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Abstract — This paper addresses the joint design of trans-
mitter and receiver for multichannel data transmission over
dispersive channels. The transmitter is assumed to consist of
FIR filters and the channel impulse response is allowed to have
an arbitrary length. The design criterion is the maximization
of the information rate between transmitter input and receiver
output under the constraint of a fixed transmit power. A link
to minimum mean squared error designs for a similar setting
is established. The proposed algorithm allows a straightfor-
ward transmitter design and generally yields a near-optimum
solution for the transmit filters. Under certain conditions,
the exact solution for the globally optimal transmitter is
obtained.

Keywords — joint transmitter/receiver design, filterbanks, in-
formation rate maximization, dispersive channels.

1. Introduction

The joint design of transmitter and receiver for data trans-
mission over dispersive channels has attracted numerous
researchers, as it has the potential to yield very high
throughput without the need of costly algorithms on the
receiver side, such as maximum likelihood sequence esti-
mation with the Viterbi algorithm.
The process of shaping the transmit signal and/or introduc-
ing redundancy based on the knowledge of the channel is
also known as precoding. Salz [1] provided a first solution
to the joint transmit/receive filter design problem, but it re-
quired the filters to have support within the first Nyquist
zone [�1=2T;1=2T]. Yang and Roy proposed an algorithm
for the design of precoders that use excess bandwidth to in-
troduce redundancy [2]. Their method required an iteration
to find the optimum solution. Xia studied the existence of
redundant precoders that allow a perfect inversion of FIR
channels with FIR receivers [3]. The effects of noise were
not considered in [3].
Direct solutions to the joint design problem for the case
of block transforms with a sufficiently long guard in-
terval to avoid interblock interference (IBI) were pro-
vided in [4–6]. The optimality criteria considered in [4]
were the zero forcing (ZF) and minimum mean squared
error (MMSE) criteria. In [5] and [6] the maximization
of mutual information between transmitter and receiver
was studied, using results derived in [7]. A drawback of
the block transforms of [4–6] is that the length of the
guard interval needs to be at least equal to the channel

order. This is the same problem as with the well-known
DMT and OFDM techniques [8, 9]. To cope with longer
channel impulse responses one can increase the length of
the guard interval, but this will decrease the efficiency, as
less data symbols can be transmitted. Increasing both the
length of the guard interval and the number of subchan-
nels allows one to maintain a desired bandwidth efficiency,
but this strategy also has its limits, because the delay be-
tween transmitter and receiver may become unacceptably
high.
Li and Ding provided a direct solution to the problem of
minimizing the mean squared error (MSE) between trans-
mitter input and receiver output under the power constraint
for arbitrary channel lengths with overlapping blocks [10].
However, their solution generally yields IIR transmit filters,
which restricts the practical use of their exact solution. An
FIR approximation of the technique in [10] was provided
in [11]. Finally, transmitter design methods for the case
where decision feedback receivers are employed have been
proposed in [7, 12, 13].
This paper addresses the design of FIR precoders for the
case where the channel impulse response has arbitrary
length. Note that this configuration is of a significant in-
terest for practical applications, because real-world channel
impulse responses may become extremely long and the use
of sufficiently long guard intervals, as required for DMT,
OFDM, or the methods in [4–6], may be prohibitive due
to delay constraints. During transmitter optimization an
approximation is used that allows us to simplify the ob-
jective function and obtain a straightforward solution. For
L � N�M, where L is the channel order, M is the num-
ber of subchannels, and N is the upsampling factor in the
transmitter, the algorithm yields the exact optimum solu-
tions of [5, 6], and for L > N�M it leads to near optimum
solutions.
The paper is organized as follows. Section 2 describes
the input-output relationships of the considered trans-
mit/receive system. Section 3 then addresses the maxi-
mization of the information rate through the choice of op-
timal transmit and receive filters. Also a link to MMSE
designs for similar settings is established. Section 4 demon-
strates the properties of the proposed algorithm in sev-
eral examples, and finally Section 5 gives some conclu-
sions.

Notation. Vectors and matrices are printed in boldface.
The superscripts f�gT , f�gH , f�g+ denote transposition,
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Fig. 1. Redundant precoder.

Hermitian transposition, and the pseudoinverse, respec-
tively. The determinant and trace of a matrix are denoted
as j � j and trf�g, respectively. Ef�g is the expectation op-
eration.

2. System description

A block diagram of the considered system is depicted
in Fig. 1. The input stream x(m) is split into M par-
allel streams which are then upsampled by a factor of
N � M and fed into the M transmit filters with im-
pulse responses gk(n); k = 0; 1; : : : ; M � 1. The chan-
nel is described by its impulse response c(n) and an ad-
ditive, data independent, zero-mean, stationary, Gaussian
noise process η(n). The receive signal is filtered with
the analysis filters hk(n), k = 0; 1; : : : ; M�1 and sub-
sampled by N to yield the parallel output data yk(m).
Finally, a parallel-to-serial conversion yields the output
sequence y(n).
For further analysis it is advantageous to decompose the
filters into their polyphase components and to describe
the system as a multiple-input multiple-output (MIMO)
system as depicted in Fig. 2. The input vector at time
m is given by xxx(m) = [x0(m);x1(m); : : : ;xM�1(m)]T with
xk(m) = x(mM�k). Accordingly, the output process yyy(m)
is defined as yyy(m) = [y0(m); : : : ;yM�1(m)]T . The transmit
filter bank can be described via its N�M polyphase ma-
trix [14]

GGG(z) =

2
64

G00(z) : : : GM�1;0(z)
...

...
G0;N�1(z) : : : GM�1;N�1(z)

3
75 (1)

where Gk;`(z) is the `th polyphase component of the kth
transmit filter, given by

Gk;`(z) = ∑n gk(nN+ `) z�n: (2)

Alternatively, GGG(z) may be expressed as GGG(z) = ∑nGGGnz�n

with [GGGn]`;k = gk(nN+`) where [GGGn]`;k denotes the element
of [GGGn] at position `;k.

Fig. 2. Redundant precoder in polyphase (MIMO) representation.

The polyphase matrix of the receiver filter bank is given by

HHH(z) = ∑n
HHHnz�n =

=

2
64

H 0
00(z) : : : H 0

0;N�1(z)
...

...
H 0

M�1;0(z) : : : H 0
M�1;N�1(z)

3
75 (3)

with

H 0
k;`(z) = ∑nhk(nN+N�1� `) z�n;

[HHHn]k;` = hk(nN+N�1� `):
(4)

The channel can be described via the pseudo-circulant
N�N matrix

CCC(z) =

2
6666664

C0(z) z�1CN�1(z) : : : z�1C1(z)

C1(z) C0(z) : : : z�1C2(z)

...
. . .

...

CN�1(z) CN�2(z) : : : C0(z)

3
7777775

(5)

12



Design of filterbank transceivers for dispersive channels with arbitrary-length impulse response

with C`(z) = ∑nc(nN+ `) z�n. Alternatively, CCC(z) can be
written as a polynomial of matrices:

CCC(z) = ∑k z�k CCCk: (6)

The often desired (zero forcing) property

yyy(n) = xxx(n�n0) (7)

is obtained in the noise free case if HHH(z) and GGG(z) are
chosen such that the perfect reconstruction (PR) condition

HHH(z) CCC(z) GGG(z) = z�n0+1IIIM�M (8)

holds. Conditions to satisfy (7) for a given channel c(n)
are for example discussed in [3, 4].

3. Maximizing information rate

In this section, we address the problem of maximizing the
information rate through the choice of the transmit and re-
ceive filters. We will first consider a straightforward matrix
model, similar to block transforms, and will show for this
model that the mutual information can be expressed via the
error covariance matrix of MMSE receive filters. Using
this fact, an algorithm for determining optimal FIR trans-
mit filters is presented.

3.1. A general expression for mutual information

The mutual information between a block of input symbols,
xxx, and a block of output symbols, yyy, of a transceiver is de-
fined as I0(xxx;yyy) = H(xxx)�H(xxxjyyy) where H(xxx) is the entropy
of xxx and H(xxxjyyy) is the conditional entropy of xxx given yyy [15].
We define a normalized mutual information as

I(xxx;yyy) =
1
N
[H(xxx)�H(xxxjyyy)] (9)

where N is the upsampling factor in Fig. 1. The length of
xxx is M with M � N, and the length of yyy will be defined
as needed. It is known that I(xxx;yyy) becomes maximal if xxx
is Gaussian [15], and therefore we will assume Gaussian
processes henceforth. For this case it was shown in [7] that

I(xxx;yyy) =
1
N

log2

 
jRRRxxj
jRRR?

xjyj

!
(10)

with

RRR?
xjy =RRRxx�RRRxyRRR�1

yy RRRyx (11)

and RRRxx = E
�

xxxxxxH
	

, RRRxy =RRRH
yx = E

�
xxxyyyH
	

, RRRyy = E
�

yyyyyyH
	

.
We now consider the model

yyy =HHH[CCCGGGxxx+nnn] (12)

where the matrices GGG;CCC;HHH describe the transmitter, chan-
nel, and receiver, respectively, and vector nnn describes ad-

ditive noise. At this point, no assumptions are made about
the size of vectors and matrices in (12) and the type of
noise. With (12) one obtains for RRR?

xjy

RRR?
xjy =RRRxx�RRRxxGGG

HCCCHHHHH
h
HHH(CCCGGGRRRxxGGG

HCCCH +

+RRRnn)HHHH
��1

HHHCCCGGGRRRxx; (13)

with RRRnn = E
�

nnnnnnH
	

. By using the pseudoinverse of RRR?
xjy

given by

(RRR?
xjy)

+ =RRR+xx + GGGHCCCHHHHH [HHHRRRnnHHHH ]�1HHHCCCGGG (14)

the quantity I(xxx;yyy) can be alternatively expressed as

I(xxx;yyy) =
1
N

log2

��RRRxx(RRR?
xjy)

+
��: (15)

Note that the expression (14) for (RRR?
xjy)

+ includes the shap-
ing of the transmit signal with matrix GGG and the influence
of the receive filters in matrix HHH. A similar expression for
mutual information has been derived in [7], but for the sim-
pler model yyy =CCCxxx+nnn with nnn being white noise. Using the
results of [7] and a model similar to (12), but without pos-
sible interblock interference, a related expression has also
been obtained in [5].

3.2. Incorporating the filterbank model

Now let the model (12) describe the filterbank transceiver of
Section 2 with xxx := xxx(m) and yyy := yyy(m�n0). The columns
of matrix GGG are the transmit filter impulse responses, and
the channel matrix CCC has the structure

CCC =

2
6666664

c(0) 0 0 0 : : : 0

c(1) c(0) 0 0 : : : 0

c(2) c(1) c(0) 0 : : : 0

...
...

...
. . .

...

3
7777775

(16)

The size of CCC depends on the lengths of the transmit filters
and the channel. CCC may even be of infinite dimension, and
similarly, the vector vvv = CCCGGGxxx+nnn observed at the channel
output may be of infinite length. However, both xxx and yyy
are of length M. The noise process nnn contains the additive
channel noise and the IBI from other data blocks.
In the following we show that the optimal receive ma-
trix HHH has the structure

HHH =XXXGGGHCCCHRRR�1
nn (17)

with an arbitrary, full-rank M�M matrix XXX. Depending
on XXX one obtains, for example, the ZF or MMSE receive
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filters. Inserting (17) into (14) and rearranging the obtained
expression yields

(RRR?
xjy)

+ =RRR+xx+GGGHCCCHRRR�1
nnCCCGGG: (18)

Note that (18) is independent of XXX. Obviously, (RRR?
xjy)

+ ac-

cording to (18) is the same as the matrix (RRR?
xjv)

+, which
relates to the conditional entropy H(xxxjvvv) based on the ob-
servation vvv. Because of H(xxxjyyy)�H(xxxjvvv), we can conclude
that any matrix HHH of the form (17) maximizes the mutual
information. Thus, due to the structure of HHH in (17) this
means that the optimal receive filters are “matched filters”,
given by the term GGGHCCCHRRR�1

nn , followed by an arbitrary, full-
rank matrix operation XXX. Through the choice of XXX one can
obtain, for example, the optimal zero forcing and MMSE
solutions.
Interestingly, the matrix (RRR?

xjy) is the same as the error cor-
relation matrix

RRR?
xjy :=RRRee= E

�
(yyy�xxx)(yyy�xxx)H	

for the case of linear MMSE estimation of xxx from the noisy
observation vvv.1 This observation has also been made in [7].
For the filterbank transceivers considered in this papers it
means that we can concentrate on minimizing the determi-
nant of the error correlation matrix in the presence of an
MMSE receive filterbank. To simplify the notation we as-
sume white channel noise with variance σ2

η and white data
x(n) with variance σ2

x . The incorporation of nonwhite data
and noise processes is straightforward.
For further derivations, the expression (18) for (RRR?

xjy)
+ is

not very convenient, as it contains the inverse correlation
matrix of the noise which is comprised of channel noise
and IBI. Knowing that we need the error correlation matrix
of MMSE estimation we can alternatively use the expres-
sion obtained in [11] for MMSE precoders:

RRRee=
1

2π

Z π

�π
σ2

x

�
IIIM�M +

+
σ2

x

σ2
η

GGGH(ejω)
h
∑kR

RRcc(k)e
� jωk

i
GGG(ejω)

��1

dω (19)

where

RRRcc(k) =∑`
CCCH

` CCC`+k: (20)

3.3. Using FIR transmit filters

To minimize the transmitter complexity and system delay,
we assume transmit filters of length N where N is the up-

1Introductions to linear estimation theory can be found in [16].

sampling factor in Fig. 1. For this filter length we have
GGG(z) =GGG0 and obtain

RRRee=
1

2π

Z π

�π
σ2

x

�
IIIM�M +

+
σ2

x

σ2
η

GGGH
0

h
∑k

RRRcc(k)e
� jωk

i
GGG0

��1

dω : (21)

The next step is to approximate (21) by a simpler expres-
sion. Because the summation terms for k 6= 0 in (21) relate
to IBI we choose GGG0 from a subspace such that the terms
GGGH

0RRRcc(k)GGG0 for k 6= 0 become so small that they can be
neglected in (21). To determine a suitable subspace for the
choice of GGG0 we employ an iterative procedure based on
the singular value decomposition (svd). We do not explic-
itly formulate a basis for the required subspace, and rather
consider a projection PPP that projects onto the required sub-
space.

The algorithm is as follows:

Step 1: Let PPP = IIIN�N.

Step 2: Compute the svd’s

AAAkΣΣΣkBBB
H
k =PPPH

RRRcc(k)PPP

for all k 6= 0 for which RRRcc(k) 6= 0.

Step 3: Determine the largest singular value for k 6= 0
and denote it as σmax. Assuming that σmax is
contained in matrix ΣΣΣK denote the correspond-
ing column of AAAK as aaa.

Step 4: If rank(PPP)> M and σmax> 0 set

PPP := [IIIN�N�aaaaaaH ]PPP

and go back to Step 2. Otherwise, end the al-
gorithm.

When incorporating the projection matrix PPP, the error cor-
relation matrix can be approximated by

R̃RRee= σ2
x

h
IIIM�M +

σ2
x

σ2
η

GGGH
0 PPPH

RRRcc(0)PPPGGG0

i�1
; (22)

and the normalized mutual information can thus be approx-
imated as

Ī(xxx;yyy) =
1
N

log2(jMMMj) (23)

with

MMM =
h
IIIM�M +

σ2
x

σ2
η

GGGH
0 PPPH

RRRcc(0)PPPGGG0

i
: (24)

According to Hadamard’s inequality [15], MMM must be
diagonal in order to maximize jMMMj under the transmit power
constraint

σ2
x tr
n

GGG0GGGH
0

o
= N P0: (25)
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This means that the columns of GGG0 have to be scaled eigen-
vectors of PPPH

RRRcc(0)PPP. We now consider the eigendecom-
positions

PPPH
RRRcc(0)PPP =UUUΛΛΛUUUH (26)

and

GGG0GGGH
0 =UUUQQQUUUH (27)

with

ΛΛΛ=diag
�
λ1; : : : ;λN

�
(28)

and

QQQ=diag
�
q1; : : : ;σN

�
(29)

where the eigenvalues λi are assumed to be sorted such that
λi � λi +1. Note that some of the eigenvalues λi may be
zero and that only the first M values q1; : : : ;qM are non-
zero. Using (26) and (27) the mutual information Ī(xxx;yyy)
according to (23) and (24) can be rewritten as

Ī(xxx;yyy) =
1
N

M

∑
i=1

log2(1+
σ2

x

σ2
η

λiqi): (30)

A standard Lagrange optimization, similar to [5, 7], yields

qi = max(c� σ2
η

σ2
x λi

;0) (31)

where c is to be determined from the power constraint (25).
As one can see in (31), the optimal values qi obey the
waterpouring distribution. Assuming that M is chosen such
that qi , i = 1; : : : ;M are nonzero, the transmit filters finally
become

GGG0 = ŪUUdiag
�p

q1; : : : ;
p

qM

�
(32)

where ŪUU contains the M eigenvectors that belong to the
largest eigenvalues λ1; : : : ;λM . A comparison with the so-
lution in [11] shows that maximizing the information rate
and minimizing the overall MSE leads to the same trans-
mit filters, but with different power loading factors qi ,
i = 1; : : : ;M. Moreover, it is straightforward to show that if
the channel order L is smaller or equal to N�M we have
Ī(xxx;yyy) = I(xxx;yyy), and the proposed algorithm yields the so-
lutions of [5, 6].

4. A design example

We demonstrate the performance of the precoder design
algorithm using a simple example where significant IBI
between adjacent data blocks occurs. The chosen param-
eters are L = 6, N = 16, M = 14, and the Eb=N0 ratio at
the receiver input is set to 20 dB. The channel impulse re-
sponse is c(n) = [1; 1; 1; 1; 1; 1; 1]. Note that all channel
zeros lie on the unit circle of the z-plane. The frequency

response of the channel is depicted in Fig. 3, together with
the transmit power spectra for the following two precoder
design methods: (i) the MMSE precoder of [11] and (ii) the
precoder maximizing information rate proposed in this pa-
per. The comparison between the two power spectra shows
that the MMSE precoder tends to spend power in frequency
bands where the channel gain is low, whereas the precoder
maximizing information rate reduces the transmit power for
such frequencies.

Fig. 3. Channel frequency response and transmit power spectra.

Fig. 4. Signal to noise ratios in subchannels at the receiver
output.

Figure 4 shows the obtained SNR’s at the receiver output for
the two design methods. One can see that maximizing the
information rate yields several subchannels with very good
SNR and a few with poor SNR. The MMSE design, on the
other hand, tries to uphold all SNR’s in order to minimize
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the MSE. The obtained normalized information rates are
3.49 bit/symbol for the MMSE design and 3.84 bit/symbol
when maximizing Ī(xxx;yyy).
When reducing the number of subchannels to M = 10, all
IBI vanishes, and the design method becomes equivalent
to the ones in [5, 6]. However, the maximum normalized
mutual information is only 3.47 bit/symbol for this case,
which shows that allowing IBI has the potential to improve
performance compared to block transmission.

5. Conclusions

A method for the joint design of transmitter and receiver
for data transmission over dispersive channels has been pre-
sented. The proposed method maximizes the information
rate and can treat the practically important case where the
transmitter is FIR and the channel has arbitrary length. This
allows for low latency transmission over dispersive chan-
nels. Design examples have confirmed the effectiveness of
the design method.
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