
Paper Heuristic algorithms
in topological design

of telecommunication networks
Piotr Karaś

Abstract — The paper addresses the generic topological
network design problem and considers the use of various
heuristic algorithms for solving the problem. The target of
the optimisation is to determine a network structure and
demand allocation pattern that would minimise the cost of
the network, which is given by fixed installation costs of
nodes and links and variable link capacity costs described
by linear or concave functions. Input data for the optimi-
sation consists of a list of potential node and link locations
and their costs and a set of demands defined between the
nodes. Since the problem is known to be NP-hard, the
use of specialised heuristic algorithms is proposed. The pre-
sented approaches encompass original ideas as well as se-
lected methods described in literature and their enhance-
ments. The algorithms are based on the following ideas and
methods: shifting of individual flows, local and global restora-
tion of flows from chosen links or nodes, Yaged algorithm
for finding local minima, Minoux greedy algorithm, simu-
lated allocation and genetic algorithms. Efficiency of each
of the proposed methods is tested on a set of numerical
examples.

Keywords — topological design, network optimisation, heuristic
algorithms, genetic algorithms.

1. Introduction

Topological design of telecommunication networks encom-
passes a range of problems related to localisation of links
and nodes of a network. The target of the optimisation is to
determine a network structure and demand allocation pat-
tern that would minimise the cost of the network, given
a list of potential node locations and a list of admissible
interconnections between these nodes. The objective func-
tion to be minimised is given as a sum of fixed installation
costs of nodes and links and variable link capacity costs
(a function of link capacity).
Two subproblems can be distinguished – namely the
link localisation problem (LLP), where only link local-
isation is to be optimised, and the more general tran-
sit node and link localisation problem (TNLLP), where
localisation of links and transit nodes is subject to op-
timisation. In literature the LLP is also referred to as
the optimal network design problem. This paper ad-
dresses both variants, however it concentrates on the more
complex TNLLP.

Below the inputs and objectives of the optimisation are
described in more detail.
Input data for the optimisation:

– a list of nodes, where access nodes (which originate
or terminate demands) and transit nodes (which may
transit flows) are distinguished;

– a list of all allowable interconnections between nodes
(access links for connecting access nodes to tran-
sit nodes and transit links for interconnecting transit
nodes);

– demands defined between access nodes, which are to
be satisfied;

– link costs – a fixed link installation fee and a variable
cost (function of link capacity);

– node costs – a fixed transit node installation fee.

Objectives of the optimisation:

– derive a set of necessary transit nodes;

– derive a set of necessary transit links and access
links;

– find an optimal routing of demands in the network;

– minimise the objective function, which is given as
a sum of costs of all actually installed links and
nodes.

The discussed topological network design problem is
generic. It may be interpreted as a task of optimising the
topology of a backbone network. Such a design task is
a difficult combinatorial optimisation problem and is known
to be NP-hard. As the use of exact methods is, in this case,
limited to very simple network examples, the heuristic ap-
proach has to be considered. Moreover, due to the local op-
tima problem, only more sophisticated methods can prove
to be effective.
The paper provides a mathematical formulation of the con-
sidered problem and proposes a set of adequate heuristic
algorithms. The presented approaches encompass original
ideas as well as select methods described in literature and
their enhancements.
The proposed algorithms can deal with problems where
link cost functions are either linear functions of link ca-
pacity with a fixed cost (e.g. link cost may depend on the
geographical distance between nodes and a fixed link instal-
lation fee) or concave functions of link capacity (reflecting
the economy of scale phenomenon common in telecommu-
nication systems).

73



Piotr Karaś

Numerical examples considered in this paper follow an as-
sumption that the demands are directed and links are undi-
rected (link capacity is taken as a sum of flows in both
directions). However all of the algorithms could be easily
adapted to solve problems with directed links if required.
Similarly sets of transit nodes and access nodes are basi-
cally assumed to be disjoint but the algorithms allow for
access nodes with transiting capability (mixed functional-
ity).
The paper is organised as follows. Section 2 of the pa-
per provides a mathematical formulation of the considered
problem. Next, in Section 3, a range of specialised heuris-
tic algorithms for topological network design is described
in detail. Efficiency of each of the proposed methods is
tested on a set of numerical examples – the network exam-
ples, obtained results and calculation times are presented
and discussed in Section 4. Finally, the concluding remarks
can be found in Section 5.

2. Problem formulation

Below, a general formulation of the transit node and link
localisation problem is given. The link localisation prob-
lem, which is a special case of TNLLP, can be obtained by
assuming a fixed transit node configuration and setting null
transit node installation costs.
The TNLLP formulation presented below uses the link-path
notation. The node-link notation is also available (c.f. [1])
and may be more suitable for MIP solvers.
As mentioned above, link cost can be given either by a lin-
ear or a concave function of link capacity. In order to
obtain a MIP formulation, the ceye term should be used
in (1) instead of fe(ye), which allows for a nonlinear case.

TNLLP (link-path formulation)

indices

d = 1; 2; : : : ; D demands
j = 1; 2; : : : ; Jd paths for flows realising demand d
e= 1; 2; : : : ; E links
v= 1; 2; : : : ;V transit nodes

constants
hd volume of demand d
aed j 1 if link e belongs to path j realising

demand d,
0 otherwise

ke fixed link e installation cost
fe(ye) variable cost of link e

(a function of load ye of link e)
bev 1 if link e is incident with transit node v,

0 otherwise
lv fixed transit node v installation cost
Ye upper bound of the capacity of link e

(not active)
Gv upper bound of the degree of transit node v

(inactive)

variables
xd j flow realising demand d allocated to path j

(non-negative continuous variable)
ye capacity of link e (non-negative continuous

variable)
σe 1 if link e is provided, 0 otherwise (binary

variable)
εv 1 if node v is provided, 0 otherwise (binary

variable)

objective

min∑e

�
fe(ye)+keσe

�
+∑v

lvεv (1)

constraints

∑ j
xd j = hd d = 1; 2; : : : ; D; (2)

∑d ∑ j
aed jxd j = ye e= 1; 2; : : : ; E; (3)

ye�Yeσe e= 1; 2; : : : ;E; (4)

∑ebevσe�Gvεv v= 1; 2; : : : ;V: (5)

Constraints (2) guarantee realisation of demands imposed
on the network. Constraints (3) and (4) ensure that zero
capacity is assigned to all links that are not provided.
Consistent link and node allocation is enforced by con-
straints 5). In the considered problems parameters Ye

and Gv are assumed to be inactive – they do not limit
the capacity of edges and the degree of the nodes, respec-
tively.
Localisation of access nodes is determined by the set of
demands imposed on the network. Null installation fee is
assumed for these nodes, since it does not have any influ-
ence on the produced solutions (other than shifting all of
the results by a fixed value).

3. The methods

All of the considered heuristic methods and their modifica-
tions are presented below. A short description is provided
in each case.

3.1. Flow shifting and rerouting

Most of the proposed flow shifting methods are new im-
plementations of approaches already presented in literature
(c.f. [1, 2]), in many places original modifications have
been introduced. The flow shifting algorithms are rather
simple and serve as basis for some of the more complex
methods described in the following subsections.

3.1.1. Individual flow shifting

Individual flow shifting (IFS) was proposed in [1] as a sim-
ple heuristic for solving the LLP and TNLLP.
Firstly an initial allocation of demands is performed with
a greedy type of algorithm. Subsequent demands are taken

74



Heuristic algorithms in topological design of telecommunication networks

in a random order and allocated to shortest paths. The paths
are computed according to incremental cost of routing the
demand in question on a given link (in particular if a link
is empty its installation cost is added, otherwise only the
variable cost is counted).
Secondly, in the main loop of IFS, subsequent demands are
checked in a random order and reallocated if their rerouting
results in a decrease of the total network cost.
The algorithm stops when the flow rerouting procedure can
achieve no further network cost improvement.

3.1.2. Minoux greedy algorithm

The algorithm proposed by Minoux in [2] dealt with the
LLP (ONDP). Here the Minoux greedy algorithm (MGA)
is applied to the TNLLP.
Firstly initial allocation of demands is done, which may
proceed as described for IFS.
Each iteration of the MGA main loop consists in assigning
restoration costs δe to all of the links carrying some load.
The δe value for a given link e is calculated as the cost of
locally restoring the capacity of the link to an alternative
shortest path. The link with the lowest negative restoration
cost δe is switched off and its flows are redirected.
The algorithm stops when, in a given iteration, all of
the links have a positive restoration cost δe, meaning that
no further improvement of the total network cost can be
achieved.

3.1.3. Accelerated Minoux greedy algorithm

The accelerated Minoux greedy algorithm (aMGA) [2]
is similar to MGA, however here changes of restoration
costs δe for subsequent iterations are assumed to be mono-
tonic – hence it is no longer necessary to recalculate all
of the δe in each iteration. Although the above assump-
tion may not be true for all types of link cost functions,
aMGA can be used in all cases and usually provides the
same results as MGA while requiring fewer relocation cost
computations (which, in turn, makes it significantly faster).

3.1.4. Bulk flow shifting

Initial allocation of demands is performed as described
for IFS.
In the main bulk flow shifting (BFS) loop, the algorithm
looks through all of the links in a random order. The cur-
rently analysed link is switched off and demands crossing
it are disconnected. Subsequently an attempt is made to
reallocate these demands to new paths. If the reallocation
is not feasible or causes an increase of network cost then
rollback to the previous configuration is performed.
The algorithm stops when no further improvements are
achievable.
In the case of MGA flows from the removed link were re-
routed locally and jointly. In case of BFS they are rerouted
globally and individually which usually produces a better
result. This algorithm differs from the bulk flow shifting

approach presented in [1] where the deallocation decision
was based on δe computations as described for MGA.
Several variants of the algorithm have been analysed. The
variant described above is marked as BFS/1. BFS/n stands
for a similar method where flows are deallocated on per
node basis rather than per link basis. In BFS/b all of the
nodes and links are checked in each iteration and the best
(not the first better) option is chosen for switch off.
Another option to consider is whether to switch appropriate
links/nodes permanently off or rather allow for flow alloca-
tion on these links/nodes in the following iterations. These
options are indicated as BFS.off and BFS.on, respectively.

3.2. Yaged algorithm

The Yaged algorithm (YAG) proposed in [3] has been used
to find locally optimal solutions of network design prob-
lems characterised by concave link cost functions over a set
of linear flow constraints. The method is known to con-
verge, in a finite number of steps, to local optimum points
compliant with the Kühn-Tucker conditions.
Extensions of the algorithm have been presented in [1].
Here the method is applied to the TNLLP.
First an initial allocation of demands is done.
Subsequent iterations of the main YAG loop consist in re-
calculation of shortest paths for all of the demands with
marginal link costs (d fe(ye)/dye) taken as link weights for
the Dijkstra algorithm.
The algorithm stops when a fixed point is reached, i.e. two
subsequent iterations yield exactly the same flow pattern.

3.3. The notion of adaptive function loop

The adaptive function loop (AFL) approach has been
used in [1], combined with various versions of the Yaged
algorithm, to deal with design problems characterised by
concave link cost functions (requiring global optimisa-
tion). Similar cost smoothing techniques were mentioned
in [1].
The idea consists in placing any of the simple methods
(SM) such as IFS, MGA, aMGA, BFS or YAG in an outer
loop called the adaptive function loop. The AFL modifies
the link cost function for consecutive SM runs. The idea
is to partially linearise the link cost function according to
the following formula:

Ce(ye) =

(
fe(ye) for ye� yth

β th
e �ye for ye < yth

ye� load of link e

fe(ye)�original cost function of link e

yth� threshold link load for linearisation

β th
e = fe(yth)=yth

In subsequent AFL iterations yth value is gradually de-
creased, hence the first iteration is performed with a linear
link cost function (high yth value) and the final one with
the original link cost function (yth = 0). Solution obtained

75



Piotr Karaś

by SM in each AFL step serves as starting point for the
next iteration (Fig. 1).

Fig. 1. Cost function linearisation concept in AFL.

The AFL approach has two advantages. Due to the lineari-
sation, the fixed cost is partially included in computations
of relocation gain (this tends to give better results). More-
over, by changing the initial yth value and/or the number
of adaptive steps nadapt, the algorithm may be directed to
various areas of the solution space, thus dealing with the
local minimum problem.
Since it is not possible to determine yth and nadapt values
that would work equally well for all kinds of problems,
performing multiple AFL loop runs for various combina-
tions of these parameters seems to be a good idea. Of
course such an approach results in a proportional increase
of computation time.
As mentioned above the AFL approach can be combined
with various simple methods. The following options may
be formed:
Individual flow shifting with adaptive function loop (IFS-
AFL)
Minoux greedy algorithm with adaptive function loop
(MGA-AFL)
Accelerated Minoux greedy algorithm with adaptive func-
tion loop (aMGA-AFL)
Bulk flow shifting with adaptive function loop (BFS-AFL)
Yaged algorithm with adaptive function loop (YAG-AFL)

3.4. Simulated allocation

The simulated allocation (SAL) algorithm (c.f. [5]) has
been already applied to the TNLLP in [1]. Here a sim-
ple version of the method along with some enhance-
ments has been implemented for comparison with other
methods.
The simulated allocation works with partial allocation
states. In each step it decides either to allocate or deallo-
cate a randomly chosen demand (allocation is chosen with
a higher probability in order to proceed towards full allo-
cation states). Current value of α factor (defined as frac-
tion of allocated flows) regulates the probability of alloca-

tion Pa and deallocation Pd. For example, for α < 0:8 use
Pa = 1 and for α � 0:8 use Pa = 0:7.
Every now and then, when a complete allocation state
is reached, a bulk deallocation of demands is performed
(e.g. half of all the demands are deallocated). Bulk deallo-
cation enables the algorithm to explore the solution space.
Best complete allocation state that is reached is this manner
is stored as the final solution.
The algorithm stops if the result is not improved for a pre-
defined number of consecutive full allocation states.
One of the introduced enhancements consists in the way
the bulk deallocation is performed. Instead of operation
on per flow basis, the procedure deallocates all flows from
randomly chosen links or nodes until the requested value
of α = 0:5 is reached. An on/off approach, similar to the
one introduced in BFS.on and BFS.off, was also attempted
but did not prove to be effective.

3.5. Genetic algorithm

The proposed genetic algorithm (GA) is based on the
(µ + λ ) evolution strategy [5]. It involves the use of
problem-specific encoding and genetic operators.
The population consists of chromosomes that represent
various structures of the network. Each chromosome is
built of E binary genes corresponding to each link e of
the network. When a link is allocated in a given network
structure, the corresponding gene value of the considered
chromosome is set to 1. Genes set to 0 indicate not allo-
cated links.
The initialisation procedure builds the initial parent pop-
ulation P0 by creating µ chromosomes. Half of the P0 is
generated by the greedy initialisation procedure already de-
scribed for IFS, where shortest paths for the demands are
computed in a random order, thus providing diverse solu-
tions. The other half is derived by routing the demands on
shortest paths obtained for randomly generated link metrics.
In this manner diversity is introduced into P0.
Inside the main program loop an offspring population On

consisting of λ chromosomes is formed by copying ran-
domly chosen chromosomes from parent population Pn and
mutating them. Mutation consists in introduction of gene
variations corresponding to changes in the structure of the
network. The following mutation operators may be ap-
plied to randomly chosen links and/or nodes: node switch
on/off, single link switch on/off and multiple links switch
on/off. Each of these actions is performed with a defined
probability. After mutation, On is evaluated (the demands
are routed in the derived network structure and the total
network cost is calculated for each chromosome) and the
algorithm proceeds to the selection procedure. Here µ best-
fitted (i.e. characterised by a minimal network cost) chro-
mosomes are chosen and they become the parent population
Pn+1 for iteration n+1.
The loop is exited and the program ends when one of the
following two conditions occurs: the algorithm is unable to
improve the current best solution for a specified number of

76



Heuristic algorithms in topological design of telecommunication networks

Table 1
Parameters of the tested networks

Network
Number of

transit nodes
Number of

access nodes
Number of

links
Number of
demands

min hd max hd ∑d hd

N7 7 5 90 42 240 1 920 34 320
N14 14 11 418 182 120 7 560 172 320
N28 28 15 1 050 756 120 30 240 892 492
N9 9 19 132 171 30 150 14 220

generations (so called patience) or it exceeds the maximal
allowable number of generations.
The GA version described above is rather simple and there
is a lot of room for further enhancements. Implementation
of crossover operators could be considered. Explorative
properties of the algorithm should be analysed versus its
ability to find locally optimal solutions – in this way values
of the µ and λ parameters as well as mutation probability
could be tuned.

4. Numerical results

Effectiveness of all of the presented methods has been
tested on a range of numerical examples of diverse com-
plexity. The algorithms have been implemented in ANSI C
and executed on a PC equipped with Athlon 900 MHz
processor and 256 MB of RAM.

4.1. The example networks

Three example network structures characterised by dif-
ferent number of nodes have been analysed: N7, N14
and N28 (available from [7]). Link costs were assumed
to be linear with a fixed installation cost. Another ex-
ample network N9 was used with concave link cost func-
tions. The basic parameters of the networks are given in
Table 1. All links are potentially available.
Additionally several variants of N7, N14 and N28 were
introduced in order to analyse a range of fixed and variable
link cost relations (for LLP and TNLLP) as well as the
influence of various node installation costs (for TNLLP).
The unit cost ce of link e is proportional to its geographical
length. The fixed installation cost is given by ke = ce �10n.
For LLP analysis n2 f0;2;3;6g, whereas for TNLLP anal-
ysis n 2 f4;5g (and fixed costs of links are additionally
multiplied by 3 for access links and by 2 for transit links).
For TNLLP, the fixed installation cost of transit nodes is
given by lv = 10k, where k2 f4;5;6g. There is no instal-
lation fee for access nodes.
Results obtained for all of the algorithms, along with the
computation times, are summarised in the tables presented
in subsections 4.2 and 4.3. In order to draw conclusions
on algorithm average performance 10 runs of each of the
algorithms have been conducted – each with a different
seed value for the randomiser.

Bold font indicates the cases when the optimal solution or
the best suboptimal solution has been achieved. Due to the
problem complexity, an exact solution (taken from [1]) is
available only for the smallest networks and is given in the
EX row. It is worth noting that for all of the considered
network examples the BFS-AFL algorithm has managed to
provide either the optimal solution or the best suboptimal
solution.

4.2. TNLLP results

Tables 2–5 refer to the TNLLP problem where link cost
function are linear with a fixed installation cost. Table 2
contains the average solutions from 10 runs. The best
solutions obtained with each method are noted in Ta-
ble 3. Table 4 shows the relation between the average
solution and the best one known (given by (average –
best known)/best known). Average calculation times are
gathered in Table 5.
BFS-AFL algorithms provided the best average results.
BFS/l.on variant proved to be especially effective. SAL.on
also performed well as far as the average results are con-
cerned – especially for the simpler networks.
Optimal results or best suboptimal results were also
achieved by simple algorithms from the BFS group, how-
ever their average results were somewhat worse. Taking
into consideration short calculation times for algorithms
of this kind, a random approach consisting in performing
a number of runs and choosing the best solution could be
applied in this case.
Effectiveness of the considered methods is well depicted by
the “relative distance from the best” presented in Table 4
and the computation times from Table 5.
The simple algorithms (IFS, MGA, aMGA, BFS and YAG)
are characterised by very short computation times, how-
ever they produce solutions way below expectations. The
only significant exception here is the BFS algorithm group,
which requires only slightly more time to provide already
acceptable solutions. Especially, the BFS/b.on variant can
be considered as a good alternative to more complex and
time-consuming algorithms such as SAL and GA.
Introduction of the AFL loop has significantly improved
the results provided by most of the simple methods. The
AFL loop worked very well with IFS, BFS and YAG. The
results for MGA, with or without AFL, are disappointing
for TNLLP. For IFS and YAG a huge improvement, as

77



Piotr Karaś

Table 2
TNLLP: average results (10 runs average) [cost unit 106]

Network N14 N28
n 4 5 4 5
k 4 5 6 4 5 6 4 5 6 4 5 6

IFS 80.16 81.15 91.05 342.10 343.09 352.99 298.21 299.56 313.06 904.80 906.15 919.65
MGA 78.39 79.38 89.28 309.94 310.93 320.83 306.36 307.71 321.21 861.10 862.45 875.95
aMGA 78.41 79.40 89.30 311.52 312.51 322.41 306.36 307.71 321.21 861.90 863.25 876.75
BFS/l.off 58.96. 59.84 69.36 271.03 271.98 281.43 270.79 272.07 287.04 742.13 743.46 756.69
BFS/l.on 59.35 60.34 70.24 266.16 267.15 277.05 263.29 264.64 278.14 742.74 744.09 757.59
BFS/n.on 59.07 60.06 69.96 267.56 268.55 278.45 263.02 264.37 277.87 748.91 750.26 763.76
BFS/b.on 58.49 59.48 69.38 265.49 266.48 276.38 258.54 259.89 273.39 735.17 736.52 750.02
YAG 80.16 81.15 91.05 342.10 343.09 352.99 298.21 299.56 313.06 904.80 906.15 919.65
IFS-AFL 61.94 63.10 76.67 334.77 335.76 349.52 254.25 256.63 274.03 774.74 782.42 786.01
MGA-AFL 78.58 79.57 89.47 306.21 307.20 317.10 302.58 303.93 317.43 877.32 878.67 892.17
aMGA-AFL 78.58 79.57 89.47 306.21 307.20 317.10 302.58 303.93 317.43 877.32 878.67 892.17
BFS/l.off-AFL 57.86 58.82 67.14 265.81 266.80 276.52 258.16 260.31 273.93 730.33 731.77 745.87
BFS/l.on-AFL 57.61 58.60 67.14 265.32 266.31 276.21 250.78 252.24 265.96 725.13 726.48 741.12
BFS/n.on-AFL 57.61 58.60 67.60 265.32 266.31 276.21 256.13 257.28 271.99 727.67 728.62 742.70
YAG-AFL 63.28 64.27 74.17 338.63 339.62 349.52 254.92 256.27 269.77 782.58 783.93 797.43
SAL.on 57.61 58.60 68.50 265.32 266.31 276.21 262.38 263.73 277.23 738.74 740.09 753.59
SAL.off 65.23 65.87 72.06 306.00 306.79 314.67 287.64 288.72 298.37 845.65 846.76 857.70
GA 57.61 58.60 67.67 265.59 266.58 276.78 261.57 263.73 276.04 746.60 747.86 760.04
EX 57.61 58.60 67.14

Table 3
TNLLP: best results (10 runs data) [cost unit 106]

Network N14 N28
n 4 5 4 5
k 4 5 6 4 5 6 4 5 6 4 5 6

IFS 70.29 71.28 81.18 295.74 296.73 306.63 272.39 273.74 287.24 819.12 820.47 833.97
MGA 68.12 69.11 79.01 287.33 288.32 298.22 283.71 285.06 298.56 780.98 782.33 795.83
aMGA 68.12 69.11 79.01 288.30 289.29 299.19 283.71 285.06 298.56 780.98 782.33 795.83
BFS/l.off 57.61 58.60 67.14 265.32 266.31 276.21 261.60 262.86 275.46 733.00 734.26 746.86
BFS/l.on 57.61 58.60 68.50 265.32 266.31 276.21 255.81 257.16 270.66 729.96 731.31 744.81
BFS/n.on 57.61 58.60 68.50 265.32 266.31 276.21 259.79 261.14 274.64 733.14 734.49 747.99
BFS/b.on 57.61 58.60 68.50 265.32 266.31 276.21 254.79 256.14 269.64 726.48 727.83 741.33
YAG 70.29 71.28 81.18 295.74 296.73 306.63 272.39 273.74 287.24 819.12 820.47 833.97
IFS-AFL 59.85 60.02 71.21 304.49 305.48 315.38 252.31 255.60 270.99 747.33 748.68 756.98
MGA-AFL 68.12 69.11 79.01 287.33 288.32 298.22 283.71 285.06 298.56 779.85 781.20 794.70
aMGA-AFL 68.12 69.11 79.01 287.33 288.32 298.22 283.71 285.06 298.56 779.85 781.20 794.70
BFS/l.off-AFL 57.61 58.60 67.14 265.32 266.31 276.21 255.76 258.60 272.98 726.31 727.66 741.16
BFS/l.on-AFL 57.61 58.60 67.14 265.32 266.31 276.21 250.11 251.74 265.02 723.54 724.89 738.23
BFS/n.on-AFL 57.61 58.60 67.14 265.32 266.31 276.21 254.01 255.79 271.13 726.31 727.66 741.16
YAG-AFL 58.93 59.92 69.82 304.49 305.48 315.38 253.87 255.22 268.72 761.03 762.38 775.88
SAL.on 57.61 58.60 68.50 265.32 266.31 276.21 257.93 259.28 272.78 731.47 732.82 746.32
SAL.off 63.21 63.93 70.69 285.20 286.10 295.10 275.61 276.69 287.49 801.09 802.26 813.96
GA 57.61 58.60 67.14 265.32 266.31 276.21 257.14 261.52 271.70 731.62 732.97 750.79
EX 57.61 58.60 67.14

78



Heuristic algorithms in topological design of telecommunication networks

Table 4
TNLLP: average – best known/best known [%]

Network N14 N28
n 4 5 4 5
k 4 5 6 4 5 6 4 5 6 4 5 6

IFS 39 38 36 29 29 28 19 19 18 25 25 25
MGA 36 35 33 17 17 16 22 22 21 19 19 19
aMGA 36 35 33 17 17 17 22 22 21 19 19 19
BFS/l.off 2 2 3 2 2 2 8 8 8 3 3 3
BFS/l.on 3 3 5 0 0 0 5 5 5 3 3 3
BFS/n.on 3 2 4 1 1 1 5 5 5 4 3 3
BFS/b.on 2 1 3 0 0 0 3 3 3 2 2 2
YAG 39 38 36 29 29 28 19 19 18 25 25 25
IFS-AFL 8 8 14 26 26 27 2 2 3 7 8 6
MGA-AFL 36 36 33 15 15 15 21 21 20 21 21 21
aMGA-AFL 36 36 33 15 15 15 21 21 20 21 21 21
BFS/l.off-AFL 0 0 0 0 0 0 3 3 3 1 1 1
BFS/l.on-AFL 0 0 0 0 0 0 0 0 0 0 0 0
BFS/n.on-AFL 0 0 1 0 0 0 2 2 3 1 1 1
YAG-AFL 10 10 10 28 28 27 2 2 2 8 8 8
SAL.on 0 0 2 0 0 0 5 5 5 2 2 2
SAL.off 13 12 7 15 15 14 15 15 13 17 17 16
GA 0 0 1 0 0 0 5 5 4 3 3 3

Table 5
TNLLP: calculation times (10 runs average) [s]

Network N14 N28
n 4 5 4 5
k 4 5 6 4 5 6 4 5 6 4 5 6

IFS 0 0 0 0 0 0 0 1 1 0 0 1
MGA 0 0 0 0 0 0 0 0 0 1 0 0
aMGA 0 0 0 0 0 0 0 0 1 0 0 0
BFS/l.off 0 1 0 0 0 0 5 5 5 5 5 5
BFS/l.on 0 0 0 1 0 0 5 5 5 4 4 4
BFS/n.on 0 0 0 0 0 0 5 5 5 4 4 4
BFS/b.on 1 1 1 1 1 1 43 43 43 23 22 23
YAG 0 0 0 0 0 0 1 1 1 0 1 1
IFS-AFL 9 9 8 6 6 6 131 134 122 104 104 105
MGA-AFL 1 1 1 1 1 1 4 4 4 5 5 5
aMGA-AFL 1 1 1 1 1 1 4 4 3 4 4 4
BFS/l.off-AFL 41 40 35 41 42 41 708 708 725 736 732 737
BFS/l.on-AFL 45 45 39 42 42 42 762 785 915 760 762 767
BFS/n.on-AFL 48 49 36 37 37 37 956 934 751 952 968 946
YAG-AFL 6 6 6 4 4 4 87 87 87 71 71 71
SAL.on 9 9 9 9 9 9 94 94 94 117 118 117
SAL.off 9 9 9 8 8 8 84 84 92 88 88 88
GA 44 48 80 48 48 48 872 828 951 855 840 831

79



Piotr Karaś

Table 6
LLP: results (single run) [cost unit 106]

Network N7 N14 N28
n 0 2 3 6 0 2 3 6 0 2 3 6

IFS 3.76 3.95 5.22 1077.71 26.34 27.32 33.16 2286.59 151.24 154.81 175.40 5433.15
MGA 3.76 3.94 5.25 488.57 26.34 27.26 32.74 1294.16 151.24 154.74 176.48 2623.15
aMGA 3.76 3.95 5.25 488.57 26.34 27.33 32.96 1382.16 151.24 154.84 177.31 3281.58
BFS 3.76 3.94 5.12 503.71 26.34 27.12 31.44 1119.19 151.23 154.17 168.58 3035.84
YAG 3.76 3.95 5.22 1077.71 26.34 27.36 33.37 2358.59 151.24 154.87 176.04 5433.15
IFS-AFL 3.76 3.94 5.10 460.69 26.34 27.13 30.58 1261.56 151.24 154.48 167.97 3018.90
MGA-AFL 3.76 3.94 5.25 488.57 26.34 27.26 32.74 1210.20 151.24 154.71 175.88 2458.68
aMGA-AFL 3.76 3.94 5.25 488.57 26.34 27.26 32.74 1138.20 151.24 154.70 176.02 2491.64
BFS-AFL 3.76 3.94 5.03 460.69 26.34 27.05 30.08 1062.01 151.23 153.91 165.09 2371.12
YAG-AFL 3.76 3.94 5.10 548.44 26.34 27.36 31.41 1435.27 151.24 154.87 175.57 3114.65
SAL 3.76 3.94 5.16 460.69 26.34 27.14 31.47 1172.97 151.23 154.26 169.43 2504.49
EX 3.76 3.94 5.00 460.69 26.34 27.02 30.08

Table 7
LLP: calculation times (single run) [s]

Network N7 N14 N28
n 0 2 3 6 0 2 3 6 0 2 3 6

IFS 0 0 0 0 0 0 0 0 1 1 1 1
MGA 0 0 0 0 0 0 0 0 1 1 1 1
aMGA 0 0 0 0 0 0 0 0 1 0 1 0
BFS 0 1 0 0 0 0 0 0 3 4 7 3
YAG 0 0 0 0 0 0 0 0 1 1 0 0
IFS-AFL 1 1 1 1 25 27 27 23 370 383 378 340
MGA-AFL 0 0 0 0 8 10 6 4 129 157 69 51
aMGA-AFL 1 0 1 0 6 4 2 2 39 23 14 11
BFS-AFL 2 2 3 2 52 71 71 71 966 1033 1051 1203
YAG-AFL 0 1 0 0 4 4 5 3 54 55 57 54
SAL 1 0 0 1 4 3 4 6 43 69 55 71

compared to the simple methods, has been achieved while
keeping the calculation times pretty low. BFS-AFL ap-
proach provided clearly the best results of all the algo-
rithms, being at the same time the most time consum-
ing. Executing the BFS-AFL with fewer AFL iterations,
resulted in proportionally reduced calculation times and
slightly worse solutions (comparable with methods such
as SAL).
As already mentioned in Section 3.3, the algorithms per-
form multiple AFL runs for different combinations of initial
threshold parameter and number of steps parameter. This
approach allows for better exploration of the solution space,
but results in proportionally longer computations. In this
numerical study each of the algorithms performed 40 AFL
iterations for TNLLP and 120 for LLP.
The simple implementation of the SAL algorithm also
proved to be a very good performer. It provided results
at least as good as those cited in [1]. However attempts to
further improve the solutions produced by SAL by tuning
of the algorithms parameters, even at the cost of significant

extensions of the computation time, did not produce any
substantial gain.
The performance of GA should be regarded as promising,
given the fact that the implemented version of the algorithm
requires further tuning and study. However, it should be
kept in mind that genetic algorithms are usually quite slow.

4.3. LLP results

The discussed algorithms were tested also on LLP network
examples. A single run of all of the methods was per-
formed. The results and computation times are presented
in Tables 6 and 7, respectively.
The relative performance of the algorithms as well as their
basic characteristics are comparable to those observed for
TNLLP and commented in the previous subsection. Also
in this case, the BFS-AFL provided the best results. MGA
and especially aMGA worked much better with LLP than
with TNLLP.

80



Heuristic algorithms in topological design of telecommunication networks

4.4. Concave link cost functions

Network example N9 has been used in order to present the
capability of the studied algorithms to deal with problems
characterised by concave functions. Link cost function of
the following form was assumed (with A= 0:05, B= 300
and C= 0:003):

f (ye) = (�exp(�Cye)+1) � (Aye+B) : (6)

The results are summarised in Table 8. The average values
are derived from ten runs of each of the algorithms.

Table 8
TNLLP: N9 – concave function example (10 runs data)

Algorithm
Average

cost
Best cost

Avg.-best
/best [%]

Time
[s]

IFS 14733.97 14313.07 5.2 0
MGA 15571.60 14507.29 11.1 0
AMGA 14398.66 14114.22 2.8 0
BFS/l.off 14258.21 14060.45 1.8 0
BFS/l.on 14180.96 14065.07 1.2 1
BFS/n.on 14619.52 14010.17 4.3 0
BFS/b.on 14031.60 14010.17 0.2 1
YAG 14733.97 14313.07 5.2 0
IFS-AFL 14221.04 14037.11 1.5 5
MGA-AFL 15553.69 14507.29 11.0 1
aMGA-AFL 14368.22 14114.22 2.6 0
BFS/l.off-AFL 14021.05 14010.17 0.1 13
BFS/l.on-AFL 14104.12 14010.17 0.7 28
BFS/n.on-AFL 14010.17 14010.17 0.0 26
YAG-AFL 14270.68 14037.11 1.9 2
SAL.on 14046.07 14010.17 0.3 8
SAL.off 14082.38 14010.17 0.5 8
GA 14055.06 14010.17 0.3 33

As expected, all of the algorithms are able to deal with
the concave link cost problem. Again the BFS-AFL, SAL
and GA are the most effective methods. This time it is the
BFS/n.on-AFL variant that provided the best result in all
of the iterations. Pretty good performance of IFS-AFL and
YAG-AFL can be observed, especially as compared to the
simple versions of these methods.
Longest calculation times were experienced for BFS-AFL
algorithms and for GA.

5. Conclusions

The generic topological network design problem has been
discussed. The link-path formulation of the design task has
been presented in order to express the considered problem
in a formal manner. Two subproblems, namely the LLP and
the TNLLP, have been distinguished. Since exact solution

methods are applicable only to trivial networks, adequate
heuristic methods capable of providing good suboptimal
solutions in reasonable time are called for.
A wide range of specialised heuristic algorithms has been
presented. The considered solution methods encompass
algorithms known from literature, their modifications and
enhancements as well as original ideas. Efficiency of the
proposed methods has been demonstrated on a set of nu-
merical examples of diverse complexity. Most of the im-
plemented algorithms proved to be suitable for solution of
the considered network examples.
The numerical study enabled a comparison of the methods
and selection of the most effective algorithms. The usual
time versus quality trade-off has been observed. Simple
methods based on the BFS principle were able to provide
decent solutions in very short time. Slightly more time
consuming versions of BFS provided results comparable
to SAL and GA. SAL delivered quite good solutions in
a reasonable time. BFS-AFL outperformed all of the other
algorithms in terms on solution quality, however required
significantly longer computation times. GA implementa-
tion was also very time consuming. Generally speaking the
AFL notion proved very successful. Depending on the im-
posed time and result quality requirements, an appropriate
algorithm from the discussed range can be selected.
Analysis of relative efficiency or the presented methods
gives valuable insight into advantages and drawbacks of
various heuristic approaches to solution of the topological
design task. Of course the proposed algorithms are not
perfect and there is a lot of room for improvements and
tuning. Derivation of a good lower bound of the optimal
solution would be helpful for algorithm evaluation purposes
and/or as a stop criterion. Implementation of more effective
procedures, e.g. for shortest paths computation, should be
also considered.

References

[1] M. Pióro, A. Jüttner, J. Harmatos, Á. Szentesi, P. Gajowniczek,
and A. Mysłek, “Topological design of telecommunication networks.
Nodes and links localization under demand constraints” in Proc. 17th
Int. Teletraf. Congr., 2001.

[2] M. Minoux, “Network synthesis and optimum network design prob-
lems: models, solution methods and application”, Networks, vol. 19,
pp. 313–360, 1989.

[3] B. Yaged Jr., “Minimum cost routing for static network models”, Net-
works, vol. 1, pp. 139–172, 1972.

[4] P. Karaś, S. Kozdrowski, and M. Pióro, “Doubly iterative algorithm
for multi-layer network design” in 6th PSRT, Oficyna Wydawnicza
Politechniki Wrocławskiej, 1999.

[5] M. Pióro and P. Gajowniczek, “Solving multicommodity integral flow
problems by simulated allocation”, Telecommun. Syst., vol. 7, no. 1–3,
1997.

[6] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. 3rd ed., Springer, 1996.

[7] Network examples can be downloaded from,
http://www.tele.pw.edu.pl/networks/TNLLP/

81



Piotr Karaś

Piotr Karaś received his M.Sc.
degree in telecommunication in
the Institute of Telecommuni-
cations at Warsaw University
of Technology in 1999. His
M.Sc. thesis concerned concave
design problems related to
multi-layer telecommunication
networks. Currently, he is fol-
lowing Ph.D. studies at Warsaw
University of Technology under

the supervision of Prof. Michał Pióro. His Ph.D. thesis con-
cerns use of heuristic algorithms in difficult network design
tasks. Since 1999 he is working with PTC mobile operator
as a specialist in network dimensioning. His research in-
terests include various aspects of network design, core net-
work architecture, traffic analysis and prediction.
pkaras@tele.pw.edu.pl
Institute of Telecommunications
Warsaw University of Technology
Nowowiejska st 15/19
00-665 Warsaw, Poland

82


