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Abstract — The subject of this paper are inversion attacks on
stream ciphers (nonlinear filter generators), which were first
introduced by Golić [3] and extended by Golić, Clark and
Dawson [4]. These original attacks have computational com-
plexity OOO(2M)(2M)(2M), where MMM is the so-called “memory size” – dis-
tance between outer taps to filter function. In [6] we have pro-
posed improved inversion attacks which have computational
complexity O(2r�m)O(2r�m)O(2r�m), where rrr denotes the length of the shift
register and mmm denotes the largest gap between cells with taps
to filter function or to connection polynomial. In this paper we
describe further extension of our previous results obtained by
considering shifts of the feedback polynomial which maximise
the largest gap between cells with taps to filter function or to
connection polynomial. We show that the previously proposed
set of design criteria [3, 6] does not prevent the new version
of improved inversion attack and we propose an additional
criterion based on the relationship between positions of taps
to filter function and positions of taps to the multiples of the
connection polynomial.

Keywords — stream cipher, shift register, nonlinear filter gen-
erator, inversion attack.

1. Introduction

Despite the growing importance of block ciphers, symmet-
ric stream ciphers are still one of the fundamental tools
in modern cryptography. Most designs are based on lin-
ear feedback shift registers (LFSR) combined by nonlinear
boolean functions or filtered by nonlinear boolean func-
tions (so-called nonlinear filter generators). Different vari-
ants exist: clock-controlled systems, multiplexed systems,
memory combiners and decimated generators. Our work
focuses on nonlinear filter generators (NFG) illustrated in
Fig. 1. NFG can be used on its own [1] or as a building
block in more complex generators.

Unfortunately there are no known, practical constructions
of stream ciphers which offer unconditional security or
provable computational security (the one time pad, an un-
conditionally secure stream cipher, cannot be regarded as
practical). In practice, evaluation of the security of these
ciphers is heuristic. Among the most powerful classes of
attacks on stream ciphers which have to be considered
are fast correlation attacks (beginning from [7]) and con-
ditional correlation attacks [1]. The first class was initially
used to attack combination generators but recently was

Fig. 1. Nonlinear filter generator.

successfully used to attack NFG [8]. In the second class
best results were achieved by Golić [3] who introduced
the inversion attacks (IA), which are the most powerful at-
tacks on nonlinear filter generators. In the same paper Golić
presented a set of design criteria for nonlinear filter gen-
erators which, when respected, should ensure large period,
high linear complexity and good statistical properties of
the output sequence as well as resistance to fast correla-
tion attacks, conditional correlation attacks and inversion
attacks.
In [6] we have introduced improved inversion attacks (IIA),
which can have significantly lower computational complex-
ity in comparison to basic inversion attacks. In this paper
we propose an extension of this attack and a modification
of the set of design criteria in order to prevent this new
attack.

2. Notation and definitions

Let r be LFSR length, n(n� r) – denote the number of non-
degenerate input variables to filter function f (z1; : : : ; zn)
and γ = (γi)i=1:::n denote the tapping sequence, an in-
creasing sequence of integers specifying positions of in-
puts to filter function, such that γ1=0 and γn � r�1. Let
M = γn� γ1 denote the memory of the filter function. Let
x = (x(t))t=�r:::∞ be a binary maximum-length sequence
(x= (x(t))t=�r+1:::0 denotes LFSR initial state). Then the
output sequence y= (y(t))t=0:::∞ is computed as:

y(t) = f
�
x(t� γ1); : : : ; x(t�yn)

�
: (1)
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In [3] it was proved that a filter function of one of the
following forms:

f (z1; : : : ; zn) = z1� g(z2; : : : ; zn) (2)

or

f (z1; : : : ; zn) = zn� h(z1; : : : ; zn�1) (3)

will produce (independently of the tapping sequence)
a purely random output, given a purely random input, thus
making the generator resistant to conditional correlation at-
tacks.
In this case y(t) takes the following form:

y(t) = x(t� γ1)� g(x(t� γ2); : : : ; x(t� γn)); (4)

or

y(t) = x(t� γn)� h(x(t� γ1); : : : ; x(t� γn�1)) : (5)

Depending on the form of the function Golić proposed the
forward inversion attack and the backward inversion attack,
respectively. The average computational complexity of the
attacks is OOO(2M�1) and the worst case complexity is OOO(2M).

3. Inversion attack

The objective of the attack is to reconstruct the initial state
of the LFSR, having a segment of keystream sequence,
given the LFSR feedback polynomial, nonlinear filter func-
tion f and the tapping sequence γ . If the filter function is
of the form (4) forward inversion attack is applied, which
is given by the algorithm below.

Algorithm 1 (forward inversion attack):

1. Assume (not previously checked) M bits�
x(t)

�
t=�M����1 of unknown initial memory state.

2. By using (4), generate
�
x(t)

�
t= r�M�1:::0 from

a known segment
�
y(t)

�
t= r�M�1:::0 of output se-

quence.

3. By using LFSR linear recursion, gener-
ate

�
x(t)

�
t= r�M :::N�1 from first r bits of�

x(t)
�

t=�M:::r�M�1.

4. By using (1), compute
�
y0(t)

�
t= r�M:::N�1 from�

x(t)
�

t=r�2M:::N�1 and compare with the known�
y(t)

�
t=r�M:::N�1. If they are the same then accept

assumed initial memory state and stop. Otherwise
go to 1.

When the filter function is of the form (5) backward inver-
sion attack is applied, which is given by Algorithm 2.

Algorithm 2 (backward inversion attack):

1. Assume (not previously checked) M bits�
x(t)

�
t=�M�1:::0 of unknown initial memory

state.

2. By using (5), generate
�
x(t)

�
t=r�M�1:::0 from

a known segment
�
y(t)

�
t= r�M�1:::0 of output se-

quence.

3. By using LFSR linear recursion, gener-
ate

�
x(t)

�
t= r�M :::N�1 from first r bits of�

x(t)
�

t=�M:::r�M�1.

4. By using (1), compute
�
y0(t)

�
t=r�M:::N�1 from�

x(t)
�

t=r�2M:::N�1 and compare with the known�
y(t)

�
t=r�M:::N�1. If they are the same then accept

assumed initial memory state and stop. Otherwise
go to 1.

4. Improved inversion attack

The difference between the basic inversion attack and our
first proposal of the improved inversion attack [6] relies on
a modification of Steps 1 and 2. To make further improve-
ment we will include an additional preprocessing phase in
which we will find the largest gap between cells with taps
to filter function and cells with taps to connection polyno-
mial multiples (shifts of the polynomial). This idea was
first suggested by Golić [5]. In Step 1 instead of guessing
M bits of initial state we guess r�m bits, where m denotes
the size of the largest gap between cells of LFSR which
have taps to filter function or to multiples of connection
polynomial (when the largest such gap is between cells j
and k, where j < k, then m= k� j). The average computa-
tional complexity of the improved attack is OOO(2r�m�1) and
the worst case complexity is OOO(2r�m). The algorithm of
the new attack is as follows.

Algorithm 3 (improved inversion attack with preprocessing
phase):

1. (Preprocessing phase). Find the largest gap between
cells of LFSR with taps to connection polynomial
multiples and cells with taps to filter function. De-
note the outer cells of the gap by k and k�m:

Rest of the attack is identical to improved inversion attack
presented in [6]:

2. Assume (not previously checked) r � m bits�
x(t)

�
t=�r+1����k�1;�k+m:::0 of unknown initial mem-

ory state.

3. By using (4), generate
�
x(t)

�
t=�k����k+m�1 from

a known segment
�
y(t)

�
t=0:::m�1 of output sequence

and the connection polynomial.

4. By using LFSR linear recursion, generate sequence�
x(t)

�
t=r�m:::N�1 from first r bits

�
x(t)

�
t=�m:::r�m�1.

5. By using (1), compute
�
y0(t)

�
t=r�m:::N�1 from�

x(t)
�

t=r�2m:::N�1 and compare with the known�
y(t)

�
t=r�m:::N�1. If they are the same then accept

assumed initial memory state and stop. Otherwise
go to 1.
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We illustrate this attack by examples.

Example 1 (improved inversion attack (IIA) – Figs. 2
and 3). Let the connection polynomial1 be:

p(x) = x130+x63+x56+x35+x28+

+x21+x7+x3+1;

the tapping sequence: γ = (127;63;31;15;7;3;1;0), and let
the filter function be linear in the last variable. (If the filter
function would not be linear in any variable, which delimits
the largest gap, we should apply an inversion attack with
branching [4]). In the basic inversion attack the cryptan-
alyst needs to guess 127 bits, which gives computational
complexity of OOO(2127) and makes the attack infeasible. In
the improved version of the attack we only need to guess
66 bits

�
x(t)

�
t=�129;�128;�63;:::;0 which gives the expected

attack runtime of 266 steps.
Let us describe how our attack works in Step 2.

Fig. 2. Improved inversion attack on NFG (guessed (known)
cells are filled with grey colour).

Fig. 3. Improved inversion attack on NFG cont. (guessed (known)
cells are filled with grey colour).

First we calculate (identically as in IA) x(�127):

x(�127) = y(63)�g
�
x(0); x(�1); x(�3); x(�7);

x(�15); x(�31); x(�63)
�
; (6)

1This feedback polynomial is very sparse, chosen to simplify the exam-
ple.

then we clock backward the register state (so the content
of cell i moves to cell i�1 and, after clocking we know�
x(t)

�
t=�130;�129;�128;�64����1).

We can calculate x(0) from the connection polynomial:

x(0) = x(�3)�x(�7)�x(�21)�x(�28)�x(�35)�

�x(�56)�x(�63)�x(�130)

and then again calculate x(�127) from the knowledge of
output stream and filter function:

x(�127) = y(62)�g
�
x(0); x(�1); x(�3); x(�7);

x(�15); x(�31); x(�63)
�
:

Then again we clock the register state left (after which we
know

�
x(t)

�
t=�130;�129;�128;�65����1), calculate x(0) from

a connection polynomial, and so on. We continue this
procedure until the LFSR state is reconstructed. Then we
follow testing Steps 3 and 4.

Example 2 (improved inversion attack with preprocessing
phase – Figs. 4 and 5). Let the connection polynomial be
of the following form:

p(x) = x130+x66+x65+x64+x34+x33+x32+x18+

+x17+x16+x10+x9+x8+x6+x5+x3+x2+x+1;

the tapping sequence: γ = (127; 63;31; 15; 7; 3; 1; 0) iden-
tical to that in Example 1, and let again the filter function
be linear in the last variable. The computational complexity
of basic inversion attack is again OOO(2127), the complexity of
IIA is OOO(269) and the complexity of IIA with preprocessing
phase is OOO(266).

Fig. 4. Improved inversion attack with preprocessing phase
on NFG.

In the preprocessing phase we find that the largest gap be-
tween taps to connection polynomial is between cells 130
and 66 and the length of that gap is equal to 64, similar as
the gap between taps to filter function. The attack works
as follows.
First we need to guess 66 bits

�
x(t)

�
t=��63;:::;3, then

we calculate x(�127) from the filter function and known
keystream segment:

x(�127) = y(66)�g(x(0); x(�1); x(�3); x(�7);

x(�15); x(�31); x(�63)) ;
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Fig. 5. Improved inversion attack with preprocessing phase
on NFG (known cells are marked with grey colour).

then we clock backward the register state and, after clocking
we know

�
x(t)

�
t=��64:::2. We calculate x(�127) from the

filter function and known keystream segment:

x(�127) = y(65)�g(x(0); x(�1); x(�3); x(�7);

x(�15); x(�31); x(�63)) ;

then we calculate x(3) from the connection polynomial and
so on.

5. Nonlinear filter generators
design criteria

After introducing inversion attacks Golić [3] proposed a set
of design criteria for NFG which were considered to en-
sure large period, high linear complexity and resistance to
statistical attacks, inversion attacks, conditional correlation
attacks and fast correlation attacks. To ensure properties
from the first group (large period, high linear complexity)
primitivity of connection polynomial and large algebraic
order of function f are important. Good statistical proper-
ties can be ensured by the choice of filter function of the
form (2) or (3).
Golić pointed out the fact that the computational com-
plexity of inversion attack is exponential with the mem-
ory size M, rather than with the length of the register r .
So, to make a cipher resistant to inversion attack he pro-
posed to choose M as large as possible, preferably close to
its maximum possible value r �1. Additionally, to avoid
the possibility of effective reduction of memory size (by
decimation technique), the tapping sequence should not be
equidistant, preferably the greatest common divisor of ele-
ments of γ should be equal to one (assuming γ1 = 0).
Resistance to conditional correlation attacks requires the
number of nondegenerate inputs to f to be large enough,
and the γ sequence chosen according to a full or λ -order
positive difference set (with λ as small as possible for given
n and r) and correlation immunity of f to be relatively large
compared to λ .

To prevent fast correlation attack designers should ensure
that the nonzero correlation coefficients of f to the set of
linear functions are relatively small and close in magnitude.
Finally, the number of nonzero terms in the feedback poly-
nomial and in any of its low degree multiples should not
be small.
The polynomial, tapping sequence and filter function used
in Example 1 meet the above criteria. So, as we can see
this set of design criteria does not prevent improved inver-
sion attacks. So we propose to add the following criterion
to the set:
Designers of stream ciphers should additionally min-
imise the largest gap between cells with taps to multiples
of the connection polynomial or to the filter function.

6. Experiments

We have implemented the basic inversion attack and the
improved inversion attack and we have conducted the fol-
lowing experiments on a typical Pentium II 400 MHz PC
with 128 MB RAM:

1. Attacks on NFG with connection polynomial p(x) =
=x33�x13�1, tapping sequence γ=f31;15;7;3;1;0g
and filter function f (x31x15x7x3x1x0) = x31�x15x3�
�x7x1� x3x1x0 for different initial states. Inversion
attack on this generator takes up to few days and im-
proved inversion attack takes up to 20 seconds (de-
pending on initial state of the LFSR).

2. Attacks on NFG with connection polynomial
p(x) = x64 � x4 � x3 � x1 � 1, tapping sequence
γ = f63; 31; 15; 7; 3; 1; 0g and filter function
f (x63x31x15x7x3x1x0) = x63 � x31 � x15x3 � x7x1 �
�x3x1x0. Inversion attack has computational com-
plexity OOO(263) so it is infeasible to conduct it on
our PC. Improved inversion attack takes up to few
days.

7. Conclusions and final remarks

We have proposed a powerful improvement of the inversion
attacks. We have conducted several experiments which have
confirmed theoretical predictions.
This attack is also effective when instead of regular LFSR,
a modular LFSR is used (with inter cell feedback).
Our further research will concentrate on possible transfor-
mations of filter functions in such a way as to maximise
the largest gap.

Acknowledgement

This work has been supported by grant no. 8 T11D 020 19
of the Polish Scientific Research Committee.

12



Remarks on improved inversion attacks on nonlinear filter generators

References

[1] R. J. Anderson, “Searching for the optimum correlation attack”,
in Fast Software Encryption – Leuven’94, LNCS. Springer, 1995,
vol. 1008, pp. 137–143.

[2] J. Dj. Golić, “Correlation via linear sequential circuit approxima-
tion of combiners with memory”, in Advances in Cryptology –
EUROCRYPT’92, LNCS. Springer, 1993, vol. 658, pp. 113–123.

[3] J. Dj. Golić, “On the security of the nonlinear filter generators”, in
Fast Software Encryption – Cambridge’96, LNCS. Springer, 1996,
vol. 1039, pp. 173–188.

[4] J. Dj. Golić, A. Clark, and E. Dawson, “Inversion attack and branch-
ing”, in Information Security and Privacy, ACISP’99, LNCS. Springer,
1999, vol. 1587, pp. 88–102.

[5] J. Dj. Golić, Private communications, May 2002.

[6] A. Górska and K. Górski, “Improved inversion attacks on nonlinear
filter generators”, IEE Electron. Lett., vol. 38, no. 16, pp. 870–871,
2002.

[7] W. Meier and O. Staffelbach, “Fast correlation attacks on certain
stream ciphers”, J. Cryptol., vol. 1, no. 3, pp. 159–176, 1989.

[8] M. Salmasizadeh, L. Simpson, J. Dj. Golić, and E. Dawson, “Fast cor-
relation attacks and multiple linear approximations”, in Information
Security and Privacy, ACISP’97, LNCS. Springer, 1997, vol. 1270,
pp. 228–239.

Anna Górska received the M.Sc. degree in 1995 and the
Ph.D. degree in 2003 both from the Faculty of Electronics
and Information Technology at Warsaw University of
Technology, Poland. She is currently a cryptographer in
the Cryptography Division at Enigma Information Secu-
rity Systems Sp. z o.o. Her research interests include the
design and cryptanalysis of ciphers. She is a member of the

International Association for Cryptologic Research and the
Institute of Electrical and Electronics Engineers.
e-mail: ania@enigma.com.pl
ENIGMA Information Security Systems Sp. z o.o.
Cryptography Division
Cietrzewia st 8
02-492 Warsaw, Poland

Karol Górski received the M.Sc. degree in 1991 from
the Institute of Telecommunications, Faculty of Electron-
ics and Information Technology at Warsaw University of
Technology, Poland. He currently heads the Cryptography
Division at Enigma Information Security Systems Sp. z o.o.
His duties include the management of research and devel-
opment activities undertaken by the company in the area of
cryptography and cryptanalysis as well as the management
of software development for cryptographic devices and
specialised cryptographic systems. He is a member of the
Technical Committee for Information Security in IT Sys-
tems at the Polish Standardisation Committee (PKN) and an
expert of the Cryptographic Algorithms and Mechanisms
Working Group (WG2) in the joint ISO/IEC subcommittee
on Information Technology Security Techniques (ISO/IEC
JTC1 SC27). He is a also a member of the International
Association for Cryptologic Research and the Institute of
Electrical and Electronics Engineers.
e-mail: karol@enigma.com.pl
ENIGMA Information Security Systems Sp. z o.o.
Cryptography Division
Cietrzewia st 8
02-492 Warsaw, Poland

13


