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Abstract— In this paper the new packet switch architecture

with multiple output queuing (MOQ) is proposed. In this

architecture the nonblocking switch fabric, which has the ca-

pacity of N ×N2N ×N2N ×N2, and output buffers arranged into N separate

queues for each output, are applied. Each of N queues in

one output port stores packets directed to this output only

from one input. Both switch fabric and buffers can operate

at the same speed as input and output ports. This solution

does not need any speedup in the switch fabric as well as

arbitration logic for taking decisions which packets from in-

puts will be transferred to outputs. Two possible switch fab-

ric structures are considered: the centralized structure with

the switch fabric located on one or several separate boards,

and distributed structure with the switch fabric distributed

over line cards. Buffer arrangements as separate queues with

independent write pointers or as a memory bank with one

pointer are also discussed. The mean cell delay and cell loss

probability as performance measures for the proposed switch

architecture are evaluated and compared with performance of

OQ architecture and VOQ architecture. The hardware com-

plexity of OQ, VOQ and presented MOQ are also compared.

We conclude that hardware complexity of proposed switch is

very similar to VOQ switch but its performance is comparable

to OQ switch.

Keywords— high-speed packet switching, output queueing,

buffer, switch fabric, switching node, multicast.

1. Introduction

The transmission capacity of optical fibers has caused

a tremendous increase in data transmission speed. The de-

velopment of broadband access technologies resulted in the

need for next generation routers with high-speed interfaces

and large switching capacity. One of constrains that limits

the switching capacity is the speed of memories used for

buffering packets to resolve contention resolution in packet

switches. Buffers can be placed on inputs, outputs, inputs

and outputs, and/or within the switch fabric. Depending

on the buffer placement respective switches are called in-

put queued (IQ), output queued (OQ), combined input and

output queued (CIOQ) and combined input and crosspoint

queued (CICQ) [1].

In the OQ strategy all incoming cells (i.e., fixed-length

packets) are allowed to arrive at the output port and are

stored in queues located at each outlet of switching ele-

ments. The cells destined for the same output port simulta-

neously do not face a contention problem because they are

queued in the buffer at the outlet. To avoid the cell loss the

system must be able to write N cells in the queue during

one cell time, N is the total number of inlets of the switch.

No arbiter is required because all the cells can be switched

to respective output queue. The cells in the output queue

are served using FIFO discipline to maintain the integrity

of the cell sequence. In OQ switches the best performance

(100% throughput, low mean time delay) is achieved, but

every output port must be able to accept a cell from ev-

ery input port simultaneously or at least within a single

time slot (a time slot is the duration of a cell). If more

cells will request access to a particular output port than

the switch fabric output buffer can support, the excess cells

must be discarded. An output buffered switch can be more

complex than an input buffered switch because the switch

fabric and output buffers must effectively operate at a much

higher speed than that of each port to reduce the probability

of cell loss. The bandwidth required inside the switching

fabric is proportional to both the number of ports N and

the line rate. This speed is necessary when all inputs si-

multaneously transfer a cell to the same output port. Such

case is called “hot spot” and often occurs when a pop-

ular server is connected to a single switch port. The in-

ternal speedup factor is inherent to pure output buffer-

ing, and is the main reason of difficulties in implement-

ing switches with output buffering. It is no longer possi-

ble to find RAMs with sufficiently fast access time taking

into account an increasing line rate. Since the output buffer

needs to store N cells in each time slot, its speed limits the

switch size.

The IQ packet switches have the internal operation speed

equal to (or slightly higher) than the input/output line speed,

but the throughput is limited to 58.6% under uniform traf-

fic and Bernoulli packet arrivals because of head-of-line

(HOL) blocking phenomena [2]. This problem can be

solved by selecting queued cells other than the HOL cell for

transmission, but it is difficult to implement such queueing

discipline in hardware. Another solution is to use speedup,

i.e., the switch’s internal links speed is greater than in-

puts/outputs speed. However, this also requires a buffer

memory speed faster than a link speed. To increase the

throughput of IQ switches space parallelism is also used

in the switch fabric, i.e., more than one input port of the

switch can transmit simultaneously [3].

One of the proposed solution for IQ switches, which is

recently widely considered in papers, is a virtual output

queuing (VOQ) [4, 5]. In this solution an input buffer in

each input port is divided into N parallel queues, each stor-

ing packets directed to different output port. When a new

cell arrives at the input port, it is stored in the destined

queue and waits for transmission through a switch fabric.

In this architecture, the memory speed remains compati-
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ble with the line rate, but a good matching algorithm be-

tween inputs and outputs is needed so that it can achieve

high throughput and low latency. The performance of the

switch can be improved when the internal switch fabric

operates a few times faster than the line rate, but faster

memories are also needed in this case. Different schedul-

ing algorithms for VOQ switches were considered in the

literature [5–9], most of them achieve 100% throughput

under uniform traffic, but the throughput is usually reduced

under non-uniform traffic. The arbitration scheme should

be realized slot by slot, therefore the arbiter’s speed also

limits the capacity of the switch.

In this paper we propose a new switch architecture which

uses multiple output queuing (MOQ). In this architecture

buffers are located at output ports and are divided into

N separate queues. Each of N queues in one output port

stores packets from one input port. We assume, that fixed-

length switching technology is used, i.e., variable-length

packets are segmented into fixed-length packets, called time

slots or cells, at inputs and reassembled at the outputs.

We will use terms cell and packet interchangeably further

on. In the proposed architecture at most one packet is

to be written to the one output queue in one time slot.

Therefore, the memory speed is equal to the line speed,

but the performance of the switch is very similar to those

of OQ switch.

The rest of the paper is organized as follows. In Section 2

the general switch architecture is proposed. The possible

switch fabric structures are described. Centralized and dis-

tributed switch fabrics structures and possible buffer ar-

rangements are considered. In the next section performance

evaluation of the proposed switch architecture using simu-

lation is done. Then some comparison between implemen-

tation complexity of the proposed switch architecture and

a VOQ switch are given, followed by conclusions.

2. The switch architecture

2.1. General architecture

In this paper we propose the new switch architecture which

uses output queueing. To reduce the memory speed an

output buffer at each output port is divided into N separate

queues. Each queue stores packets directed to the output

only form one input. In this way this architecture is similar

to the VOQ switch, but multiple buffers are located at out-

put ports not at input ports. We will call this architecture

the multiple output queueing switch. The general architec-

ture of the switch is shown in Fig. 1. The switch consists of

N input ports, N output ports and the switch fabric. Input

and output ports can be implemented on separated ingress

and egress cards, as it is shown in Fig. 1, or they may be

placed on one line card, as it will be shown latter. Each

ingress card is connected to the switch fabric by one line,

while N outputs from the switch fabric are connected to

one egress card. At the output port buffer memory is di-

vided into N separate queues. Each queue stores packets

directed from one input port. The output queue denoted

by OQ j,i at the output port j stores packets directed to this

output port from input i. At the given time slot each input

port can send at most one packet and each output port can

receive up to N packets, each from different input ports.

Therefore, these packets can be simultaneously written to

N queues.

Fig. 1. The switch architecture with multiple output queueing.

The main advantage of these architecture is that it can op-

erate at the same speed as input and output ports, and

the lack of arbitration logic, which decides which packets

from inputs will be transferred through the switch fabric

to output ports (this arbitration mechanism is needed in

VOQ switches). However, since we have N queues in each

output port, it is necessary to use an output arbiter, which

chooses a packet to be sent to the output line. We propose

to use round-robin scheme, which is widely used because

of its fairness. The buffer management algorithms will be

discussed in more details later on.

2.2. The switching fabric architecture

We will now consider some possible switch fabric im-

plementations. The switch fabric in the proposed switch

should have a capacity of N ×N2 and should be nonblock-

ing at the packet level. It should be noted that there is no

need to support full connectivity in the switch fabric. Any

input should only have a possibility to send packets to N
different switch fabric’s outputs, each of these N outputs

should be connected to the different output port. In general,

input i, 0 ≤ i ≤ N−1 should be able to transfer a packet to

the switch fabric output j N + i, 0 ≤ j ≤ N − 1, when this

packet is directed to output port j. The packet will be then

stored in OQ j,i.

The switch fabric can be organized either in the central-

ized mode or the distributed mode. In the first case the

switch fabric constitutes one module produced on one board

(or several boards). This architecture is shown in Fig. 2.

We assume here that one input port and one output port
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Fig. 2. The switch architecture with the centralized switch fabric.

are arrange on one line card. Buffers are placed at out-

put ports. The switch fabric may be realized for instance

using the tree architecture, or may be based on the cross-

bar architecture as it is shown in Figs. 3 and 4, respec-

tively. The stacked-banyan switch fabric proposed in [10]

can also be used. In all these solutions N2 + N lines is

needed for connecting input and output ports to the switch

fabric. Each line card is connected by means of N +1 lines

to the switch fabric. For switches of greater capacity num-

ber of connectors will limit the switch size. The capacity of

the switch may be increased by using fiber connections with

wavelength multiplexing. The other solution is to combine

output buffers within the switch fabric. In this case line

cards will be connected with the switch fabric by two lines,

but the switch fabric will require more boards with buffer

memories.

Fig. 3. The switch fabric using the tree architecture.

In the distributed mode the switch fabric is distributed over

line cards (or ingress/egress cards). In this case each line

card comprises also a segment (or a part) of the switch

fabric. The capacity of such segment is 1×N, and for

each line card there is N outgoing lines to connect outputs

of the 1×N switch fabric to buffers located on the same and

other line cards, and N incoming lines to N output queues

(see Fig. 5). The switch fabric based on the tree architecture

can be decentralized by putting each 1×N segment on one

line card (compare Fig. 3). The crossbar architecture can

be also decentralized in such a way that each row of the

crossbar switch fabric (which corresponds to one input –

see Fig. 4) is placed on one line card.

Fig. 4. The switch fabric based on the crossbar architecture.

The drawback of the decentralized architecture described

above is the number of outputs from line cards. We need

2N lines (N incoming and N outgoing) for each line card.

This number may be reduced by putting the switch fabric

on the output side of the line card, as it is shown in Fig. 6.

Connection lines between cards work as busses and arriving

packets are broadcast from inputs to all outputs. Address

filters AF at each line card determine whether respective

packets are destined to the output. Cells directed to the

given output are passed through the address filters to the

output queues. The advantage of this architecture is the

reduced number of connecting lines between line cards,

which is now equal to N. The number of address filters

is N2, and they should operate with the line speed. The

speed of connecting lines between line cards is also equal

to the line speed.
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Fig. 5. The switch architecture with the decentralized switch fabric – version 1.

Fig. 6. The switch architecture with the decentralized switch

fabric – version 2.

2.3. Buffer arrangements

Buffers in output ports are arranged into N separate queues.

When N packets from N input ports are directed to one

output port in the same time slot, each packet is written to

the different queues. Therefore, the memory speed is the

same as the line speed. Buffers may be arranged as sepa-

rate queues with independent write pointers or as a mem-

ory bank with one pointer which points the same memory

cells in each queue. Packets from N queues in each out-

put port are read out using the round-robin (RR) algorithm.

When independent write pointers are used, the round-robin

pointer, denoted by RR, is moved to the queue next to those

read out in the previous time slot. When packets are writ-

ten to the same position of the buffers (one write pointer

is used), the operation of RR is modified in such a way,

that when all packets from the same position (i.e., which

were simultaneously written to the buffers) are already read

out, the RR is set back to 0. The operation of these two

arrangements will be described by means of the following

example.

In the first case the separate pointer is assign to each

queue. This pointer, denoted by MPj,i, points the end of

queue OQ j,i, where the next incoming packet to output j
from input i will be written to. The example for output

x is shown in Fig. 7. It is assumed that all queues are

empty at the beginning of the first time slot. Pointers are

shown by arrows which shows the state of the pointers at

the end of respective time slots. In the first time slot two

packets (numbered 1 and 2) from inputs 0 and 1 arrive

to the considered output x. The round-robin pointer is set

to 0 (the HOL packet from OQx,0 has the highest prior-

ity). Since buffer OQx,0 is empty, the packet from input 0

is immediately directed to the output, the RR pointer is

set to 1, and packet 2 is stored in OQx,1. The state of RR

at the end of the time slot is shown in Fig. 7. The pointer

of OQx,1 is moved to the next memory cell. In the next time

slot packets from inputs 0, 1 and 3 arrive (numbered 3, 4,

and 5, respectively). They are stored in respective queues,

while packet 2 from OQx,1 is sent out. During the third

time slot packets 6, 7 and 8 arrive from inputs 1, 2, and 3,

respectively. Since RR is now set to 2 and buffer OQx,2
is empty, packet 7 is sent directly to the output, while

packets 6 and 8 are stored in OQx,1 and OQx,3. In the

next time slot packet 5 will be sent out from OQx,3. In

this example packet 7 is sent before packet 5, but these

packets arrive to the considered output from different in-

puts. The sequence of packets from the same input port

is preserve.

In the second case there is one pointer for all queues. This

pointer, denoted by MPj, points to the memory cells in all

queues of output j, where the next incoming packets will

be written to. The example is shown in Fig. 8. In the first

time slot two packets (numbered 1 and 2) from inputs 0

and 1 arrive to the considered output x. The round-robin

pointer is set to 0 (the HOL packet from OQx,0 has the

highest priority). Since buffer OQx,0 is empty, the packet

from input 0 is immediately directed to the output, packet 2

is stored in OQx,1, the MPx is moved to the next mem-

ory cells in all queues (shown by arrows in Fig. 8), and

the RR pointer is set to 1 (here also the state of RR is
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Fig. 7. The example of buffer operation with separate pointers.

Fig. 8. The example of buffer operation with one pointer.

shown at the end of the time slot). In the next time slot

packets from inputs 0, 1 and 3 arrive (numbered 3, 4,

and 5, respectively). They are stored in the second mem-

ory cell of respective queues, while packet 2 from OQx,1
is sent out. After this packet is read out, there is no any

packet in the first memory cell in all queues. Therefore,

the next cells in the queues are moved to the HOL po-

sition, and the RR is set to 0. During the third time

slot packets 6, 7 and 8 arrive from inputs 1, 2, and 3,

respectively. Since RR is now set to 0, packet 3 from

OQx,0 is sent to the output, while new packets are writ-

ten to the buffer. In the next three time slots packets 4, 5,

and 6 will be sent out from OQx,1, OQx,3, and OQx,1,

respectively.

In this second approach all packets which arrive to the given

output are written in the same position of each buffer. So

we can use only such positions where all memory cells are

empty. When in the given time slot less than N packets

arrive to the output, some memory cells will be empty and

they could not be used to store packets until all packet in

the same position of all buffers are read out. Therefore, the

memory is not used as efficiently as in the first approach. In

the next section only the performance of this first approach

will be evaluated.

3. Performance evaluation

In order to evaluate performance measures for the proposed

MOQ switch architecture, the corresponding simulation re-

searches have been conducted. The researches have been

carried out for the switch with a size of N ×N (N = 8)

for the following values of traffic load for an input port:

p = 0.6; 0.7; 0.8; 0.9. We have assumed that offered traffic

is uniformly distributed for N outputs (uniform traffic). We

have further assumed that the service time of each cell is

deterministic and equal to one.

The results of the simulations are shown in the charts

(Figs. 9 and 10) in the form of marks with 95% confi-

dence intervals that have been calculated after the t–student

distribution for the five series with 10,000,000 time slots.

For each of the points of simulation the value of the con-

fidence interval is at least one order lower than the mean

value of the results of the simulation. In many cases the

value of the confidence interval is lower than the height

of the sign used to indicate the value of the simulation

experiment.

We have evaluated two performance measures for switch

architectures, i.e., mean waiting time (mean cell delay)

and cell loss probability (CLP). The obtained performance
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measures of MOQ architecture have been compared with

performance of OQ architecture [6] and VOQ architecture

(algorithm iSLIP with one and four iterations) [7].

Fig. 9. Mean waiting time (in time slots), N = 8.

Fig. 10. Cell loss probability, N = 8.

Figure 9 plots the mean waiting time (in time slots) of

the MOQ switch as a function of input load p. The pre-

sented results have been obtained for the switch in which

the size of each of N = 8 output buffers (of the tagged out-

put port) was limited to b = 10. The adopted buffer size

assures – for each value of traffic load – stable values of

mean waiting times (the application of larger buffers do not

lead to increase in values of waiting time). The simulation

results enabled us to compare the MWT values in the pro-

posed MOQ switch architecture with the results obtained

for OQ architecture. For OQ switch we have assumed that

the buffer size is large enough to get stable values of MWT

parameter. We can notice that both architectures are com-

parable. This phenomenon results from similar character-

istics of both FIFO discipline for single queue and round

robin discipline for cyclic-service set of queues. Addition-

ally, Fig. 9 shows the performance of iSLIP algorithm in

virtual output queuing architecture. It is evident from the

presented results that – regardless of the number of itera-

tions in iSLIP algorithm – the VOQ switch architecture is

charcterised by higher values of MWT than the proposed

MOQ switch architecture.

Another important performance measure for packet

switches is the cell loss probability. Figure 10 compares the

results of CLP obtained for MOQ switch with the results

calculated for the switch with output queuing. It is intu-

itively clear, that the proposed switch architecture requires

greater total number of memory cells (N buffers for each

output port) in order to keep the same value of CLP pa-

rameter as in the case of switches with single output queue

for each output port.

4. Comparison

In the previous section MWT and CLP in MOQ, OQ and

VOQ switches were compared. Now we compare a hard-

ware complexity of these architectures. This comparison is

summarized in Table 1. The MOQ switch uses the same

number of buffers as VOQ switch and of the same speed

as the line rate. The OQ switch comprise only N buffers,

but they have to be N times faster than the line speed.

Table 1

The hardware complexity of different buffering strategies

Parameters OQ VOQ MOQ

Number of buffers N N2 N2

Memory speed (in line speed) N 1 1

Switch fabric capacity N ×N N ×N N ×N2

Switch fabric speed N 1 1

Switch fabric hardware N2 N2 N2

Number of schedulers – 2N N
Wiring complexity N N2 N2

The switch fabric speed in MOQ is also the same as line

speed, and the same is true for VOQ switch, provided that

no speed-up is used to increase the performance of the

VOQ switch. In OQ switch the switch fabric is N times

faster. However, in MOQ architecture the switch fabric has

the capacity of N ×N2 instead of N ×N. But this greater

capacity does not result in greater hardware complexity,

since MOQ switch require the same number of switching

elements (when crossbar architecture is considered) as OQ

or VOQ switches.
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The important issue is the packet scheduling mechanism

and wiring complexity. The OQ switches do not need

packet schedulers and the wiring complexity is O(N). On

the other hand, VOQ switches need 2N schedulers when

iterative maximal matching algorithm is used (one sched-

uler in each input port and one in each output port). These

schedulers are to be connected between themselves so the

wiring complexity is O(N2). The similar complexity is

needed when one centralized scheduler is used, since each

VOQ has to be connected with the scheduler to send request

signal when it has a HOL packet. The MOQ architecture

has the same wiring complexity but lines are used to con-

nect MOQs with the switch fabric, instead of connecting

VOQs and schedulers. The MOQ switches need also N
schedulers, one for each output, but there is no need to

connect schedulers between themselves. The MOQs of the

given output are to be connected to the scheduler of this

output and this is done inside the output port (a line card

or an egress card).

Comparing the hardware complexity and the performance

of the switches we can say, that the MOQ architecture is

attractive and worth considering in constructing high-speed

and high-capacity switches. The hardware complexity is

very similar to VOQ switches but the performance of the

MOQ architecture is much better, at least when uniform

traffic is considered. Simulation results shows, that the

performance of the MOQ switch is very similar to the OQ

switch.

5. Conclusions

We have proposed the new packet switch architecture which

uses multiple output queueing. This architecture looks at-

tractive for constructing high-speed packet switches. The

hardware complexity of this architecture is very simi-

lar to VOQ switch but its performance is comparable to

OQ switch. This paper contains the first considerations

and the first results we obtained for this architecture. The

architecture is also very promising since it can naturally

support multicast traffic. Further research are needed to

evaluate the performance of the MOQ switch under other

traffic types (non-uniform, hot-spot), the buffer length eval-

uation, as well as the practical buffer implementation in

either separate chip or in the switch fabric.
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