
Paper Integrated analysis

of communication protocols

by means of PLA formalism
Henrikas Pranevicius

Abstract—Aggregate approach and its possibilities for speci-

fication and analysis of computer network protocols are pre-

sented. The theoretical basis of the aggregate approach is

a piece-linear aggregate (PLA) for formal specification of sys-

tems. The advantage of that approach is that it permits to

create models both for analysis correctness of specifications

and simulation. Some methods that can be used for valida-

tion and verification of aggregate specifications are presented

also.

Keywords— piece-linear aggregates, ESTELLE/Ag specification

language, validation, simulation, communication protocols.

1. Introduction

The stage of formal specification is one of the most impor-

tant during the design of software of communication proto-

cols. Such formal specification is usually used for analysis

and implementation purposes. In the stage of analysis it is

necessary to resolve two tasks: analysis of logical correct-

ness and evaluation of the system functioning parameters.

Different mathematical schemes are used for creating for-

mal descriptions of systems, such as: different automate

models, Petri-nets, data flow and state transition diagrams,

temporal logic technique, abstract communicating methods

and other [1, 2].

When a formalization method is chosen, it is desirable

that both above mentioned analysis tasks could be resolved

on the bases of a single formal description. The aggre-

gate approach has such property and it has been success-

fully used both for correctness analysis and for simulation

of computer network protocols [3–5]. Specification lan-

guage ESTELLE/Ag and the specifications analysis tool

PRANAS-2 have been created on the base of the aggre-

gate method (Ag). There are some differences between

ESTELLE/Ag and the ESTELLE standard ISO: the piece-

linear aggregate model is used in ESTELLE/Ag. The use

of such a model instead of a finite-state automate, which is

the formal background of the standard ESTELLE, enables

to create models both for validation and simulation. This is

possible due to the special structure of the piece-linear ag-

gregate. Apart from the discrete components describing the

state of the modules, there are also continuous components

to control event-sequences in the module. These continuous

components are called operations. By means of operators,

sequences of actions are described, the intermediate results

of which are invisible on the outside. If such operation

sequence is being performed at a given instance of time

the corresponding operation is called “active”. Thus, an

individual module involves two types of events: arrival of

an input signal and completion of an active operation. The

specification analysis system PRANAS-2 consists of the fol-

lowing software tools: a specification editor, a validation

subsystem and a simulation subsystem. The editor provides

the capability to create a specification in ESTELLE/Ag.

The validation subsystem permits to construct a validation

model for the program generating the reachability graph.

After completing the construction of the reachability graph,

it is possible to verify the following specification charac-

teristics: completeness, deadlock freeness, boundedness,

absence of static deadlock, absence of dynamic deadlock,

termination.

The same specification changes are carried out when the

simulation model is creating. This is necessary in order to

define the duration of operations and to introduce additional

variables for gathering statistics about the evaluated system

parameters.

Section 2 describes the general principles of piece-linear

aggregates (PLA) formalism. Methods used for correct-

ness analysis of PLA specification are presented in Sec-

tion 3. Section 4 illustrates the use PLA formalism for

formal specification and integrated analysis of event driven

local computer network protocol.

2. General principles of the aggregate

approach

In the application of the aggregate approach for system

specification, the system is represented as a set of interact-

ing piece-linear aggregates. The PLA is taken as an object

defined by a set of states Z, input signals X , and output

signals Y . The aggregate functioning is considered in a set

of time moments t ∈ T . The state z ∈ Z, the input signals

x ∈ X , and the output signals y ∈ Y are considered to be

time functions. Apart from these sets, transition H and

output G operators must be known as well.

The state z ∈ Z of the piece-linear aggregate is the same

as the state of a piece-linear Markov process, i.e., z(t) =
(

υ(t), zυ(t)
)

, where υ(t) is a discrete state component tak-

ing values on a countable set of values; and zυ(t) is a con-

tinues component comprising of zυ1(t), zυ2(t), . . . , zυk(t)
co-ordinates.

84

Integrated analysis of communication protocols by means of PLA formalism

When there are no inputs, the state of the aggregate changes

in the following manner:

υ(t) = const,
dzυ(t)

dt
= −αυ ,

where αυ = (αυ1, αυ2, . . . , αυk) is a constant vector.

The state of the aggregate can change in two cases only:

when an input signal arrives at the aggregate or when a con-

tinuous component acquires a definite value. The theoret-

ical basis of piece-linear aggregates is their representation

as piece-linear Markov processes.

Aggregate functioning is examined on a set of time mo-

ments T = {t0, t1, . . . , tm, . . .} at which one or several events

take place, resulting in the aggregate state alternation. The

set of events E which may take place in the aggregate

is divided into two non-intersecting subsets E ′ = E ′ ∪E ′′.

The subset E ′ = {e′1, e′2, . . . , e′N} comprises classes

of events (or simply events) e′i, i = 1,N resulting from the

arrival of input signals from the set X = {x1,x2, . . . ,xN}.

The class of events e′′i = {e′′i j, j = 1,2,3, . . .}, where e′′i j is

an event from the class of events e′′i taking place the jjjth
time since the moment t0. The events from the subset E ′

are called external events. A set of aggregate input signals

is unambiguously reflected in the subset E ′, i.e., X → E ′.

The events from the subset E ′′ = {e′′1 ,e
′′
2 , . . . ,e

′′
f } are called

internal events, where e′′i = {e′′i j, j = 1,2,3, . . .}, i = 1, f are

the classes of the aggregate internal events. Here, f deter-

mines the number of operations taking place in the ag-

gregate. The events in the set E ′′ indicate the end of the

operations taking place in the aggregate.

The events of the subsets E ′ and E ′′ are called the evolu-

tionary events of the aggregate. The main evolution events

are sufficient for unambiguous determination of the aggre-

gate evolution. Apart from the basic evolutionary events,

auxiliary evolutionary events may be considered, which are

simultaneous to the basic ones and determine the start of

the operations.

For every class of events e′′i from the subset E ′′, control

sequences are specified
{

ξ (i)
j

}

, where ξ (i)
j – the duration

of the operation, which is followed by the event e′′i j as well

as event counters
{

r(e′′i , tm)
}

, where r(e′′i , tm), i = 1, f is

the number of events from the class e′′i taken place in the

time interval [t0, tm].

In order to determine start and end moments of operation,

taking place in the aggregate the so-called control sums
{

s(e′′i , tm)
}

,
{

w(e′′i , tm)
}

, i = 1, f are introduced, where

s(e′′i , tm) – the time moment of the start of operation fol-

lowed by an event from the class e′′i . This time moment is

indeterminate if the operation was not started; w(e′′i , tm) is

the time moment of the end of the operation followed by the

event from the class e′′i . In case of no priority operations,

the control sum w(e′′i , tm) is determined in the following

way: w(e′′i , tm) = s′(e′′i , tm)+ξr(e′′i ,tm)+1, if at moment tm an

operation is taking place, which is followed by the event ei;

in the opposite case w(e′′i , tm) = ∞. The infinity symbol (∞)
is used to denote the undefined values of the variables.

Control sums determine only the possibility conditions for

the events after the moment tm, while the event occurrence

moments are not determined.

Let us specify the meaning of the co-ordinates of the ag-

gregate state. The discrete component of the state, υ(tm) =
{

υ1(tm),υ2(tm), . . . ,υp(tm)
}

, presents the system state:

zυ(tm) =
{

w(e′′i , tm),w(e′′2 , tm), . . . ,w(e′′f , tm)
}

are control co-ordinates specifying the moment of evolu-

tionary events occurrence.

The control co-ordinate w(e′′i , tm) corresponds to every

each e′′i from the subset of events E ′′, while always

w(e′′i , tm) ≥ tm.

The state co-ordinates z(tm) can change their values only at

discrete time moments tmtmtm, m = 1,2, . . . of event occurrence,

remaining fixed in each interval [tm, tm+1),m = 0,1,2, . . .

where t0 – the initial moment of system functioning.

When the state of the system z(tm), m = 0,1,2, . . ., is

known, the moment tm+1 of the following event is deter-

mined by a moment of input signal arrival to the aggregate

or by the equation:

tm+1 = min
{

w(e′′i , tm)
}

, 1 ≤ i ≤ f .

Class of the next event em+1 is specified by an input signal

if it arrives at the time moment tm+1 or is determined by

the control co-ordinate, which acquire minimal value at the

moment tm, i.e., if w(e′′i , tm) acquires minimal value, then

em+1 = e′′i .

The operator H states the new aggregate state:

z(tm+1) = H
[

z(tm),ei
]

, ei ∈ E ′∪E ′′
.

The output signals yi from the set of output signals

Y = {y1, y2, . . . , ym} can be generated by an aggregate

only at occurrence moments of events from the subsets E ′

and E ′′. The operator G determines the content of the out-

put signals:

y = G
[

z(tm),ei
]

, ei ∈ E ′∪E ′′
, y ∈ Y.

Further transition and output operators will be denoted

H(ei) and G(ei).

3. Correctness analysis of aggregate

specifications

3.1. Reachable states approach for aggregate model

validation

An essence of the reachable states method is a use of the

global state which is considered as a joint state of a sys-

tem after aggregate system composition. A graph of the

reachable states is created as oriented one: its nodes stand

for global states of the system, its arcs indicate the possible

transitions from one state to another. Initial and final states

must be specified in working out the graph. The resulting

85

Henrikas Pranevicius

states graph is used for an analysis of defined properties of

a system, as some of them are closely related with the graph

structure. The given validation method allows to investi-

gate general properties of a system such as boundedness,

absence of redundancy in specification, completeness, ab-

sence of static deadlocks, absence of dynamic deadlocks,

termination.

3.2. Invariant approach for aggregate model validation

A system invariant (I) is the assertion, which describes

correct system functioning and it must remain true in spite

of the events taking place and system transition from one

state to another.

The essence of the method is as follows: assertions are

formulated in relation to the co-ordinates of the aggregate

model so as to express the requirements for the system

functioning.

On the base of a conceptual model of an analysed system

we can describe system functioning by the event sequence,

which may be represented by the graph G(V), where V is

a set of vertices and A = {ai j} is an adjacency matrix.

In this case V = {e1,e2, . . . ,en}, where ei is ith event, n is

a number of events. (eie j) 6= (e jei), i.e., the graph is ori-

ented.

The set of states, which the system may enter after the

event e1, is called as the ith set of possible states (SSi –

symbolic state). SSi =
{

z∈ Z|(∃z′)
(

(z′ ∈ Z)∧EPi(z′)∧(z =

Hi(z′,P))
)

}

, where Z is a set of all possible system states,

EPi(z′) is an enabling predicate of the event eieiei in the state

z′, P is a set of probabilistic parameters of the system and

Hi is a transition operator determining the new system state

when the event ei occurs.

The system considered being in the symbolic state SSi only

if it is in the state z and z ∈ SSi. Relying this SSi definition,

every event ei is related to the symbolic state SSi, therefore

replacing the set of vertices V in the graph G(V) by V ′ =
{SS1,SS2, . . . ,SSn} while the adjacency matrix A remains

unchanged. We obtain the graph of symbolic states G(V ′)
which describes the system operation by determining the

possible set of states and transitions from one symbolic

state to another.

The presented formalization and analysis method will be

illustrated by example of specification and integrated anal-

ysis of timed protocol with slot reuse.

4. Specification, validation and

simulation of event-driven local

computer network protocol

4.1. Conceptual model of on event-driven local computer

network protocol

There are many computer communication applications re-

quiring high bandwidth and high reliability in operation,

which still allow simple and low cost implementation. This

type of network exists in robotics, vehicles, homes, etc.

These applications set restrictions on the system in terms

of usable hardware, cost, and cabling. Such networks are

in many cases meant for one special application and not

for a general purpose use. The number of stations is gen-

erally small compared with typical LAN applications, and

the variation in the number of stations is small during the

life cycle of the network.

Typical requirements for the media access protocols in these

applications are: high reliability of the environment, where

the electrical disturbance level is a high scalable bandwidth:

self-stabilizing properties; and simplicity combined with

low cost of implementation. Solutions based on the existing

media access standards do not meet these requirements in

many cases.

The protocol described by Sintonen is design to offer high

bandwidth while keeping the structure simple. The config-

uration is a physical bus, where stations form a logical ring.

The algorithm is based on the noticeable events on the bus

(hence the name event-driven bus protocol). The proto-

col is distributed, except in the initialization phase. Every

station listens to the bus and receives both the destination

address and the source address, and stores them in the reg-

isters DA and SA respectively. A station is also capable of

sending the bus and detecting the event frame ended. The

algorithm for sending and receiving is as follows.

Receiving:

When a station notices it’s own address in the DA field,

it receives the frame.

Sending:

When a station has a frame to send, it waits until it receives

the address of it’s predecessor in the SA of the frame. Then

it waits for the event frame ended. After that event, it waits

a time period D′,D′ ≤ 2d, where d is the end to end delay

of, the bus. Then it sends its frame, and waits for a time

delay D′,D′ > 2d to hear the next station begin sending.

When this happens, the sending phase is ended. If a station

has nothing to send its turn comes, it sends an empty no

data frame, a kind of a token, to pass the turn to next station

in sequence.

There is one station which initializes the ring, known as

the fixed control station. The control station can also detect

a failed station and is capable of executing a reconfiguration

algorithm to restore the normal operation of the ring.

5. Aggregate specification

of on event-driven local computer

network protocol

An aggregate schemes of a specification of an analyzed

event oriented protocol is depicted in Fig. 1. The aggregates

Station 0,Station 1, . . . ,Station (n− 1) depict the stations

86

Integrated analysis of communication protocols by means of PLA formalism

which are switched on to the network, and the aggre-

gate Bus describes the performance channel. Station 0 is

the controlling one. The signals that are transmitted be-

tween the aggregates have also been shown in Fig. 1.

Fig. 1. Aggregate scheme of a model.

Aggregate Station nr, nr = 1,n−1

1. Set of input signal

Xnr = { f r end(m), bus is oc, no data(m), f ail};

where: f r end(m) – end of the transmitting;

bus is oc – bus is occupied; no data (m) – no data

for transmission; st on – switching on of the station;

n – number o station; m – the number of station

where packet is sending.

2. Set of output signals Ynr = {y},

y ∈ {beg f r, end trans, no data, f ail};

where: beg f r – beginning of the frame transmitting;

end trans – end of the frame transmitting; no data –

no data for transmitting; f ail – station is switched

off.

3. Set of internal events

E ′′
nr =

{

e′′1(taim DI), e′′2(taim D), e′′3(trans f r),

e′′4(arr f r), e′′5(swit o f)
}

;

where: e′′1(taim DI) – end of timer DI; e′′2(taim D) –

end of timer D; e′′3(trans f r) – end of the frame

transmitting; e′′4(arr f r) – moment of a frame arrival;

e′′5(swit o f) – moment of the station switching.

4. Controlling sequences:

e′′i (. . .) →{ξi j}, i = 1, 5, j = 1, ∞;

where ξi j – duration of an operation, followed by the

event e′′i (. . .).

5. Discreet component of state

υ(tm) =
{

st(tm), actD(tm), sw(tm)
}

;

where: st(tm)∈ {0, 1}; 0 – no frame for transmitting,

1 – there is a frame for transmitting;

actD(tm) =

{

0, timer D is switched off;
1, timer D is switched on;

sw(tm) =

{

0, station is switched off;
1, station is switched on;

6. Initial state: st(t0) = 0; act D(t0) = 0; sw(t0) = 0;
w

(

e′′1(taim DI), t0
)

= ∞;
w

(

e′′2(taim D), t0
)

= ∞;
w

(

e′′3(trans f r), t0
)

= ∞;
w

(

e′′4(arr f r), t0
)

= t0 +ξ4 j;
w

(

e′′5(swit o f), t0
)

= t0 +ξ5 j.

7. Transfer operators:

H
(

e′(f r end)
)

: (The end of packet sending)

w
(

e′′1(taim DI), tm+1
)

= tm +ξ1 j
if sw(tm) = 1∧m = nr.

H
(

e′(bus is oc)
)

: (Bus is busy)

w
(

e′′2(taim D), tm+1
)

= ∞,

w
(

e′′4(arr f r), tm+1
)

= tm +ξ4 j,

act D(tm+1) = 0







,

if sw(tm) = 1∧act D(tm) = 1.

H
(

e′(no data)
)

: (There are no data for sending)

w
(

e′′1(taim DI), tm+1
)

= tm +ξ1 j
if sw(tm) = 1∧m = nr;

w
(

e′′2(taim D), tm+1
)

= ∞,

w
(

e′′4(arr f r), tm+1
)

= tm +ξ4 j,

act D(tm+1) = 0







,

if sw(tm) = 1∧act D(tm) = 1.

H
(

e′′1(taim DI)
)

: (Timer DI has expired)

w
(

e′′3(trans f r), tm+1
)

= tm +ξ3 j,

y = beg f r

}

,

if st(tm+1) = 1;

87

Henrikas Pranevicius

w
(

e′′2(taim D), tm+1
)

= tm +ξ2 j,

act D(tm+1) = 1,

y = no data







,

if st(tm+1) 6= 1.

H
(

e′′2(taim D)
)

: (Timer D has expired)

y = f ail .

H
(

e′′3(trans f r)
)

: (The end of packet sending)

st(tm+1) = 0;
w

(

e′′2(taim D), tm+1
)

= tm +ξ2 j ;
act D(tm+1) = 1;
y = end trans .

H
(

e′′4(arr f r)
)

: (The packet has arrived)

st(tm+1) = 1 .

H
(

e′′5(swit o f)
)

: (The station is seething of)

sw(tm+1) = 0;
w

(

e′′1(taim DI), tm+1
)

= ∞ ;
w

(

e′′2(taim D), tm+1
)

= ∞ ;
w

(

e′′3(trans f r), tm+1
)

= ∞ ;
w

(

e′′4(arr f r), tm+1
)

= ∞ ;
act D(tm+1) = 0;
st(tm+1) = 1 .

Aggregate Station 0

The functioning of this aggregate is similar to that of the

aggregate Station nr. Therefore, only the differences are

presented in respect to the agregate Station nr.

1. Set of input signals:

X0 = Xnr \{st on}∪{ f ail(m)};
where: Xnr – set of input signal of aggregate Sta-

tion nr; m – is the number of the stations switched

on.

2. Set of output signals:

Y0 = Ynr \{ f ail}∪{new st(m)};
where: Ynr – set of output signal of aggregate Sta-

tion nr; m – the number of the switched on station.

3. Set of internal events:

E ′′
0 = E ′′

nr \
{

e′′5(swit o f f), e′′7(taim T)
}

∪
{

e′′8i(swit on), . . . ,e′′8,n−1(swit on)
}

;

where: e′′7(taim T) – end of timer T ; e′′8i(swit on) –

ith station switched on.

4. Controlling sequences for the events are introduced

e′′7(. . .) and e′′8i(. . .):
e′′7(taim T) 7→ {T};
e′′8i(swit on) 7→ {ξi j}, i = 1, n−1, j = 1, ∞;
where: ξ8i j – the operation duration after finishing of

which the ith station is switched on; T – the duration

of timer T .

5. Discrete component of state

υ(tm) =
{

st(tm), actD(tm)
}

.

6. Initial state:

act D(t0) = 1; st(tm) = 0;
w

(

e′′7(taim D), t0
)

= t0 +T ;
w

(

e′′8i(swit on), t0
)

= ∞, i = 1, n−1.

7. Transfer operators:

H
(

e′(f r end)
)

: (Bus is busy)

w
(

e′′(taim DI), tm+1
)

= tm +ξ1 j,

act DI(tm+1) = 1

}

,

if m = nr ;
w

(

e′′7(taim T), tm+1
)

= tm +T,

if m 6= nr .

H
(

e′(bus is oc)
)

: (Bus is occupied)

w
(

e′′7(taim T)
)

= tm +T
w

(

e′′2(taim D), tm+1
)

= ∞ ,

w
(

e′′4(arr f r), tm+1
)

= tm +ξ4 j
act D(tm+1) = 0







,

if act D(tm+1) = 1.

H
(

e′(no data)
)

: (There are no data for sending)

w
(

e′′1(taim DI), tm+1
)

= tm +ξ1 j,

w
(

e′′7(taim T), tm+1
)

= ∞,

w
(

e′′2(taim D), tm+1
)

= ∞,

act DI(tm+1) = 1,

act D(tm+10) = 0























,

if m = 0;
w

(

e′′2(taim D), tm+1
)

= ∞,

w
(

e′′4(arr f r), tm+1
)

= tm +ξ4 j,

act D(tm+1) = 0







,

if m = 0∧act D(tm) = 1;
w

(

e′′7(taim T), tm+1
)

= tm +T.

H
(

e′(f ail)
)

: (The station is)

w
(

e′′8m
(

swit on(m)
)

)

= tm +ξm j.

H
(

e′′1(taim DI)
)

: (End of timer DI)
act DI = 0;
w

(

e′′3(trans f r), tm
)

= tm +ξ3 j,

y = beg f r

}

,

if st(tm+1) = 1;
w

(

e′′2(taim D), tm
)

= tm +ξ2 j,

act D(tm+1) = 1,

y = no date







,

if st(tm+1) 6= 1 .

H
(

e′′2(taim D)
)

: (The end of timer D)

act D(tm+1) = 0;
w

(

e′′1(taim DI), tm+1
)

= tm +ξ1 j,

act DI(tm+1) = 1;
w

(

e′′4(arr f r), tm+1
)

= tm +ξ4 j;
y = f ail .

H
(

e′′3(trans f r)
)

: (The transmission of packet has

ended)

st(tm+1) = 0;
w

(

e′′(taim D), tm+1
)

= tm +ξ2 j,

act D(tm+1) = 1;
y = end trans .

H
(

e′′4(arr f r)
)

: (The packet has arrived)

st(tm+1) = 1.

88

Integrated analysis of communication protocols by means of PLA formalism

H
(

e′′7(taim T)
)

: (The timer T has expired)

w
(

e′′1(taim DI), tm+1
)

= tm +ξ1 j ;
act DI(tm+1) = 1 .

H
(

e′′8k

(

swit on(k)
)

)

: (The station is switching on)

y = new st(k +1).

Aggregate Bus

1. Set of input signals:

X =
{

[beg f r, end trans, no data, new st(m)]0,
[beg f r, end trans, no data, f ail]1, . . . ,
[beg f r, end trans, no data, f ail]n−1

}

.

2. Set of output signals:

Y =
{

[f r end(m), bus is oc, no data(m), f ail(m)]0,
[f r end(m), bus is oc,st on, no data(m)]1, . . . ,
[f r end(m), bus is oc,st on, no data(m)]n−1

}

.

3. Set of internal events E ′′ = ∅.

4. State υ(tm) =
{

qi(tm), i = 1, N, kan(tm)
}

;

where: qi(tm) ∈ {1, 2, . . . , N}; qi(t) – the number of

successor for the ith station;

kan(tm) =

{

0, channel is idle;
1, channel is occupied.

5. Initial state:

kan(t0) := 0; i := 1;
while i < n do begin qi(t0) := i+1; i := i+1; end.

6. Transfer operators:

H
[

e′1k

(

new st(p)
)

]

: k = 2, n; (New station)

i := p;
if i = n then i := 0;

while qi(tm) = 0 do begin i := i+1;
if i = n

then i := 0; end;
j := 1;
while q j(tm) 6= i+1 do j := j +1;
q j(tm+1) := p; qp(tm+1) := i+1;
yp := st on .

H
[

e′2k(beg f r)
]

: k = 1, n ; (The start of packet send-

ing)

kan(tm+1) := 1;
for i := 1 to n do

if i 6= k and qi(tm) > 0 then
yi := bus is oc .

H
[

e′3k(end trans)
]

: k = 1, n (The end of packet

transmission)
kan(tm+1) := 0;
for i := 1 to n do

if i 6= k and qi(tm) > 0 then
yi := f r end

[

qk(tm)
]

.

H
[

e′4k(no data)
]

: k = 1, n (There are no data for

sending)

for i := 1 to n do
if i 6= k and qi(tm) > 0 then

yi := no data
[

qk(tm)
]

.

H
[

e′5k(f ail)
]

: k = 2, n (The station is switching of)

y1 := f ail[k];
i := 1
while q j(tm) 6= k do i := i+1;
qi(tm+1) := qk(tm);
qk(tm+1) := 0 .

5.1. Results of validation and simulation

The correctness of the created specification was investigated

by means of protocol analysis system PRANAS-2. This

system permitted one to investigate general protocol prop-

erties such as: completeness; deadlock freeness; bounded-

ness; cyclic behavior; termination.

Table 1

Example of validation

{32} L: 2 3 1 0

MO: 1 0 1 1 0 1 3

Tim T Arr fr Taim DI

M[1]: 2 0 0 0 1 1

Swit of Arr fr

M[2]: 3 0 0 0 1 1

Swit of Arr fr

↓ Taim DI in MO
{58} L: 2 3 1 1

MO: 1 0 0 1 1 1 3

Tim T Arr fr Trans fr

M[1]: 2 0 0 0 1 1

Swit of Arr fr

M[2]: 3 0 0 0 1 1

Swit of Arr fr

↓ Trans Fr in MO
{104} L: 2 3 1 0

MO: 1 1 0 1 0 0 3

Tim T Arr fr Taim D

M[1]: 2 0 0 1 1 1

Swit of Arr fr Taim DI

M[2]: 3 0 0 0 1 1

Swit of Arr fr

↓ Taim DI in M1
{79} L: 2 3 1 1

MO: 1 0 0 1 0 0 3

Tim T Arr fr Taim D

M[1]: 2 0 1 0 1 1

Swit of Arr fr Trans fr

M[2]: 3 0 0 0 1 1

Swit of Arr fr

↓ Trans fr in M1
{150} L: 2 3 1 0

MO: 1 0 0 1 0 0 3

Tim T Arr fr Taim D

M[1]: 2 1 0 0 1 0

Swit of Arr fr Taim D

M[2]: 3 0 0 1 1 1

Swit of Arr fr Taim DI

↓ Taim DI in M1
{92} L: 2 3 1 1

MO: 1 0 0 1 0 0 3

Tim T Arr fr

M[1]: 2 0 0 0 1 0

Swit of Arr fr

M[2]: 3 0 1 0 1 1

Swit of Arr fr Trans fr

In Table 1, some validation results are represented. The

numbers included in brackets {. . . } refer to the number

of the state. Numbers written after L, MO and M[i] have

89

Henrikas Pranevicius

the following meanings of discrete and continuous coordi-

nates of state:

L: q1; q2; q3; kan;
MO: nr; act D; act DI; act T;

act trans fr; st; n act;

M[i],i=1,2: nr; act D;

act trans fr; act DI;sw;st.

5.2. Simulation results

Simulation results are represented in Table 2. The param-

eters of the model are the following: Taim Frame – dura-

tion of frames; Taim Head – duratin of the head of frames;

Taim D – duration of the timer D; Taim DI – duration of the

timer DI; Taim T – duration of timer T ; V – velocity of the

channel; n – number of stations; Arr Frame – parameter

of a puasonian input stream; T swit on and T swit off –

intensity of operations swit on and swit off, which

have exponential distributions.

Characteristics of the model: T Wait – the mean value of

transmitting a frame including the waiting time; L Wait –

mean value of the waiting time; K Useful – coefficient uti-

lization of a channel; K Full – coefficient of full utilization

of a channel.

Table 2

Simulation results

Taim Frame = 800 bit, Taim Head = 160 bit,
Tau Data = 4 bit, Taim D = 0.0000025 s,
Taim DI = 0.0000012 s, Taim T = 100 s,
T swit on = T swit of = 0.

1. V = 10000000 bit/s, Arr Frame = 0.001 s
n T Wait L Wait R Use f ul K Full
2 0.00011 0.00001 0.1418 0.8323
4 0.00013 0.00003 0.2806 0.8639
6 0.00016 0.00006 0.4118 0.8939
8 0.00019 0.00010 0.5297 0.9207
10 0.00025 0.00016 0.6304 0.9437

2. V = 50000000 bit/s, Arr Frame = 0.001 s
n T Wait L Wait R Use f ul K Full
2 0.00002 0.00000 0.0307 0.4639
4 0.00002 0.00001 0.0611 0.4831
6 0.00003 0.00003 0.0917 0.5025
8 0.00003 0.00001 0.1219 0.5217
10 0.00003 0.00001 0.1529 0.5413

3. V = 50000000 bit/s, Arr Frame = 0.000135 s
n T Wait L Wait R Use f ul K Full
2 0.00002 0.00000 0.0212 0.5921
4 0.00003 0.00001 0.3848 0.6882
6 0.00004 0.00002 0.5399 0.7864
8 0.00006 0.00004 0.6513 0.8569
10 0.00009 0.00007 0.7160 0.8979

6. Conclusions

The presented method of formal specification permits on

the base of single specification to carry out validation gen-

eral and individual properties and simulation. It permits to

investigate the analysed system more thoroughly.

References

[1] G. I. Holzmann, “The model checker SPIN”, IEEE Trans. Softw. Eng.,

vol. 23, no. 5, pp. 279–295, 1997.

[2] B. P. Zeigler, Theory of Modelling and Simulation. New York: Aca-

demic Press, 2000.

[3] H. Pranevicius, “Aggregate approach for specification, validation, sim-

ulation and implementation of computer network protocols”, in LNCS,

Berlin: Springer-Verlag, 1991, vol. 502, pp. 433–477.

[4] H. Pranevicius, V. Pilkauskas, and A. Chmieliauskas, “Aggregate ap-

proach for specification and analysis of computer network protocols”,

Technologija, Kaunas University of Technology, 1994.

[5] H. Pranevicius, “Formal specification and analysis of distributed sys-

tems”, in Lecturer Notes “Applications of AI to Production Engineer-

ing”, Technologija, Kaunas, 1997, pp. 269–322.

[6] H. Pranevicius, “Formal specification and analysis of distributed sys-

tems”, J. Intell. Manuf., no. 9, pp. 559–569, 1998.

Henrikas Pranevicius is a Pro-

fessor of the Kaunas Univer-

sity of Technology and the Head

of Business Informatics Depart-

ment. He is habilituated doctor

of Technical Sciences at Ryga

Electronic and Computer Tech-

nics Institute sinice 1984 and

doctor of science from Kau-

nas Politechnical Institute since

1970. Area of his research ac-

tivity is: formal specification, validation and simulation of

distributed systems including telecommunication and logis-

tic systems. The theoretical background of investigation is

piece-linear aggregate formalism, which permits to use the

single formal specification for models development both for

performance and behaviour analysis.

e-mail: hepran@if.ktu.lt

Kaunas University of Technology

Studentu st 50

LT-51368 Kaunas, Lithuania

90

