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Abstract — Two ideas of modifying projection methods for the
case of smooth nonlinear optimization are presented. Projec-
tion methods were originally successfully used in solving large-
scale linear feasibility problems. The proposed instantiations
of projection methods fall into two groups. One of them is
a decomposition approach in which projections onto sets are
realized as optimization problems which themselves involve
much portions of original problem constraints. There are two
subproblems: one build with linear constraints of the origi-
nal problem and the second one build with original nonlinear
constraints. These approaches use special accelerating cuts
so that the separation of nonlinear and linear constraints can
be effective and some problem sparsity preserved. The sec-
ond group bases on penalty-shifting/multiplier methods and
draws from the observation that unconstrained subproblems
obtained there may solve very slowly due to their nonsmooth
character. Thus it is proposed to solve them with modified pro-
jection methods which inherit from conjugate gradient meth-
ods a multi-dimensional subspace in one epoche.

Keywords — projection methods, penalty shifting method, non-
linear optimization.

1. Introduction

Projection methods [2, 10] in their classical form serve for
solving convex feasibility problems, i.e, the problems of
finding a common point of several closed convex sets. They
received some success, especially in image reconstruc-
tion for medical applications (see references in [2]), where
problems of million sizes have been solved favourably for
some time. There has been a considerable stream of re-
search on adopting projection methods for optimization
problems, which differ from feasibility problems only by
the existence of a goal function. However, usually the
investigations surround themselves with nondifferentiable
optimization [13, 19], whereas the author sees some pos-
sibilities to aply them in more “standard” branches of op-
timization, i.e. nonlinear smooth, possibly large-scale opti-
mization. Despite their success in solving large feasibility
problems, projection methods have other features that seem
appealing for such a usage. They do not have to involve
any complex linear algebra in the case where the sets in
feasibility problems are halfspaces (which means that the
feasibility problem is linear). On the other hand, the large
nonlinear optimization problems are usually composed of
a big linear part and much smaller nonlinear part. Other

attractive features of projection methods include a clear in-
dication of how to accelerate them, easily seen from the
convergence analysis: the method should make long steps.
Several things seem discouraging, for example, the theoret-
ical worst-case convergence for projection methods is not
much competitive, but the author proposes some ways of
taking advantage of information taken from quadratic mod-
els of the nonlinear optimization problem, which should
accelerate the solving process.
In Section 2 a brief introduction to projection methods is
given. The next two sections show a few-years work of the
author on adapting projection methods for nonlinear opti-
mization. Two approaches are presented. One of them is
only briefly summarized in Section 3 (it was in more detail
presented in [4] and [5]). This is a decomposition approach
in which projections are realized via solving two different
optimization subproblems with auxiliary solvers. One of
the subproblems involves the linear constraints from the ini-
tial problem and the second one – the nonlinear ones. Due
to the separation of constraints, specialized solvers (pure
linear and nonlinear) may be used for the subproblems.
The method is designed for problems in which the large
size is generated mainly by the size of the linear part. The
main effort in designing this method was done to generate
special accelerating cuts that preserve the good features of
the parts of the initial problem (sparse structure of the lin-
ear part and the low dimensionality of the nonlinear part).
A very interesting feature of this method is that one of its
best behaviors can be expected on the so-called nonlinear
multicommodity flow problem, a classical item in telecom-
munication network design.
Section 4 presents an approach introducing projection
methods in solving nonlinear optimization problems via the
multiplier/penalty shifting method. The multiplier method
produces unconstrained subproblems. Due to the spline
character of these subproblems they might be sometimes
very hard to solve, and the level of this hardness surprized
the author who was trying to tackle them with a conju-
gate gradient method. The author proposes replacing the
conjugate gradient method with a special kind of projec-
tion method, in which, however, a quadratic model of the
minimized function and elements of the conjugate gradi-
ent method are still present and allow to obtain long steps
in the projection method. This approach is formulated as
a core algorithm and may have various realizations, each
of them probably requiring a considerable amount of addi-
tional conceptual work.

43



Paweł Białoń

Finally, in Section 5 some discussion and the author’s ob-
servations regarding the methods as well as conclusions
steming from the author’s experience are given.

2. The idea of projection methods

Projection methods serve to solving the following convex
feasibility problem:

Find

x2 S
def
=
\

i=1;:::m

Gi ; (1)

where Gi � R
n are closed, convex sets. In practice, Gi are

often defined as sets of points allowed by some constraints.
Assume that S is nonempty. We start our description with
the case of m= 2.
For x2 Rn and a closed convex nonempty C� R

n we shall
denote by PCx the (unique) orthogonal projection of x onto
C, PCx = argminy2Ckx� yk2. The projection vector for
such a projection is PCx�x.
The idea of searching for the solution consists in performing
sequential alternate projections onto G1 and G2; i.e., given
the starting point x0, we produce a sequence

x1 = PG1
x0; x2 = PG2

x1; x3 = PG1
x2; etc. (2)

We assume such projections are easily realizable numeri-
cally.
In the convergence analysis of projection methods it is im-
portant that the projection operator possesses the Fejér con-
traction property.

Definition. A finite or infinite sequence (xi) of points in
a Hilbert space H has the Fejér contraction property with
respect to C� H if

kxi �ck2 � kxi+1�ck2+kxi+1�xik2 (3)

for each c 2 C. Similarly, operator O : H ! H has this
property if for each c2C and x2H kx�ck2�kOx�ck2+
+kOx�xk2.

Fact. Projecting onto a nonempty closed convex set of
points in Rn has Fejér c. p. with respect to this set.
For a proof of the above fact see calculations on page 228
in [14] with tmin = tmax= 1.

After putting C= S we see that with every projection per-
formed in our algorithm (2) we decrease the squared norm
from (any but fixed) point c2 S by at least the square of
the appropriate step (projection vector) length . It now
suffices to assure certain lengths of steps to establish the
convergence1.
In other words, the Fejér contraction property of projections
in our algorithm means that we approach each solution
point with an acute angle.

1Which is usually easy and is done with the notion of the problem
geometrical property called regularity – see [2].

Zigzagging often slows down projection methods: we may
approach the solution with an angle less than but close to
π=2, making the distance from a solution decrease very
slowly. This happens in an example in Fig. 1; there, more-
over, consecutive projection vectors form angles close to π .

Fig. 1. Zigzagging.

Cuts serve as a standard remedy for zigzagging. Given
point a and vector p in a Hilbert space, we define a cut as
an inequality h��a;bi � hb;bi � 0 with fixed a;b2 Rn; its
hyperplane H(a;b) is given as fx2Rn : hx�a;bi= hb;big,
its halfspace – as fx2 Rn : hx�a;bi � hb;big.
Using cuts means replacing (2) with

x1 = P
G0

1
1x0; x2 = PG0

22x1; x3 = PG0
13x2; etc. (4)

where sets G0
1

k and G0
2

k (k = 1;2;3; : : : ) are G1 and G2
narrowed by some cuts, i.e, they were obtained from G1
and G2 by intersecting G1 and G2 with halfspaces of some
cuts.
A geometric cut based on (constructed after) the projection
of x =2G onto close convex G, G� S is defined as

h��x;PGx�xi � hPGx�x;PGx�xi :

In Fig. 2, unlike in Fig. 1, point x3 was obtained by project-
ing x2 not onto G2 but onto G2 narrowed by the geometric
cut constructed after projection of x1 onto G1. H is a hy-
perplane of this cut. We see that the step made is longer
and we approach the solution with a smaller angle.
A cut is called valid or proper if it is satisfied for each
point in the solution set S. Validity is necessary to assure
that narrowed sets (i.e., G0

1
k or G0

2
k) contain S and thus

projection onto them still possesses the Fejér contraction
property with respect to S; moreover, we do not want our
method to degenerate by producing empty G0

1
k or G0

2
k. Ge-

ometric cuts constructed after a projection of an x =2G onto
nonempty, closed, convex G� S can be easily shown to be
proper.
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Fig. 2. A geometric cut reduces zigzagging.

Fig. 3. Obtaining a surrogate cut (dotted line) from two cuts
(dashed lines) whose normal vectors form an obtuse cone; q= 2.

We may narrow set G1 or G2 with only one cut but it
may bring a profit in efficiency to narrow them with sev-
eral cuts simultanously (i.e., to intersect G1 or G2 with the
intersection of the halfspaces of several cuts). Various tech-
niques for cuts cumulation are given in [6, 7, 12, 13, 16].
We can:

1. Project on the real intersection of halfspaces of cu-
mulated cuts by solving an optimization problem that
reflects the definition of orthogonal projection (it has
a quadratic goal function).

2. Construct a valid “surrogate” cut on basis of the cu-
mulated cuts and project on its halfspace, hopefully
obtaining a long projection vector (step).

A way of obtaining a surrogate cut from q geometric
cuts, say h:� p; tii � htt ; tii, i = 1; : : : ;q was given
by Cegielski [6, 7] (and a similar approach – by
Kiwiel [12]). Here p is the current iterate point.

Lemma (adopted Remark 7 on Theorem 3 in [6]) .
Let p;z2 Rn , p 6= z. If

(a) S = fsi : i = 1; : : : ;qg is a system of linearly
independent vectors,

(b) 8i2f1;:::;qg hz� (p+si);sii � 0,

(c) coneconvS obtuse2,

(d) t is the solution of the following equation sys-
tem

8i2f1;::: ;qg h(s
i); t�sii= 0 (5)

then hz� (p+ t); ti � 0.

This lemma says that the cut h:� (p+ t); ti � 0 is
valid on condition that the cumulated cuts are valid3 –
see Fig. 3; this is the surrogate cut in Cegielski’s
method. The next iterate is obtained from p by
adding t, a long vector, to it.

However, the normals si of cuts must form an obtuse
cone. Cegielski assures it in several ways, the easiest
one is to assure hsi ;sj i � 0 for i 6= j (so si form
a so-called regular obtuse cone), by a simple rejection
of some cuts to be cumulated.

Any convex optimization problem of the form
min

x2
Tm

j=1 Gj�Rn f (x) may be solved by means of projection

methods for feasibility problems after reducing it to
a feasibility problem of finding a common point of Gj ,
j = 1; : : : ;m and fx2 Rn : f (x) < Qg, parametrized with
number Q, which must be experimentally tuned to the
optimal value of the initial optimization problem within
some schemme, e.g. bisection or level control [11]. Thus
we actually need to solve a sequence of feasibility problems
with various Qs; usually a detection of infeasibility of
a feasibility problem must happen from time to time.

3. Decomposition of large problems
into linear and nonlinear parts

The algorithm described in this section is multi-layered,
similarly as the group of approaches described in the next
section. They both combine some elements typical for
smooth optimization with elements of projection methods.
Here the projection layer is higher than the layer of standard
smooth techniques.

2An accute cone is a cone C such that for a2C, b2C ha;bi � 0, an
obtuse cone is a cone conjugate to some accute cone.

3i.e., they do not cut off any solution point represented here by z.
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The solved problem after reducing to a feasibility problem
with parameter Q has the following form: find (x>;y>)>

that satisfies:

g(x)�Q

A(x>;y>)> � b

B(x>;y>)> = d

xlo � x� xup; ylo � y� yup;

(6)

where function g : RnN ! R
mN depends in one coordinate

on Q, since this coordinate was made from the goal function
of the optimization problem (the coordinate says how much
the goal function value exceeds Q). A and B are matrices of
appropriate sizes. Functions gi are continuous quasiconvex,
xlo,xup,ylo,yup are constant vector bounds.
The feasibility problem has nN nonlinear variables4 , nL lin-
ear variables, mN nonlinear inequality constraints, mLI lin-
ear inequality constraints, mLE linear equality constraints.
Let m=mN+mLI +mLE, n= nL+nN. The better mN �m
and nN � n, are fulfilled, the more efficient the algorithm
will be.
In order to solve the problem (6) we need to see it in the
form of (1).
The following sets N and L will play the role of G1 and G2
in problem (1):

N =fx2 RnN : g(x)� 0^xlo � x� xupg

L =
n

x2 RnN : xlo � x� xup^

^ 9y2RnL

�
ylo � y� yup^

^ A(x>;y>)> � b^B(x>;y>)> = d
�o

:

Notice that these are not actually the sets of points al-
lowed by nonlinear and linear constraints but their orthog-
onal projections on the subspace of nonlinear variables.
The projection algorithm operates in this low-dimensional
subspace.
Projections on these sets are realized by solving optimiza-
tion subproblems with quadratic goal functions, moreover:

1. A projection on N yields a small (nN�mN) subprob-
lem with nonlinear constraints.

2. A projection on L yields a large (n�mL) subproblem
but with linear constraints.

The optimization subproblems are solved efficiently with
specialized solvers, in the author’s experiments nonlinear
IAC-DIDASN++ [15] and quadratic HOPDM [1].
A special care is connected with using geometric cuts, but
this will be only outlined here (see [4] and [5] for de-
tails). An introduction of geometric cuts in general means
extending the above subproblems by adding suitable linear
inequality constraints to them. Whenever we use such a cut,

4A nonlinear variable is a problem variable involved in at least one
nonlinear function in the model formulation; the remaining variables will
be called linear.

the inequality must be present in the subproblem realizing
the projection.
We can freely construct a geometric cut based on a pro-
jection onto N: such a cut introduces at most nL nonze-
ros into constraint matrices of the quadratic subproblem,
which is not much by comparison with the nonzeros num-
ber in constraints from the quadratic optimization subprob-
lem.
Using a cut based on a projection onto L should be avoided:
if we wanted to use such a cut in some next projection
onto N, we would introduce a bigger relative complication
into the nonlinear subproblem. Thus we treat this cut only
as “virtual”, e.g., we state that such a cut might be con-
structed and would be proper, but we do not really add it
to any collection of cumulated cuts that augments N. Then
we cumulate such a “virtual” cut with the latest cut based
on the projection onto N, obtaining a surrogate cut accord-
ing to Lemma in point 2 in Section 2. The surrogate cut,
called anti-zigzagging cut (or Z-cut) is used later instead of
the “virtual” cut to augment subproblems; however, it aug-
ments only the quadratic subproblems so the subproblem
complication is not excessive.
The successive Z-cuts can be then cumulated directly, by
cumulation of constraints augmenting a subproblem (i.e., in
the way described in point 1 in Section 2). Since the cu-
mulation is full, i.e, each successive Z-cut is cumulated,
the zigzagging in the method is claimed to decrease in the
cited works.
A nice feature of the method is discussed in [5]. The re-
quired proportions of sizes are particularly good when we
apply the method to the nonlinear multicommodity flow
problem [18]. Moreover, the situation becomes better as
the number of commodities distinguished in the problem
grows.

4. Accelerating the multiplier method
with projection methods elements

In this section we shall want to solve the following prob-
lem:

min
x2Rn

ϕ(x) (7)

s. t.

g(x)� 0 (8)

with g : Rn 7! R
m, gi and ϕ continuous quasiconvex.

The idea of algorithm presented in this section bases on
an observed poor behavior of a penalty shifting/multiplier
method in the version for inequality constraints ([3], see
also [21]) and with the Fletcher-Reeves conjugate gradi-
ent method applied to the resulting unconstrained subprob-
lems. The author once solved a problem of the form (7)–(8)
with several tens (!) of variables, a quadratic goal func-
tion and several tens or about a hundred of quadratic in-
equality constraints. Even on such a small example, the
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solution times sometimes reached a rank of hours. The
number of iterations of the multiplier method was small,
but the resulting subproblems were solved extremely slow.
Probably setting a too high penalty coefficient was not the
reason for this behavior, since the coefficient did not ex-
ceed the value of 1 even by several ranks of value; neither
did the coefficients in the initial problem definition differ
from 1 by many ranks. The probable reason for such a be-
havior of the method was formulated as a nonsmooth (ac-
tually spline) character of the unconstrained subproblems,
caused by a similar character of the augmented Lagrangian
function.

We can find several signs in the literature that seem to sup-
port the anxiety about the augmented Lagrangian for in-
equality constraints and the application of it being spoken.
One of them is the existing collection of trials of modi-
fying the augmented Lagrangian in order to eliminate its
quadratic-spline character. An example is a construction
of a cubic Lagrangian. A second one might be the way
of treating nonlinear inequality constraints in the broadly
recognized LANCELOT solver [8]. Instead of using the
version of the multiplier method for inequality constraints
directly, the nonlinear inequality constraints are first trans-
formed to nonlinear equality constraints by an addition of
bounded slack variables, similarily to the way it is done
in the simplex method. Then the equality constraints are
treated with the variant of the multiplier method for equal-
ity constraints, in which the Lagrangian is smooth. The
constructors of the solver even agree with a possibility of
obtaining nonconvex subproblems, with additional slacks
and bounds (the bounds on slacks are transfered to the un-
constrained subproblems of the multiplier method).

Having in mind the hardness of the subproblems with nons-
mooth Lagrangian, the author of this paper decided to solve
the subproblems with a variant of projection method.

If we wanted to truly treat the Lagrangian (the goal func-
tion of the unconstrained subproblem) as a nondifferen-
tiable function, we would perhaps want to use some vari-
ant of the Polyak subgradient method [19] for minimizing
a convex goal function φ . In an iteration of this method,
one makes a projection of the current iterate point on the
Q-level set of the linear underestimation of φ constructed
on the basis of the value and the subgradient of φ at the
current iterate; Q denotes, as previously, the current estima-
tion of the minimal value of φ . But it seems better for the
convergence speed if we take an advantage of a quadratic
model of the minimized Lagrangian (let us denote it as
f : Rn 7! R) which may be, at least locally, good if the
initial optimization problem was smooth.

In a Polyak method iterate we actually use the information
at one point and we obtain a projection vector of a certain
length. In the author’s proposition we first make k � n
steps (an epoche of steps) of the Fletcher-Reeves method,
say, while the quadratic approximation of f seems good
enough. From there we have an approximate model of the
function in a whole subspace ∆ of the dimensionality of k.
This information allows us to find a point ỹ 2 ∆ at which

we can construct a valid cut: h:� ỹ;∇ f (ỹ)i � 0. Then
we project the current iterate p onto the halfspace of this
cut; since the cut is valid, the projection possesses the Fejér
contraction property w.r.t. any solution point. The vector of
projection of current iterate p onto the halfspace of this cut
is hoped to be much longer than that in the Polyak method,
since we can choose ỹ from the whole subspace ∆. As
we remember, a big step length usually implies a quicker
convergence in projection methods.
We shall manage only to outline the proposition, since it is
quite sophisticated and may have many variants. We start
with the heart of the proposition, which is calculating ỹ.
Assume the epoche of conjugate gradient method gener-
ated points x0 � p, x1; : : : ;xk 2 Rn , conjugate directions:
d0;d1; : : : ;dk�1 2 Rn, gradients of f : g0 = ∇ f (x0), g1 =
=∇ f (x1); : : : ;gk =∇ f (xk), real coefficients β 1, β 2; : : : ;β k

and the step lengths α0;α1; : : : ;αk�1.
These objects are interrelated with the following dependen-
cies:

d0 =�g0 ; (9)

di =�gi +β idi�1 (i = 1; : : : ;k) ; (10)

xi+1 = xi +α idi (i = 0; : : : ;k�1) : (11)

For simplicity we assume xk = 0.
We shall now treat f as a quadratic function defined with
a symmetric, positive definite matrix.

Fig. 4. Choosing point ỹ. The ellipses denote the level sets of f ,
the smaller plane is the plane of the cut and v is the projection
vector that should be as long as possible.

The problem of choosing ỹ is shown in Fig. 4. Vector v
is the projection vector and we want to make it as long as
possible. In order to make a small exercise try to imagine
how this figure change for two choices: ỹ= x0 and ỹ= xk.
Observe that x0 is a poor candidate for ỹ, since for such
a choice the final steplen jvj would be equal to 0. Neither
ỹ = xk is a good choice, since from theory of conjugate
gradient methods we know that gk?∆, which against yields
kvk= 0.
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The heuristic taken by the author is to search for ỹ among
points x satisfying5

∇
k

f (x) =�τ(x�x0) ; (12)

x2 ∆ (13)

for some positive parameter τ , where ∇k f denotes the part
of ∇ f parallel to ∆.
The solution of system (12)–(13) becomes easier when we
represent x in the basis of conjugate directions: x = Ds,
D�

�
d0d1 : : : ;dk�1

�
and thus reduce them to a search for

the best s.
Under such a representation, system (12)–(13) transforms,
with some elaborated calculations, to

(I + τM)s= q (14)

with

M =

2
666666666666666664

1
α0 �

β 1

α1

β 1�1
α0

β 2+1
α1

�1
α1

. . .
�β k�2

αk�2

β k�1+1
αk�2

�β k�1

αk�1

�1
αk�2

1
αk�1

3
777777777777777775

(15)

and q being the representation of x0 in the basis of conju-
gate directions: x0 = Dq.
Now the search for the best ỹ is reduced to a search for op-
timal τ > 0. For a candidate τ we find s by solving a quite
easy system (14), with a tridiagonal matrix, compute ỹ=Ds
and for it (based on real gradient of the minimized func-
tion f , or on its quadratic model being considered now),
the projection vector. The length of the projection vec-
tor seems not to be in general a concave function of τ ,
but practical experiments showed that one-dimensional op-
timization in τ may be replaced just with examining several
values of τ .
The cuts generated by the algorithm are then cumulated
with the Cegielski’s method of regular obtuse cone pre-
sented in Section 2, but only a limited number of them
takes part in the cumulation process in order to keep the
linear systems present in the method (one in the cuts cu-
mulation process, second in searching for ỹ) small.

5. Discussion

The method of decomposition from Section 3 has been thor-
oughly discussed in [4] and [5]. Several modifications of

5The demand of exact maximization of kvk yields a multidimensional
nonconvex optimization problem. Instead, in the heuristics we want to be
far from the situation where angle between (ỹ�x0) and ∇k f (ỹ) equals to

π=2, as it happened with the choice of ỹ= xk.

this method are possible, e.g., a possibility of augmenting
set N with geometric cuts instead of set L if we decide so
by more precise analysis of particular problem sizes. Other
options include subtle changes in the order of cuts cum-
mulation, which may affect the speed of convergence. The
method performed quite good on an artificial multicom-
modity flow problem in the sense of number of iterations
in the projection method layer. Thus, the decomposition
of the problem into linear and nonlinear parts seems to be
done well, but the overal effectiveness of the method de-
pends on the speed of the solvers solving pure (quadratic
or nonlinear) subproblems. Applying warm restarts during
many runs of the quadratic solver seems to be necessary
in order to make this method competitive with commercial
solvers on this problem.
Regarding the method of combining projection and the con-
jugate gradient method from Section 4, one must be aware
of a great number of technical details and further decisions
that we face when trying to implement it, in particular:

1. A separate treatment of equality constraints in large
problems. We constructed our method for purely
nonlinear problems. We can formally represent lin-
ear constraints as nonlinear, but for large problem it
usually becomes essential to treat them separately6.
Linear constraints can be introduced directly in the
form of additional cuts to be cumulated in the conical
method.

2. Introducing bounds on variables would somewhat
complicate the algorithm; perhaps some elements of
projected gradient method would have to be used,
may be the bounds would have to be added to the
collection of cuts being cumulated.

Speaking about large problems, let us make an important
note. Due to inserting linear constraints directly in the pro-
jection method steps and due using some conjugate gradient
techniques (not variable metric) there is a chance to design
the whole algorithm so that any complicated linear algebra,
like an implicit inverting sparse matrices, is avoided.
Making the cuts based on points ỹ even deeper than in the
above descriptions seems to be another important issue. In
some circumstances such operations might be essential for
an efficient work of the method.

1. Having an approximation Q for the optimal value
of the unconstrained subproblem, one can shift any
constructed cut (make it deeper) by using techniques
known from the Polyak method (apply a linear model
of f constructed at point ỹ). However, f must be
convex, not only quasiconvex, to make this approach
proper.

6Remember also that the method does not support nonlinear equality
constraints, so linear equality constraints cannot be represented as non-
linear. A propos, the inability of treating nonlinear equality constraints is
common to both the propositions in this paper. It seems essential since it
stems from the fact that projection methods work only for convex prob-
lems. Possibly, one might try some trust region approach to incorporate
nonlinear equality constraints.
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2. Do not use the Lagrangian in all runs of the subprob-
lem solving, but instead its different valid underesti-
mations, which are easy enough to obtain due to the
spline character of the Lagrangian. This may intro-
duce some perturbations in the cuts positions (usu-
ally deepening) resulting in long steps after the cuts
cumulation. A difficulty occurs in such a case: one
must stop conjugate gradients run when we go below
the optimal value of the subproblem, since otherwise
obtained cuts would be invalid.

Many technical decisions, some of them mentioned earlier,
certainly must be made in order to make the process of
finding τ work properly.
Another concern must be connected with the work of the
method of cuts cummulation itself. It might be augmented
or tuned for some interesting patterns configuration of cuts,
frequently observed during experiments (closeness of the
angles between the majority of cut normal pairs to π=2;
very obtuse cones observed for some problems).
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