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Abstract — Theory of scattering by lossy dielectric, ferrite
and/or conducting cylinders is investigated using a combina-
tion of an iterative scattering procedure and the orthogonal
expansion method. The addition theorems for vector cylindri-
cal harmonics, which transform harmonics from one coordi-
nate system to another, are presented.
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1. Introduction

Considering the electromagnetic wave scattering from two-
dimensional arbitrary obstacles we can observe a two ar-
eas of active research. The first approach concerns open
problems – obstacles in free space, where the far scattered
field patterns can be investigated [1, 2], while the second –
closed problems – presents the frequency responses of de-
scribed structure in a rectangular waveguide [3, 4].
In the last decade, a recursive algorithm has been developed
for the scattering by arbitrarily shaped obstacles [1]. Elsher-
beni et al. [2] proposed an iterative solution for the scat-
tering by M different parallel circular cylinders. Recently,
Valero and Ferrando [4] presented the method, which seg-
ments the problem into regions that are characterized by
their generalized admittance matrices.
In this paper we apply modified iterative scattering pro-
cedure, which has been used for open problems [2] and
the orthogonal expansion method to describe an equivalent
scattered field by lossy dielectric, ferrite and/or conducting
cylinders on the surface of a separated interaction region,
which then can be used both for open and closed struc-
tures. The main advantage of this method is that we can
obtain a total scattered field from all cylinders and match
it with other incident fields to define scattering matrix of
investigating structure. This technique can be applied to an-
alyze a waveguide structures where incident fields are the
TEm0 mode and open structures to define the far scattered
field patterns for Ez-wave excitation.

2. Basic formulation

Consider harmonic Ez-wave excitation in global coordi-
nates as infinite series of Bessel functions of the first kind
with unknown coefficients an, where the electric field has

Fig. 1. Cylindrical obstacles in the interaction region excited by
Ez-wave.

a z component only with all vectors independent of z of the
cylindrical coordinates (ρ , φ , z):

Einc(0)
z =

∞

∑
n=�∞

anJn(k0ρ)ejnφ ; (1)

where k0 is the wave number in free space.

Now we assume that field (1) excites all of the M homoge-
neous, lossy dielectric, ferrite or perfectly conducting cylin-
ders (see Fig. 1) and has to be defined in their local coor-
dinates. For the ith cylinder using an addition theorem for
Bessel functions [5] we have

Einc(0)
zi

=
∞

∑
n=�∞

an

∞

∑
m=�∞

Jm(k0ri)e
jmφi Jm�n(k0dio)e

j(n�m)φio ;

(2)

where dio, φio are defined in Fig. 2.
In response to our excitation, a zero order scattered field is
created from each of M cylinders by forcing the tangential
components of both the electric and magnetic fields, on the
surface of each cylinder, to be continuous:

Einc(0)
zi

(ri ; φi)+Es(0)
zi

(ri ; φi) = Ed(0)
zi

(ri ; φi); (3)

Hinc(0)
φ i

(ri ; φi)+Hs(0)
φ i

(ri ; φi) = Hd(0)
φ i

(ri ; φi); (4)

where ri is the radius of the ith cylinder.
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Fig. 2. Notation used for a change of coordinate system for
Bessel functions.

The scattered electric field component for the ith cylinder
can be expressed as

Es(0)
zi

(ρi ; φi) =
∞

∑
n=�∞

c0
inH(2)

n (k0ρi)e
jnφi (5)

while transmitted field component inside the dielectric ma-
terial of the ith cylinder is given by

Ed(0)
zi

(ρi ; φi) =
∞

∑
n=�∞

b0
inJn(kiρi)e

jnφi ; (6)

where c0
in and b0

in are the unknown coefficients, Jn(kiρi),
H(2)

n (k0ρi) denotes Bessel and Hankel functions, respec-
tively and ki = ωpε f (i)µe f f(i), µe f f(i) = (µ2

i � µ2
a(i))=µi ,

denotes the effective ferrite permeability where µi , µa(i)
are tensor elements. The corresponding magnetic field
along φ direction can be established from

Hφ =�
1

jωµ0 µe f f(i)

�
∂Ez

∂ρ
+ j

µa(i)

µiρ
∂Ez

∂φ

�
: (7)

Applying (2) into Eqs. (3) and (4) and orthogonalizing
by e� jmφi , the solution is obtained from the point of view
of the unknown coefficients c0

in of the ith cylinder

[c0
i ] = [Gi ] � [Tio] � [a]; (8)

where [Gi ] is shown in (8a) at the top of the following page.

Here the prime symbol denotes the derivative with re-
spect to argument. For dielectric structures we assume that
µa(i) = 0 and µe f f(i) = µi = 1. Transformation of Bessel
functions from global coordinates to the local coordinates
of the ith cylinder is expressed by matrix

[Tio] =
h
Jm�n(k0dio)ej(n�m)φio

i∞

m;n=�∞
(9)

and m, n are rows and columns indexes respectively,
while [a] defines a vector

[a] =
�
: : : a

�m : : : a0 a1 : : : am : : :
�T

: (10)

In the next interaction, we use scattered fields from M�1
cylinders from the previous interaction as a new incident
field on the ith remaining cylinder

Einc(1)
zi

= E0

M

∑
j=1
j 6=i

∞

∑
n=�∞

c0
jnH(2)

n (k0ρ j)ejnφ j : (11)

To transfer the scattered fields from M�1 cylinders to the
local coordinate of the ith cylinder the Graf’s addition the-
orem for Bessel functions is used [5] (see Eq. (12) at the
top of the following page).
In response to our new excitation, the first order (p = 1)
scattered and transmitted field is created from each of
M cylinders like in Eqs. (5) and (6) but with new unknown
coefficients c1

in and b1
in. Using Eqs. (3) and (4) with the

first order fields the following solution is obtained:

�
c1

i

�
=
�
Gi

� M

∑
j=1
j 6=i

�
TH

i j

�
�
�
c0

j

�
; (13)

where
�
TH

i j

�
=
�
H(2)

m�n
(k0di j )e

j(n�m)φi j
�∞

m;n=�∞ and m, n are

rows and columns indexes, respectively. The matrix
�
TH

i j

�
provides transformation of Hankel functions of the second
kind located in the coordinates of the jth cylinder to the
ones located in the coordinates of the ith cylinder.
This approach gives us a next order scattered field and re-
peated for each individual cylinder leads us to an iterative
scattering procedure where the coefficients of the pth in-
teraction depend only on the coefficients of the (p� 1)th
interaction �

Cp�= �Ti j �
�
�
Cp�1�

� [a]; (14)

where

�
Cp�=

2
66664

�
cp

1

�
��

cp
i

�
��

cp
M

�

3
77775 ;

�
Ti j

�
=

2
66664

[0] � [T1; j ] � [T1;M]

� [0] � � �

[Tj ;1] � � � [Tj ;M]

� � [Ti; j ] [0] �

[TM;1] � [TM; j ] � [0]

3
77775

for p= 2; 3; : : : and
�
cp

i

�
, [0],

�
Ti; j

�
are square sub-matrices

where

[Ti; j ] =
�
Gi

�
�
�
TH

i j

�
: (15)

Iterative procedure gives us the scattered field from the ith
cylinder in its local coordinates as follows�

ES
zi

�
=
�
Hρ

i

�
�
�
Ci

�
� [a] ; (16)

where
�
Ci

�
=

N
∑

p=0

�
cp

i

�
,
�
Hρ

i

�
= diag

�
H(2)

m (k0ρi)e
jmφi
�∞

m=�∞

and N is the number of interactions.
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[Gi ] = diag

0
BB@

k0Jm(kiri)J
0

m(k0ri)�Jm(k0ri)

�
ki

µe f f(i)
J0m(ki ri)�m

µa(i)
µe f f(i)µi ri

Jm(kiri)

�

H(2)
m (kori)

�
ki

µe f f(i)
J0m(kiri)�m

µa(i)
µe f f(i)µi ri

Jm(kiri)

�
�k0Jm(ki ri)H(2)

m
0

(k0ri)

1
CCA

∞

m=�∞

: (8a)

H(2)
n (k0ρ j)e

jnφ j =

8><
>:

∞
∑

m=�∞
H(2)

m�n
(k0di j )e

j(n�m)φi j Jm(k0ρi)e
jmφi for di j � ρi

∞
∑

m=�∞
Jm�n(k0di j )e

j(n�m)φi j H(2)
m (k0ρi)e

jmφi for di j < ρi

9>=
>; : (12)

Using transformation (12) for di j < ρo the scattered field
from each cylinder is transferred to global coordinate sys-
tem. Therefore the scattered electric field from the ith cylin-
der on the surface of the interaction region (see Fig. 2) is
given as

�
ESG

zi

�
=
�
HR

i

�
�
�
TG

oi

�
� [Ci ] � [a] ; (17)

where
�
HR

i

�
= diag

�
H(2)

m (k0R)ejmφ
�∞

m=�∞�
TG

oi

�
=
h
Jm�n(k0doi)e

j(n�m)φoi

i∞

m;n=�∞

and m, n are rows and columns indexes, respectively.

Writing (17) for electric and magnetic field for each of
M cylinders we obtain the following matrix equations:

�
ESG

z

�
=
�
HR
�
�
�
TG
�
� [C] � [a] ; (18)�

HSG
φ
�
= 1

jωµ0

�
H 0R

�
�
�
TG
�
� [C] � [a] ; (19)

where

�
ESG

z

�
=
h�

ESG
z1

�
: :
�
ESG

zi

�
: :
�
ESG

zM

�iT
;

�
HSG

φ
�
=
h�

HSG
φ1

�
: :
�
HSG

φ i

�
: :
�
HSG

φM

�iT
;

and

�
HR
�
=

2
66664

[HR
1 ] : [0] : [0]
: : : : :
[0] : [HR

i ] : [0]
: : : : :
[0] : [0] : [HR

M]

3
77775 ;

�
TG
�
=

2
66664

[TG
o1] : [0] : [0]
: : : : :
[0] : [TG

oi ] : [0]
: : : : :
[0] : [0] : [TG

oM]

3
77775 ;

�
C
�
=

2
66664

�
C1

�
��

Ci

�
��

CM

�

3
77775 :

Matrices
�
HR

i

�
,
�
TG

oi

�
,
�
Ci

�
and [0] are square sub-matrices.

The total scattered electric and magnetic field from all
cylinders, can be easy obtained from�

ESGT
z

�
= [I ] �

�
ESG

z

�
; (20)

�
HSGT

φ
�
= [I ] �

�
HSG

φ
�
; (21)

where matrix [I ] consists of diagonal sub-matrices [Ii ] =
= diag

�
1
�∞

m=�∞ as shown [I ] =
�
[I1] : : : [Ii ] : : : [IM]

�
.

Now the total field on the surface of the interaction region
can be defined as

�
ET

z

�
=
�
Einc(0)

z

�
+
�
ESGT

z

�
; (22)

�
HT

φ
�
=
�
Hinc(0)

φ

�
+
�
HSGT

φ
�
; (23)

where
�
Einc(0)

z

�
and

�
Hinc(0)

φ

�
are diagonal matrices based

on (1). To eliminate unknown coefficients (10), a relation
between electric and magnetic field on the surface of the
interaction region is defined:

�
ET

z

�
= [Z] �

�
HT

φ
�
: (24)

Hence, the matrix [Z] is given as

[Z] =
��

Einc(0)
z

�
+
�
ESGT

z

��
�

��
Hinc(0)

φ

�
+
�
HSGT

φ
���1

:

(25)

The formulation of the problem in form of [Z] allows to
consider both waveguide and open problems assuming the
proper excitations.

3. Conclusions

The analysis for scattering by an array of lossy dielectric,
ferrite and/or conducting cylinders has been developed us-
ing a combination of modified iterative scattering proce-
dure and the orthogonal expansion method. This approach
is convenient for investigations of the open and waveguide
problems.
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