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Abstract — In this paper, we propose a simple but efficient
method for improving correlation properties of polyphase
spreading sequences for asynchronous direct sequence code
division multiple access (DS CDMA) applications. The pro-
posed method can be used to reduce the mean square value of
aperiodic crosscorrelation or the mean square value of aperi-
odic autocorrelation, the maximum value of aperiodic cross-
correlation functions, merit factor or other properties of the
sequence set. The important feature of the method is that
while it modifies correlation properties of the sequence set, it
preserves sequence orthogonality for perfect synchronization,
if this is the property of the original sequence set.

Keywords — spread spectrum communication, orthogonal se-
quences, wireless communication, wireless LAN, correlation.

1. Introduction

Walsh-Hadamard bipolar spreading sequences are generally
used for channel separation in direct sequence code divi-
sion multiple access systems, e.g. [1]. They are easy to
generate, and orthogonal [2] in the case of perfect syn-
chronization. However, the crosscorrelation between two
Walsh-Hadamard sequences can rise considerably in mag-
nitude if there is a non-zero delay shift between them [3].
Unfortunately, this is very often the case for up-link (mobile
to base station) transmission, due to the differences in the
corresponding propagation delays. As a result, significant
multi-access interference (MAI) [4] occurs which needs to
be combated either by complicated multi-user detection al-
gorithms [5], or reduction in bandwidth utilization.
Another possible solution to this problem can be use of
orthogonal complex valued polyphase spreading sequences,
like those proposed in [6], which for some values of their
parameters can exhibit a reasonable compromise between
autocorrelation and crosscorrelation functions. However,
in most cases the choice of the parameters is not simple.
In addition, improving one of the characteristics is usually
associated with significant degradation of the others [7].
In the paper, we propose a method to optimize correlation
properties of polyphase sequences which allows to use stan-
dard optimization techniques, like the Nelder-Meade sim-
plex search [8] being implemented in several mathematical
software packages, e.g. MATLAB. By using a standard op-
timization technique, one can choose the penalty function in
a way, which takes to account all the important correlation
characteristics. The numerical example shows application

of the method to optimize properties of the orthogonal se-
quence set of the length 31 from the family of sequences
proposed in [6]. The results show that significant changes
in sequence characteristics can be achieved. Another exam-
ple illustrates application of the method to change the char-
acteristics of the orthogonal bipolar sequences, i.e. Walsh-
Hadamard sequences of length 32.
The paper is organized as follows. In Section 2, we intro-
duce the method used later to optimize correlation charac-
teristics of the spreading sequences. Section 3 introduces
optimization criteria, which can be used for DS CDMA ap-
plications. The numerical example of optimization applied
to orthogonal polyphase sequences is given in Section 4.
Section 5 deals with application of the proposed modifi-
cation method in case of bipolar sequences, i.e. Walsh-
Hadamard sequences, and Section 6 concludes the paper.

2. Modification method

Sets of spreading sequences used for DS CDMA ap-
plications can be represented by M �N matrices SSSMN,
where M is the number of sequences in the set and N is
the sequence length. The sequences are referred to as or-
thogonal sequences if, and only if the matrix SSSMN is or-
thogonal, i.e.

SSSMNSSSH
MN = kIIIM ; (1)

where k is a constant, SSSH
MN is the Hermitian transposition

of matrix SSSMN, (i.e. transposition and taking complex con-
jugate of the elements of matrix SSSMN), and IIIM is an M�M
unity matrix.
There are a few families of orthogonal spreading sequences
proposed in literature, e.g. [2, 6, 9, 10, 11]. Out of them, the
most commonly applied are Walsh-Hadamard sequences.
Some of the proposed sequence families are designed in
a parametric way, which allows for some manipulation of
parameters to change the desired correlation characteristics.
However, those changes are usually of a limited magnitude,
and very often while improving the crosscorrelation func-
tions, a significant worsening of the autocorrelation func-
tions is experienced, e.g. [7].
Here, we propose to modify correlation properties of the set
of orthogonal spreading sequences by multiplying the ma-
trix SSSMN by another orthogonal N�N matrix DDDN. Hence,
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the new set of spreading sequences is represented by a ma-
trix WWWMN

WWWMN =SSSMNDDDN (2)

that, of course, is also orthogonal. Hence, the matrix DDDN
satisfies the condition:

DDDNDDDH
N = cIIIN ; (3)

where c is a real constant. In addition, if c= 1, then the
sequences represented by the matrix WWWMN are not only or-
thogonal, but possess the same normalization as the orig-
inal sequences represented by the matrix SSSMN. However,
other correlation properties of the sequences defined by
WWWMN can be significantly different to those of the original
sequences.
To this point, it is not clear how to chose the matrix DDDN
to achieve the desired properties of the sequences defined
by the WWWMN. A simple class of orthogonal matrices are
diagonal matrices with their elements dm;n fulfilling the
condition:

jdm;nj=

�
0 for m 6= n
c for m= n

; m;n= 1; : : : ; N : (4)

To achieve the same signal power as in the case of spreading
by means of the original sequences defined by SSSMN, the
elements of DDDN, being in general complex numbers, must
be of the form:

dm;n =

�
0 for m 6= n

exp( jφm) for m= n
; m;n= 1; : : : ; N ; (5)

where the phase coefficients φm; m= 1;2; : : : ;N, are real
numbers taking their values from the interval [0; 2π), and
j2 = �1. The values of φm; m= 1;2; : : : ;N, can be cho-
sen to improve the correlation and/or spectral properties,
e.g. reduce out-off-phase autocorrelation or value of peaks
in aperiodic crosscorrelation functions.

3. Optimization criteria

In order to compare different sets of spreading sequences,
we need a quantitative measure for the judgment. There-
fore, we introduce here some useful criteria, which can be
considered for such a purpose. They are based on correla-
tion functions of the set of sequences, since both the level of
multiaccess interference and synchronization amenability
depend on the crosscorrelations between the sequences and
the autocorrelation functions of the sequences, respectively.
There are, however, several specific correlation functions
that can be used to characterize a given set of spreading
sequences [4, 7, 12].
One of the first detailed investigations of the asynchronous
DS CDMA system performance was published in 1969 by
Anderson and Wintz [13]. They obtained a bound on the
signal-to-noise ratio at the output of the correlation re-
ceiver for a CDMA system with hard-limiter in the channel.
They also clearly demonstrated in their paper the need for

considering the aperiodic crosscorrelation properties of the
spreading sequences. Since that time, many additional re-
sults have been obtained (e.g. [4] and [14]), which helped
to clarify the role of aperiodic correlation in asynchronous
DS CDMA systems.
For general polyphase sequences and fs(i)n g and fs(k)n g;
n = 1;2; : : : ;N, of length N, the discrete aperiodic corre-
lation function is defined as [12]:

ci;k(τ) =

8>>>>><
>>>>>:

1
N

N�1�τ

∑
n=0

s(i)n [s(k)n+τ ]
�

; 0� τ � N�1

1
N

N�1+τ

∑
n=0

s(i)n�τ [s
(k)
n ]�; 1�N� τ < 0

0; jτj � N

(6)

where [�]� denotes a complex conjugate operation. When
fs(i)n g= fs(k)n g, Eq. (6) defines the discrete aperiodic auto-
correlation function.
Another important parameter used to assess the synchro-
nization amenability of the spreading sequence fs(i)n g is
a merit factor, or a figure of merit [15], which specifies the
ratio of the energy of autocorrelation function mainlobes to
the energy of the autocorrelation function sidelobes in the
form:

F =
ci(0)

2
N�1

∑
τ=1

jci(τ)j
2

: (7)

In DS CDMA systems, we want to have the maximum val-
ues of aperiodic crosscorrelation functions and the maxi-
mum values of out-of-phase aperiodic autocorrelation func-
tions as small as possible, while the merit factor as great
as possible for all of the sequences used.
The bit error rate (BER) in a multiple access environment
depends on the modulation technique used, demodulation
algorithm, and the signal-to-noise power ratio (SNR) avail-
able at the receiver. Pursley [4] showed that in case of
a BPSK asynchronous DS CDMA system, it is possible to
express the average SNR at the receiver output of a corre-
lator receiver of the ith user as a function of the average
interference parameter (AIP) for the other K users of the
system, and the power of white Gaussian noise present in
the channel. The SNR for ith user, denoted as SNRi , can
be expressed in the form:

SNRi =

0
B@ N0

2Eb
+

1
6N3

K

∑
k=1
k6=i

ρk;i

1
CA
�0:5

; (8)

where Eb is the bit energy, N0 is the one-sided Gaussian
noise power spectral density, and ρk;i is the AIP, defined
for a pair of sequences as

ρk;i = 2µk;i(0)+Refµk;i(1)g: (9)

The crosscorrelation parameters µk;i(τ) are defined by:

µk;i = N2
N�1

∑
n=1�N

ck;i(n)[ck;i(n+ τ)]�: (10)

100



On a method to improve correlation properties of orthogonal polyphase spreading sequences

However, following the derivation in [16], ρk;i for polyphase
sequences may be well approximated as:

ρk;i � 2N2
N�1

∑
n=1�N

jck;i(n)j
2
: (11)

In order to evaluate the performance of a whole set of
M spreading sequences, the average mean-square value
of crosscorrelation for all sequences in the set, denoted
by RCC, was introduced by Oppermann and Vucetic [7] as
a measure of the set crosscorrelation performance:

RCC =
1

M(M�1)

M

∑
i=1

M

∑
k=1
k6=i

N�1

∑
τ=1�N

jci;k(τ)j
2
: (12)

A similar measure, denoted by RAC was introduced in [7]
for comparing the autocorrelation performance:

RAC =
1
M

M

∑
i=1

N�1

∑
τ=1�N

τ 6=0

jci;i(τ)j
2
: (13)

The measure defined by (13) allows for comparison of the
autocorrelation properties of the set of spreading sequences
on the same basis as the crosscorrelation properties. It can
be used instead of the figures of merit, which have to be
calculated for the individual sequences.
For DS CDMA applications we want both parameters
RCC and RAC to be as low as possible [7]. Because these
parameters characterize the whole sets of spreading se-
quences, it is convenient to use them as the optimization
criteria in design of new sequence sets. Therefore, we
will use them for optimizing the values of the phase co-
efficients φm; m= 1;2; : : : ;N, in the considered numerical
examples. We will also look into the maximum value of
aperiodic crosscorrelation functions since this parameter is
very important when the worst-case scenario is considered.
Optimization criteria, not based on the correlation charac-
teristics, can be envisaged as well.

4. Optimization of orthogonal
polyphase sequences

Oppermann and Vucetic introduced in [7] a new family of
polyphase spreading sequences. The elements u(k)n of these
sequences fu(k)n g are given by:

u(k)n = (�1)knexp

�
jπ(nmkp+ks)

N

�
; 1� n� N ; (14)

where k can take integer values being relatively prime
to N such that 1� k < N, and the parameters m, p, s can
take any real values. They showed there that – depending
on the choice of the parameters m, p, and s – the sequences
could have a wide range of the correlation properties. How-
ever, no clear method for selecting the appropriate values of
the parameters depending on the desired correlation charac-
teristics was given in [7]. Later in [6], Oppermann showed

that the sequences defined by (14) were orthogonal if p= 1
and m is a positive nonzero integer.
In this section, we apply the developed method to im-
prove the properties of the spreading sequence set belong-
ing to the family defined by (14), with N = 31, p = 1,
and m= 1. Since N is a prime number, k can take any
nonzero integer value lower than 31, i.e. k = 1;2; : : : ;30,
and the maximum number of sequences in the set is 30.
To select the appropriate value for s, we plotted in Fig. 1
the values of RCC, RAC and the value of the maximum
peak in all aperiodic crosscorrelation functions Cmax as the
functions of s. From the plots we choose s= 2:5, for which
RCC = 0:9803, RAC = 0:5713, and Cmax= 0:4546.

Fig. 1. Plots of the values of RCC, RAC, and Cmax as functions
of the parameter s for the sequences fu(k)

n g, with N = 31, p= 1,
m= 1, and k= 1;2; : : : ;30.

To illustrate the modification method, we first applied it
to reduce the value of RCC for this set of sequences. The
process was performed using the standard “fmin” function
of MATLAB [8] with the optimized function being RCC(Φ),
where

Φ = [φm; m= 1;2; : : : ;31] (15)

and the phase coefficients φm; m = 1; 2; : : : ; 31, being
used to define the elements of the modification matrix DDDN
(see Eq. (5)).
The function RCC(Φ) is very irregular and may have several
local minima. Therefore, depending on the starting point,
different local minima can be reached. To illustrate this,
we selected randomly 6 vectors Φ1; Φ2; : : : ; Φ6, and run
“fmin” for each of them chosen as a starting point. The
results of the obtained values of RCC, RAC and Cmax are
given in Table 1.
Next we repeat the procedure, this time finding the se-
quences to reduce the value of RAC, and finally to achieve
reduction in the value of Cmax. The results of RCC, RAC
and Cmax are given in Tables 2 and 3, respectively.
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Table 1
Values of RCC, RAC and Cmax obtained for the sequences

optimized to achieve minimum RCC

Coefficients RCC RAC Cmax

Φ1;opt 0.3262 18.1835 0.3262

Φ2;opt 0.3199 18.9537 0.3199

Φ3;opt 0.3774 17.6342 0.3334

Φ4;opt 0.3583 18.3313 0.3233

Φ5;opt 0.3990 17.8249 0.3561

Φ6;opt 0.4314 16.8953 0.3872

Comparison of the results listed in Tables 1, 2, and 3, indi-
cates that the best compromise amongst the values of RCC,
RAC and Cmax were obtained while searching for the lowest
value of Cmax. The values of the phase coefficients leading
to the values listed in Table 3 are presented in Table 4.

Table 2
Values of RCC, RAC and Cmax obtained for the sequences

optimized to achieve minimum RAC

Coefficients RCC RAC Cmax

Φ1;opt 0.9965 0.1006 0.5310

Φ2;opt 0.9974 0.0749 0.3795

Φ3;opt 0.9969 0.0910 0.3774

Φ4;opt 0.9963 0.1081 0.3583

Φ5;opt 0.9974 0.0762 0.3990

Φ6;opt 0.9972 0.0824 0.4314

Table 3
Values of RCC, RAC and Cmax obtained for the sequences

optimized to achieve minimum Cmax

Coefficients RCC RAC Cmax

Φ1;opt 0.9743 0.7475 0.2817

Φ2;opt 0.9592 1.1846 0.2871

Φ3;opt 0.9763 0.6872 0.2855

Φ4;opt 0.9748 0.7323 0.2933

Φ5;opt 0.9720 0.8141 0.2781

Φ6;opt 0.9692 0.8940 0.2730

To show that the modified sequences are still orthogo-
nal, in Fig. 2, we plotted the function Cmax(τ) for the se-
quences fw(k)

n g obtained from the original sequences fu(k)n g
by modifying them using the vector Φ6;opt from Table 4.
For the comparison, we plotted there also the function
Cmax(τ) for the original sequences fu(k)n g using a dashed
line. It is clearly visible that both sets of sequences are or-
thogonal, and the values of Cmax(τ) are significantly lower
for the new sequence set than for the original one around

Fig. 2. Plots of the maximum peaks in the crosscorrelation
functions versus the relative shift between the sequences, Cmax(τ).

Fig. 3. Plots of the maximum magnitudes of the autocorrelation
functions, Amax(τ).

zero, which corresponds to the point of perfect synchro-
nization.
To compare the synchronization amenability of the original
sequences fu(k)n g and these new sequences fw(k)

n g, we plot-
ted the maximum magnitudes of the autocorrelation func-
tions Amax(τ)

Amax(τ) = max
i

ci;i(τ); i = 1;2; : : : ;31 (16)

for both sets of sequences in Fig. 3. It is possible to notice
that the maxima in the off-peak autocorrelation are slightly
higher for the set of sequences fw(k)

n g than for the set of
sequences fu(k)n g. However, in both cases the peak at zero
shift, corresponding to the perfect synchronization, is very
significant.
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Table 4

Values of the phase coefficients for which the results listed in Table 3 were obtained

Coefficients Φ1;opt Φ2;opt Φ3;opt Φ4;opt Φ5;opt Φ6;opt

Φ1 0.3925 5.2150 4.6452 4.0811 3.9235 1.4734

Φ2 0.5345 4.2788 4.6753 5.3314 1.5435 2.0594

Φ3 3.7864 4.4254 5.8496 5.0765 4.7242 2.8292

Φ4 1.1751 1.8707 2.5273 3.7142 2.8908 0.1822

Φ5 5.0800 1.0640 3.8517 3.0107 5.5125 3.9440

Φ6 1.0535 1.0444 5.4272 0.7436 2.8254 2.1154

Φ7 1.1270 1.1725 1.1420 4.0309 5.9926 3.3442

Φ8 0.4683 2.7861 5.0271 2.0431 0.4931 3.6686

Φ9 3.0181 5.1669 3.8160 0.8948 3.1154 0.9194

Φ10 2.5626 3.1003 4.0349 3.4789 2.1240 4.5375

Φ11 2.0366 0.5176 1.3245 4.4366 5.5740 5.7438

Φ12 1.8242 2.6811 3.1068 4.3561 2.1648 3.7034

Φ13 2.0952 2.6034 0.3976 5.8205 3.1619 0.1789

Φ14 3.5153 2.5592 2.1515 5.7127 0.3111 5.0597

Φ15 0.7190 2.1976 3.8016 0.4326 2.2879 3.6221

Φ16 0.2276 6.1675 2.3824 2.4168 3.4585 4.7125

Φ17 2.5854 0.0353 4.5556 3.9018 2.6660 0.5854

Φ18 4.3384 1.8769 4.5526 1.6916 3.7406 2.7495

Φ19 0.8591 0.3220 2.8490 3.7723 3.8776 2.3331

Φ20 1.5947 4.3013 2.7105 0.2738 0.6973 1.3127

Φ21 1.0851 4.4499 3.9996 3.5643 5.4335 5.3541

Φ22 4.1919 5.2382 4.8776 5.4238 5.6328 4.9300

Φ23 1.6175 2.6795 2.0416 0.2190 5.3110 3.1792

Φ24 4.3589 2.5970 2.7735 5.0224 4.1288 5.7822

Φ25 0.5043 1.3012 3.7371 4.9092 4.1911 0.9306

Φ26 4.0159 4.2658 3.8720 3.0306 1.0407 5.7265

Φ27 5.2438 4.7754 3.6737 3.7614 1.8494 4.9512

Φ28 0.0640 2.6637 2.5367 5.2247 4.2399 2.6627

Φ29 0.9041 0.0558 4.4353 0.6034 3.6006 3.9809

Φ30 4.8797 2.6827 3.3236 4.9620 0.3715 6.0747

Φ31 2.7785 5.3831 1.1931 5.8136 0.5456 3.9853
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5. Application to bipolar sequences

From the implementation point of view, the most impor-
tant class of spreading sequences are bipolar or biphase
sequences, where the φm; m= 1;2; : : : ;N, can take only
two values 0 and π . This results in the elements on the
diagonal of DDDN being equal to either “+1” or “�1”. Even
for this bipolar case, we can achieve significantly different
properties of the sequences defined by the WWWN than those
of the original bipolar sequences of the same length.
As an example, let us compare some properties of Walsh-
Hadamard sequences, with the properties of the sequence
set defined by the bipolar matrix WWW32, with the diagonal of
the DDD32 represented for the simplicity by a sequence of “+”
and “�” corresponding to “+1” and “�1”, respectively:

n
++++���+++��+�+�+��++�+���+����+

o
:

(17)

For the unmodified set of 32 Walsh-Hadamard sequences of
length N = 32, the maximum in the aperiodic crosscorrela-
tion function Cmax reaches 0.9688, and the mean square out-
of-phase aperiodic autocorrelation RAC is equal to 6.5938.
That high value of RAC indicates the possibility of signif-
icant difficulties in the sequence acquisition process, and
the high value of Cmax means that for some time shifts the
interference between the different DS CDMA channels can
be unacceptably high. On the other hand, for the set of
sequences defined by the matrix WWW32 considered here, we
have Cmax= 0:4375, and RAC = 0:8438. This means lower
peaks in the instantaneous bit-error-rate due to the MAI
and a significant improvement in the sequence acquisition
process.

Fig. 4. Plots of the maximum value of the aperiodic crosscorre-
lation ACCmax for all possible pairs of the sequences versus the
relative shift between them.

In Figure 4, we present the plot of the upper limits
for the aperiodic crosscorrelation functions for the set of

Fig. 5. Histogram of a number of errors in a transmitted frame
for the DS CDMA system utilizing Walsh-Hadamard spreading
sequences.

Fig. 6. Histogram of a number of errors in a transmitted frame
for the DS CDMA system utilizing spreading sequences defined
by the matrix WWW32.

Walsh-Hadamard sequences and the set of sequences de-
fined by our matrix WWW32. The presented plots illustrate
the improvement that can be achieved by our modifica-
tion. This, of course, translates directly on the level of
BER caused by MAI, which has been confirmed by sim-
ulations involving transmission of 500 frames of 524-bites
over 32-channel asynchronous DS CDMA systems. One
of those systems utilized 32-chip original Walsh-Hadamard
sequences and another one employed 32-chip modified se-
quences defined by the matrix WWW32. In both cases, the
number of simultaneously active users was equal to 8.
From the simulations, we achieved an average BER over
all 32 channels equal to 0.0041 for the original Walsh-
Hadamard sequences, and 0.0020 for the modified se-
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quences, respectively. In addition to the reduction in BER,
the maximum number of errors in any frame is much
lower for the system utilizing the modified sequences,
i.e. equal to 68 compared to 171 for the system utiliz-
ing the unmodified sequences. This is illustrated in Figs. 5
and 6 showing the histograms of the number of errors
per received frame for the system utilizing the original
Walsh-Hadamard sequences and the modified sequences,
respectively.

6. Conclusions

In the paper, we presented a simple method to modify or-
thogonal spreading sequences to improve their correlation
properties for asynchronous applications, while maintaining
their orthogonality for perfect synchronization. The method
leads, in general, to complex polyphase sequences but can
also be used to obtain real bipolar sequences. In the case
of polyphase sequences, the phase coefficients can be cho-
sen to achieve the required correlation/spectral properties
of the whole set of sequences. The presented numerical
example illustrates how different correlation characteris-
tics can be successfully modified or even optimized for
the set of polyphase orthogonal sequences. Of course, dif-
ferent search criteria can be used depending on the par-
ticular application. Another presented example shows that
for practical applications, where bipolar sequences are pre-
ferred, the method can also yield a significant improve-
ment in the properties of the sequence set over those of
pure Walsh-Hadamard sequences. Simulation results in-
dicated that the asynchronous DS CDMA system utiliz-
ing our sequences has lower BER and significantly smaller
number of errors per frame than that can be achieved
when the system utilizes unmodified Walsh-Hadamard
sequences.
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