring. If f ∈ Z[G]
and x ∈Q(ζn), then we define action of f on x by

x f = ∏
σ∈G

σ(x) fσ

for x 6= 0, and 0 f = 0. �

This definition is quite natural and it has very nice prop-

erties. One can immediately check, that for all x,x1,x2 ∈
Q(ζn) and f , f1, f2 ∈ Z[G] we have:

1. x f1+ f2 = x f1 x f2 ,

2. x f1 f2 =
(

x f1
) f2 =

(

x f2
) f1 ,

3. (x1 + x2)
f = x f

1 + x f
2 ,

4. (x1x2)
f = x f

1 x f
2 .

Example 5: Let a(X) = a1X +a0 represent an element of

Q(ζ4)'Q[X]/(X2 +1), then for f = σ1 +σ2 we can obtain

a(X) f = σ1(a1X +a0)σ3(a1X +a0)

= −a2
1X2 +a2

0 mod (X2 +1)

= a2
1 +a2

0,

and for g = 2σ1 +σ3 we have:

a(X)g = a(X)σ1+ f

= σ1(a1X +a0)(a2
1 +a2

0)

= (a3
1 +a2

0a1)X +(a0a2
1 +a3

0).

�

The most interesting is the case of n = pk, where p is prime.

The following proposition shows the relation which will be

usful in the next section.

Proposition 2: If n = pk and G = Gal(Q(ζn)/Q), then the

set

p = { f ∈ Z[G] : ζ f
p = 1}

is a prime ideal of group ring Z[G]. �

2.3. Dirichlet characters

Dirichlet character χ modulo q is a group homomorphism

from (Z/qZ)∗ to C∗. If q is prime then character χ can

be defined by choosing value χ(g) for some generator g of

(Z/qZ)∗.

Example 6: If q = 5, then g = 2 is a generator of (Z/5Z)∗,
and all Dirichlet characters may be defined by choosing

value for χ(g). But χ must be a homomorphism, so its

image has to be a multiplicative subgroup of order four

in C∗. There are only four such possibilities:

1. χ1(g) = 1 (trivial character),

2. χ2(g) =−1,

3. χ3(g) = i,
4. χ4(g) =−i.

�

It can be shown, that the set of all characters modulo q
forms a group.

Proposition 3: All characters from (Z/qZ)∗ to C∗ form

a group with neutral element χ0 such that χ0(x) = 1 for all

x ∈ (Z/qZ)∗. �

Since χ is a homomorphism and |(Z/qZ)∗| < ∞ one can

show that the set of character values forms a multiplicative

group which is a subgroup of 〈ζq〉=
〈

e
2πi
q
〉

. Definition of

character may be extended to a multiplicative map from

Z/qZ to C by taking χ(x) = 0 for all x 6∈ (Z/qZ)∗. It can

then be lifted to map from Z to C. More information about

characters can be found in [8].

2.4. Gauss and Jacobi sums

We are now ready to give the definition and some basic

properties of Gauss and Jacobi sums.

Definition 4:

1. Let χ be a character modulo q. The Gauss sum τ(χ)
is defined by

τ(χ) = ∑
x∈(Z/qZ)∗

χ(x)ζ x
q ,

where ζq = e
2πi
q .

2. Let χ1,χ2 be two characters modulo q. The Jacobi

sum j(χ1,χ2) is defined by

j(χ1,χ2) = ∑
x∈(Z/qZ)∗

χ1(x)χ2(1− x).

�

There is a nontrivial connection between those two objects.

It allows us to implement our primality proof in a very

effective way.

Proposition 4: Let χ1,χ2 be characters modulo q such that

χ1χ2 6= χ0. Then

j(χ1,χ2) =
τ(χ1)τ(χ2)

τ(χ1χ2)
.

�

It is clear that if χ is a character modulo prime num-

ber q, then its values belong to some group 〈ζn〉, where

n | q − 1. But it means that τ(χ) ∈ Z[ζn,ζq] and

j(χ1,χ2) ∈ Z[ζn]. The second ring is simpler and has

smaller cost of arithmetic operations. The next section

will show how to use it to effectively implement the

primality test.

71

Andrzej Chmielowiec

3. Primality test

The previous section presented the theoretical basis of Ja-

cobi sums test concept. Now we will try to sum up the

theory and show how it can be used in the construction of

a primality proving algorithm. It will be done in two steps.

The first step describes an impractical algorithm based on

Gauss sums (that are located in a large ring). The sec-

ond one uses particular properties of Jacobi sums to move

computations into a smaller ring, where Gauss sums are

replaced by Jacobi sums.

We assume that N has already passed the Rabin-Miller test

and it is highly improbable that N is composite. Our aim

is the proof of primality of N. In this section we fix prime

numbers p,q such that pk | q− 1 and pk+1 - q− 1. Let

χ be character modulo q of order n = pk in the group of

characters.

3.1. Basic test

The fundamental concept is to prove a generalization of

Fermat’s little theorem. It allows us to verify many con-

gruences that are satisfied by prime numbers and together

imply primality of the tested number.

Proposition 5: Let β ∈ Z[G]. Then if N is prime, there

exists η(χ) ∈ 〈ζn〉 such that

τ(χ)β (N−σN) ≡ η(χ)−βN mod N, (?β)

where η(χ) = χ(N). �

Note that Z[G] acts not only on Z[ζn] but also on Z[ζn,ζq].
But it doesn’t matter because action on ζq is trivial (identity

action). In the final version of the test, the congruence

(?β) in Z[ζn,ζq] will be transformed to equivalent condition

in Z[ζn]. So results of this section are important only from

the theoretical point of view and it is unnecessary to give

examples of operations in Z[ζn,ζq].
In order to present the main result of this section, first we

have to define the so called Lp condition.

Definition 5: Condition Lp is satisfied iff for all prime

divisors r of N and all positive integers a we can find

lp(r,a) such that

rp−1 ≡ N(p−1)lp(r,a) mod pa.

�

Now we are ready to formulate the fundamental theorem

which allows us to give primality proof of number N.

Theorem 1: Let t be an even integer. Define

e(t) = 2 ∏
q prime, (q−1)|t

qvq(t)+1.

Assume that (N, te(t)) = 1 and e(t) >
√

N. For each pair

of primes (p,q) such that (q− 1) | t and pk ‖ (q− 1),
let χp,q be a character modulo q of order pk (if gq is

a generator modulo q, then we can take χp,q(gq) = ζpk).

If the following conditions are satified:

1. all χp,q satisfy (?β) for some βp,q 6∈ p,

2. condition Lp is true for all primes p | t,
3. for every 0 ≤ i < t and r = N i mod e(t) if r 6= 1,

then r - N,

then N is prime. �

This theorem is interpreted as follows. If congruence (?β)

is false for some χp,q, then we have that N is not prime

(just like in Fermat test). But if (?β) is true for all de-

fined characters then we get some extra information about

possible divisors of N. This allows to prove primality

of N or gives its nontrivial factor. So the only problem is

to verify the Lp condition. The following proposition gives

a practical method for checking it.

Proposition 6: Suppose that χ is a character modulo q of

order pk which satisfies (?β) for some β 6∈ p. If one of the

following conditions is true, then Lp is satisfied:

1. p≥ 3,

2. p = 2, k = 1 and N ≡ 1 mod 4,

3. p = 2, k≥ 2 and q
N−1

2 ≡−1 mod N. �

3.2. Jacobi sums

The test based on Gauss sums is asymptotically fast, how-

ever it is far from being practical. Main reason for this

situation is the computation of τ(χ)β (N−σN). One needs to

work in Z[ζn,ζq] and this is very slow in practice.

Example 7: If we want to test number N < 10100 then we

can take t = 5040. In this case n = pk will be very small,

more precisely pk ≤ 16. Unfortunately q will be much

larger, the largest value being q = 2521. This forces us to

consider polynomials of degree > 1,5 ·104 and coefficients

reduced modulo N. Multiplying such polynomials takes

about 2 ·108≈ 227 multiplications modulo N and makes this

completely unpractical. �

The above example shows that using Gauss sums is compu-

tationally infeasible. One of possible ways to make the test

practical, is to replace the (?β) congruence by some condi-

tion depending only on Jacobi sum which lies in a smaller

ring Z[ζn]. Fortunately, it is possible and the next three

propositions give complete description of this construction.

First we present a very nice result which gives equivalent

condition for all practically considered odd primes p.

Proposition 7: Let 3≤ p < 6 ·109 and p 6= 1093,3511. If

we denote by E the set of all integers 1≤ x < pk coprime

to p, then condition (?β) is equivalent to congruence:

j(χ,χ)α ≡ η(χ)−cN mod N,

where
α = ∑

x∈E

⌊

Nx
pk

⌋

σ−1
x

and c = 2(2(p−1)pk−1 −1)/pk. �

72

Primality proving with Gauss and Jacobi sums

Note that the restriction on p in above proposition is com-

pletely irrelevant in practice. Even if we want to test the

primality of numbers having 109 decimal digits, we would

never need primes larger than 1093. This means that the

practical problem of testing (?β) for p ≥ 3 is solved. The

next two propositions decribe the case p = 2.

Proposition 8: Let χ be a character modulo q of or-

der 2k with k ≥ 3. Denote by E the set of all integers

1≤ x < 2k that are congruent to 1 or 3 modulo 8. Set

δN = 0 for N congruent to 1 or 3 modulo 8, δN = 1 if N is

congruent to 5 or 7 modulo 8. The (?β) condition can be

replaced by

(

j(χ ,χ) j(χ ,χ2)
)α

j
(

χ2k−3
,χ3·2k−3

)2δN ≡

(−1)δN η(χ)−cN mod N,

where

α = ∑
x∈E

⌊

Nx
2k

⌋

σ−1
x

and c = 3(32k−2 −1)/2k. �

Proposition 9: For p = 2, k = 1 and β = 1 condition (?β)

is equivalent to the congruence

(−q)
N−1

2 ≡ η(χ) mod N.

For p = 2, k = 2 and β = 1 condition (?β) is equivalent to

the congruence

j(χ ,χ)
N−1

2 q
N−1

4 ≡ η(χ)−1 mod N

if N ≡ 1 mod 4, and to the congruence

j(χ ,χ)
N+1

2 q
N−3

4 ≡−η(χ) mod N

if N ≡ 3 mod 4. �

4. Implementation and results

4.1. Description of the algorithm

This subsection is based on algorithm given by Henri Co-

hen in his book [6] and gives pseudocode of Jacobi sums

primality test.

Algorithm 1 (Precomputations): Let B be an upper bound

on the numbers we want to test. This algorithm makes

precomputations of values that don’t depend on N.

1. Find such t that e(t)2 > B (see Theorem 1 for defini-

tion).

2. For every prime q dividing e(t) with q ≥ 3 do as

follows.

(a) Find a primitive root gq modulo q, and a table

of the function f (x) defined for 1 ≤ x ≤ q− 2
by 1−gx

q = g f (x)
q and 1≤ f (x)≤ q−2.

(b) For every prime p dividing q−1 let k be such

number that pk | q−1 and pk+1 - q−1. Let χp,q
denote the character defined by χp,q(gx

q) = ζ x
pk .

(c) If p≥ 3 or p = 2 and k = 2, compute

J(p,q) = j(χp,q,χp,q) = ∑
1≤x≤q−2

ζ x+ f (x)
pk .

If p = 2 and k ≥ 3, compute J(2,q) as above

and then

J3(q) = j(χ2,q,χ2,q) j(χ2,q,χ2
2,q) =

J(2,q)

(

∑
1≤x≤q−2

ζ 2x+ f (x)
2k

)

,

and

J2(q) = j
(

χ2k−3

2,q ,χ3·2k−3

2,q

)2
=

(

∑
1≤x≤q−2

ζ 3x+ f (x)
8

)2

.

The above algorithm shows how to compute the set of Ja-

cobi sums for tested numbers that are smaller than some

upper bound B. The key step of this part is to compute

a very large table f (x) of q−1 elements, which allows us

to determine Jacobi sums. Of course this part doesn’t have

to be precomputed as it was suggested before. Experiments

show that it takes about 3−5% of total time of the testing

procedure, so the described step can be done during every

test. The next algorithm combines all previous theoreti-

cal results and it proves primality or compositeness of the

tested number.

Algorithm 2 (Jacobi sums primality test): Suppose that

N ≤ B and precomputation step has been done.

1. If (te(t),N) > 1, then N is composite.

2. For every prime p | t set lp← 1 if p≥ 3 and N p−1 6≡ 1
mod p2, lp← 0 otherwise.

3. For each pair (p,q) of primes such that pk ‖ (q−1) | t
execute 4a if p≥ 3, 4b if p = 2 and k≥ 3, 4c if p = 2
and k = 2, 4d if p = 2 and k = 1. Then go to Step 5.

4a. (Based on Proposition 7): Let E be the set of

all positive integers smaller than pk and coprime

to p. Set Θ← ∑x∈E xσ−1
x , r ← N mod pk, α ←

∑x∈E

⌊

rx
pk

⌋

σ−1
x , and compute s1← J(p,q)Θ mod N,

s2 ← sbN/pkc
1 mod N, and S(p,q) ← s2J(p,q)α

mod N.

If pkth root of unity η such that S(p,q)≡ η mod N
doesn’t exist, then N is composite. If η exists and is

a primitve root, then set lp← 1.

4b. (Based on Proposition 8): Let E be the set of all

positive integers smaller than 2k that are congru-

ent to 1 or 3 modulo 8. Set Θ ← ∑x∈E xσ−1
x ,

73

Andrzej Chmielowiec

r ← N mod 2k, α ← ∑x∈E

⌊

rx
2k

⌋

σ−1
x , and compute

s1 ← J3(q)Θ mod N, s2 ← sbN/2kc
1 mod N, and

S(2,q)← s2J3(q)α J2(q)δN mod N, where δN = 0 if

r ∈ E, δN = 0 otherwise.

If 2kth root of unity η such that S(2,q)≡ η mod N
doesn’t exist, then N is composite. If η is a primitve

root and in addition q(N−1)/2 ≡−1 mod N, then set

l2← 1.

4c. (Based on Proposition 9): Compute s1← J(2,q)2 ·q
mod N, s2 ← sbN/4c

1 mod N, and S(2,q) ← s2 if

N ≡ 1 mod 4, S(2,q)← s2J(2,q)2 if N ≡ 3 mod 4.

If the fourth root of unity η such that S(2,q) ≡ η
mod N doesn’t exist, then N is composite. If η
is a primitve root and in addition q(N−1)/2 ≡ −1
mod N, then set l2← 1.

4d. (Based on Proposition 9): Compute S(2,q) ←
(−q)(N−1)/2 mod N.

If S(2,q) 6≡ ±1 mod N then N is composite.

If S(2,q) ≡ −1 mod N, and N ≡ 1 mod 4, then

set l2← 1.

5. (Based on Proposition 6): For every p | t such that

lp = 0 do as follows. Take random number q such

that q - e(t), p | (q− 1) and (q,N) = 1. Execute

Step 4a–4d according to the value of pair (p,q).

If after a reasonable number of tries, some lp is still

equal to 0, then send message saying that the test

failed (this is highly improbable).

6. (Based on Theorem 1): For i = 1, . . . , t−1 compute

ri ← Ni mod e(t). If for some i, ri is a nontrivial

factor of N then N is composite. Otherwise N is

prime.

Presented algorithm works well both in theory and in prac-

tice. Pomerance and Odlyzko have shown that the com-

plexity of the Jacobi sums test is

O(lnNC ln ln lnN)

for some constant C. This is almost polynomial time.

4.2. Choosing good ttt

We see that in Step 6 Algorithm 2 needs to do O(t) divi-

sions. That means that the chosen t shouldn’t be too large.

On the other hand, if t will be small, then e(t)2 may be

smaller than N and this will not allow to use the algorithm.

Steps 4a–4d have small complexity only if factors of t are

small. All the above considerations tell us that t shouldn’t

be too small and too large, and it should have small factors.

Unfortunately there is no good description of this problem.

So we present values of t that are based on intuition and

experiments. Table 1 presents the sample values.

Table 1

Sample values of t for testing numbers

log2 N t

≤ 101 180 = 22 ·32 ·5
≤ 152 720 = 24 ·32 ·5
≤ 204 1260 = 22 ·32 ·5 ·7
≤ 268 2520 = 23 ·32 ·5 ·7
≤ 344 5040 = 24 ·32 ·5 ·7
≤ 525 27720 = 23 ·32 ·5 ·7 ·11

≤ 774 98280 = 23 ·33 ·5 ·7 ·13

≤ 1035 166320 = 24 ·33 ·5 ·7 ·11

≤ 1566 720720 = 24 ·32 ·5 ·7 ·11 ·13

≤ 2082 1663200 = 25 ·33 ·52 ·7 ·11

≤ 3491 8648640 = 26 ·33 ·52 ·7 ·11 ·13

4.3. Running times of the algorithm

We have implemented Algorithm 2 and Rabin-Miller test

using the same standard modular arithmetic. Table 2

presents comparison of running time between Jacobi sums

test and 320 iterations of Rabin-Miller test. Presented times

suggest that the Jacobi sum test can not be used for fast

generation of prime numbers. But it can be used for single

operations such as generation of

– cryptosystem parameters,

– certificate authority key.

The benefit is the certainty that the base of our cryptosystem

satisfies theoretical requirements.

Table 2

Sample runnig times for Jacobi sums test

and 320 iterations of Rabin-Miller test on 430 MHz PC

log2 N Jacobi sums Rabin-Miller

64 0.06 s 0.06 s

128 0.16 s 0.15 s

256 2.09 s 0.75 s

512 37.6 s 5.02 s

1024 907 s 37.1 s

Comparsion of times from Table 2 is also presented in

Fig. 1. The logarithmic scale of time was taken to show

how close is the runnig time of Jacobi sums test to polyno-

mial time. We can see that the complexity is bounded by

C1 ln3 N for Rabin-Miller test and by C2 ln4.5 N for Jacobi

sums primality prooving method. Last remark shows that

74

Primality proving with Gauss and Jacobi sums

Fig. 1. Comparsion of runnig times for Jacobi sums test and

320 iterations of Rabin-Miller test (based on data from Table 2).

for practical applications Jacobi sums method is faster than

deterministic, polynomial algorithm proposed by Agrawal,

Kayal and Saxena [1].

5. Conclusions

This article presented a primality proving algorithm based

on Jacobi sums. Described algorithm is about 2400 times

slower than a single iteration of Rabin-Miller test for

512-bit numbers. This means that it can’t be used in appli-

cations where time is one of the most critical resourses and

where high speed is necessary. On the other hand there ex-

ist situations where security is much more important than

speed. Then Jacobi sums test can be successfully used to

verify primality of strong pseudoprime numbers.

References

[1] M. Agrawal, N. Kayal, and N. Saxena, “Technical report”, Depart-

ment of Computer Science and Engineering Indian Institute of Tech-

nology, Kanpur, 2002.

[2] O. Atkin and F. Morain, “Elliptic curves and primality proving”,

A.M.S., vol. 61, pp. 29–68, 1993.

[3] L. Adleman, C. Pomerance, and R. Rumely, “On distinguishing

prime numbers from composite numbers”, Ann. Math., vol. 117,

pp. 173–206, 1983.

[4] E. Bach and J, Schallit, Algorithmic Number Theory. Cambridge:

MIT Press, 1996.

[5] W. Bosma and M. van der Hulst, “Primality proving with cyclo-

tomy”, Ph.D. thesis, Amsterdam, University of Amsterdam, 1990.

[6] H. Cohen, A Course in Computational Algebraic Number Theory.

Berlin: Springer-Verlag, 1993.

[7] R. Crandall and C. Pomerance, Prime Numbers: A Computational

Perspetive. New York: Springer-Verlag, 2001.

[8] K. Ireland and M. Rosen, A classical Introduction to Modern Number

Theory. New York: Springer-Verlag, 1990.

[9] J. Rotman, Galois Theory. New York: Springer-Verlag, 1990.

Andrzej Chmielowiec is

a graduate of the Warsaw Uni-

versity, Faculty of Mathematics,

Informatics and Mechanics.

For the last two years he has

been working for Enigma

Information Security Systems

Sp. z o.o. as cryptographer. His

major job activity is to im-

plement and introduce new

cryptographic algorithms based

on modern algebra methods. At the top of the list of

author’s interests there are applications of computational

algebra. He participates in calling informal seminars

dedicated to that subject at the Mathematics Faculty

of UW.

e-mail: achmielowiec@enigma.com.pl

Enigma Information Security Systems Sp. z o.o.

Cietrzewia st 8

02-492 Warsaw, Poland

75

