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Abstract — Path searching is challenging problem in many
domains such as simulation war games, robotics, military mis-
sion planning, computer generated forces (CGF), etc. Effec-
tiveness problems in military route planning are related both
with terrain modelling and path planning algorithms. These
problems may be considered from the point of view of many
criterions. It seems that two criterions are the most impor-
tant: quality of terrain reflection in the terrain model and
computational complexity of the on(off)-line path planning al-
gorithm. The paper deals with two above indicated problems
of route planning effectiveness. Comparison of approaches
used in route planning is presented. The hybrid, terrain
merging-based and partial path planning, approach for route
planning in dynamically changed environment during simu-
lation is described. It significantly increase effectiveness of
route planning process. The computational complexity of the
method is given and some discussion for using the method in
the battlefield simulation is conducted. In order to estimate
how many times faster we can compute problem for finding
shortest path in network with nnn big squares (b-nodes) with
relation to problem for finding shortest path in the network
with VVV small squares (sss-nodes) acceleration function is defined
and optimized.

Keywords — battlefield simulation, route planning, shortest
paths, effectiveness problems, computational complexity.

1. Introduction

For many years in military applications a simulated battle-
field is used for training military personnel. There are at
least three ways to provide the simulated opponent:

– two groups of trainees in simulators may oppose
each other (often used);

– human instructors who are trained to behave in
a way that mimics the desired enemy doctrine (sel-
dom used);

– computer system that generates and controls multi-
ple simulation entities using software and possibly
a human operator.

The last approach is known as a semi-automated force
(SAF or SAFOR) or a computer generated force (CGF).
CGF is used in military distributed interactive simula-

tion (DIS) systems to control large numbers of autonomous
battlefield entities using computer equipment and software
rather than humans in simulators.
The advantages of CGF are well-known [17]:

1) they lower the cost of a DIS system by reducing the
number of standard simulators that must be purchased
and maintained;

2) CGF can be programmed, in theory, to behave ac-
cording to the tactical doctrine of any desired op-
posing force, and so eliminate the need to train and
retrain human operators to behave like the current
enemy;

3) CGF can be easier to control by a single person than
an opposing force made up of many human operators
and it may give the training instructor greater control
over the training experience.

As an inseparable part of CGF, modules for route plan-
ning based on the real-terrain models are used. For exam-
ple in modular semi-automated forces (ModSAF) in module
“SAFsim”, which simulates the entities, units, and envi-
ronmental processes the route planning component is lo-
cated [14]. Moreover, automated route planning will be
a key element of almost any automated terrain analysis
system that is a component of a military command and
control system. In the work [1] authors describe a com-
bined on-road/off-road planning system that was closely
integrated with a geographic information system and a sim-
ulation system. Routes can be planned for either single
columns or multiple columns. For multiple columns, the
planner keeps track of the temporal location of each col-
umn and insures they will not occupy the same space at the
same time. In the same paper the hierarchic route planner
as integrate part of predictive intelligence military tactical
analysis system (PIMTAS) is discussed. In the paper [8]
authors presented an on-going efforts to develop a proto-
type for ground operations planning, the route planning
uncertainty manager (RPLUM) tool kit. They are apply-
ing uncertainty management to terrain analysis and route
planning since this activity supports the commander’s
scheme of maneuver from the highest command level down
to the level of each combat vehicle in every subordinate
command. They extend the PIMTAS [1] route planning

47



Zbigniew Tarapata

software to accomodate results of reasoning about mul-
tiple categories of uncertainty. Authors of the paper [3]
presented route planning in the close combat tactical
trainer (CCTT).

Kreitzberg [11] has developed the tactical movement ana-
lyzer (TMA). The system uses a combination of digitized
maps, satellite images, vehicle type and weather data to
compute the traversal time across a grid cell. TMA can
compute optimum paths that combine both on-road and off-
road mobility, and with weather conditions used to modify
the grid cost factors. The smallest grid size used is ap-
proximately 0.5 km. Author uses the concept of a signal
propagating from the starting point and uses the traversal
time at each cell in the array to determine the time at which
the signal arrives at neighboring cells. Other researchers
have chosen to decompose the map into regions that are
defined by having a constant traversability across the re-
gion [1, 9, 16, 19, 20, 27]. The advantage of this approach
is that the number of regions will, in general, be far fewer
than the number of grid cells. The disadvantages include
difficulty in defining the center of the region and the com-
putation difficulties in determining the optimum paths be-
tween two adjacent cells. The optimum region-to-region
path can be obtained by using either Dijkstra’s continu-
ous algorithm (DCA) developed by Mitchell [15]. In many
cases, a multiresolution simulation modelling is used to
simplify complex battlefield processes [4, 6, 16, 17].

As integrated part of route planning modules the terrain
database-based model is being used. Terrain data can be
as simple as an array of elevations (which provides only
a limited means to estimate mobility) or as a complex
as an elevation array combined with digital map overlays
of slope, soil, vegetation, drainage, obstacles, transporta-
tion (roads, etc.) and the quantity of recent weather. For
example in [1] authors describe heterogeneous reasoning
and mediator environment system (HERMES) will allow
the answering of queries that require the interrogation of
multiple databases in order to determine the start and des-
tination parameters for the route planner.

There are a few approaches in which the map (represent-
ing a terrain area) is decomposed into a graph [1, 9,
19, 20]. All of them first convert the map into regions
of go (open) and no-go (closed). The no-go areas may be
considered as obstacles and are represented as polygons.
A few ways for consider the map can be used, for example:
visibility diagram, Voronoi diagram, straight-line dual of
the Voronoi diagram, edge-dual graph, line-thinned skele-
ton, regular grid of squares, grid of homogeneous squares
coded in quadtree system, etc.

Effectiveness problems in military route planning are re-
lated both with terrain modelling and path planning algo-
rithms. These problems may be considered from the point
of view of many criterions. It seems that two criterions
are the most important: quality of terrain reflection in the
terrain model (visibility diagram, Voronoi diagram, regular
grid of terrain squares, etc.) and computational complex-
ity of the on(off)-line path planning algorithm. The paper

deals with above indicated problems of route planning ef-
fectiveness.
In the next section we will discuss in details route planning
approaches.

2. Comparison approaches used
in route planning

It was said in the previous section that we will deal with
effectiveness of two problems of battlefield simulation:

– terrain reflection in the terrain model used in battle-
field simulation;

– military route planning using one of terrain models.

If terrain models are concerned a few ways for consider-
ing the map were listed in the previous section: Voronoi
diagram, straight-line dual of the Voronoi diagram (the
Delaunay triangulation), visibility diagram, edge-dual
graph, line-thinned skeleton, regular grid of squares, grid
of homogeneous squares coded in quadtree system.
The polygonal representations of the terrain are often cre-
ated in database generated systems (DBGS) through a com-
bination of automated and manual processes [19]. It is
important to say that these processes are computationally
complicated but are conducted before simulation (during
preparation process). Typically, an initial polygonal repre-
sentation is created from the digital terrain elevation data
through the use of an automated triangulation algorithm,
resulting in what is commonly referred to as a triangulated
irregular network (TIN). A commonly used triangulation
algorithm is the Delaunay triangulation. Definition of the
Delaunay triangulation may be done via its direct relation
to the Voronoi diagram of a set, S, of N 2D points: the
straight-line dual of the Voronoi diagram is a triangulation
of S.
The Voronoi diagram is the solution to the following prob-
lem: given a set S of N points in the plane, for each
point pi in S what is the locus of points (x; y) in the plane
that are closer to pi than to any other point of S?
The straight-line dual is defined as the graph embedded
in the plane obtained by adding a straight-line segment be-
tween each pair of points of S whose Voronoi polygons
share an edge. Figure 1 depicts an irregularly spaced set
of points S, its Voronoi diagram, and its straight-line dual
(i.e. its Delaunay triangulation).
The edge-dual graph is essentially an adjacency list rep-
resenting the spatial structure of the map. To create this
graph, we assign a node to the midpoint of each map edge
which does not bound an obstacle (or the border). Special
nodes are assigned to the start and goal points. In each
non-obstacle region, we add arcs to connect all nodes at
the midpoints of the edges which bound the same region.
The fact that all regions are convex guarantees that all such
arcs cannot intersect obstacles or other regions. Example
of the edge-dual graph is presented in Fig. 2.
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Fig. 1. Voronoi diagram and its Delaunay triangulation [19]:
(a) a set S of N points in the plane; (b) the Voronoi diagram of S;
(c) the straight-line dual of the Voronoi diagram (the Delaunay
triangulation).

Fig. 2. Edge-dual graph. Obstacles are represented by filled
polygons.

The visibility graph, is a graph whose nodes are the ver-
tices of terrain polygons and whose edges joint pairs of
nodes for which the corresponding segment lies inside poly-
gon. An example is shown in Fig. 3.

Fig. 3. Visibility graph [15]. There is marked shortest geometric
path from source node s to destination t. Obstacles are represented
by filled polygons.

The regular grid of squares divides terrain space on the
squares with the same size and each square is treated as
having homogeneity from the point of view of terrain char-
acteristics. An example of this approach will present in the
next sections (see Fig. 6 and Fig. 7).
The grid of homogeneous squares coded in quadtree
system divides terrain space on the squares with hetero-
geneous size. The size of square results from its homo-
geneity according to terrain characteristics. Example of
this approach was presented, e.g. in [29].
If paths planning approaches used in battlefield simulation
are concerned, there are four main approaches [10]: free
space analysis, vertex graph analysis, potential fields, grid
based algorithms.
In the free space approach, only the space not blocked
and occupied by obstacles is represented. For example,
representing the center of movement corridors with Voronoi
diagrams [19] is a free space approach (see Fig. 1).
Advantage of Voronoi diagrams is that they have efficient
representation.
Disadvantages of Voronoi diagrams:

– they tend to generate unrealistic paths (paths derived
from Voronoi diagrams follow the center of corridors
while paths derived from visibility graphs clip the
edges of obstacles);

– the width and trafficability of corridors are typically
ignored;

– distance is generally the only factor considered in
choosing the optimal path.

In the vertex graph approach, only the endpoints (ver-
tices) of possible path segments are represented [15].
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Advantages:

– this approach is suitable for spaces that have sufficient
obstacles to determine the endpoints.

Disadvantages:

– determining the vertices in “open” terrain is difficult;

– trafficability over the path segment is not represented;

– factors other than distance cannot be included in eval-
uating possible routes.

In the potential field approach, the goal (destination) is
represented as an “attractor”, obstacles are represented by
“repellors”, and the vehicles are pulled toward the goal
while being repelled from the obstacles.
Disadvantages:

– the vehicles can be attracted into box canyons from
which they cannot escape;

– some elements of the terrain may simultaneously at-
tract and repel.

In the regular grid approach, a grid overlays the terrain,
terrain features are abstracted into the grid, and the grid
rather than the terrain is analyzed.
Advantages:

– simplification of the analysis.

Disadvantages:

– “jagged” paths are produced because movement out
of a grid cell is restricted to four (or eight) direc-
tions corresponding to the four (or eight) neighboring
cells;

– granularity (size of the grid cells) determines the
accuracy of terrain representation.

A many of route planners in the literature are based on
the Dijkstra’s shortest path algorithm, A� algorithm [7],
geometric path planning algorithms [15] or its vari-
ants [12, 13, 18, 26, 31, 32]. For example, A� has been used
in a number of computer generated forces systems as the
basis of their planning component, to plan road routes [3],
avoid moving obstacles [10], avoid static obstacles [18]
and to plan concealed routes [14]. Very extensive discus-
sion related to geometric shortest path planning algorithms
was presented by Mitchell in [15] (references consist of
393 papers and handbooks). Geometric shortest paths prob-
lem is defined as follows: given a collection of obstacles,
find an Euclidean shortest obstacle-avoiding path between
two given points. Mitchell considers following problems:

– geodesic paths in a simple polygon;

– paths in a polygonal domain (searching the visibility
graph, continuous Dijkstra algorithm);

– shortest paths in other metrics (Lp metric, link dis-
tance, weighted region metric, minimum-time paths,
curvature-constrained shortest paths, optimal motion
of non-point robots, multiple criteria optimal paths,
sailor’s problem, maximum concealment path prob-
lem, minimum total turn problem, fuel-consuming
problem, shortest paths problem in an arrangement);

– on-line algorithms and navigation without map;

– shortest paths in higher dimensions.

3. Effectiveness problems
in route planning

We focus one’s attention on path planning algorithms and
its effectiveness. Path planning algorithms used in battle-
field simulation can be off-line or on-line. Off-line path
planning algorithms like A* or Dijkstra’s algorithm (listed
in the previous section) find the whole solution before start-
ing execution (simulation). They plan paths in advance and
usually find optimal solutions. Their efficiency is not con-
sidered to be crucial and the moved object just follows the
generated path. Although this is a good solution for a static
environment, it is rather infeasible for dynamic environ-
ments, because if the environment or the cost functions
are changed, the remaining path may need to be replanned,
which is not efficient for real-time applications (e.g. real-
time simulation). Let’s recall that standard Dijkstra’s algo-
rithm has time complexity O(V2), where V denotes number
of nodes in the graph. This complexity may be improved
(if the graph is thin) implementing priority queue as bi-
nary heap, obtaining O(E � lg V), or implementing priority
queue as Fibonacci heap, obtaining O(E+V � lg V), where
E describes number of graph’s edges.
In Fig. 4 we have graph of calculations time for single
shortest path problem using standard Dijkstra algorithm in
regular grid network with V nodes1 (each path was cal-
culated for the left-lower and the right-upper pair of cells
(nodes) in grid network (similar to one from Fig. 6).
In Fig. 5 we have graph of calculations time for the same
problem but defined as linear programming problem and
solved using GAMS solver. From Fig. 4 results that when
we must compute shortest path in grid network with e.g.
V = 400nodes (grid with size 20�20) then computational
time is about 100 ms (for average case) using 1 GFLOPS
processor and Dijkstra’s algorithm. Let’s suppose that we
simulate battlefield for two-sided company level on the ter-
rain area with size 16 km2 (terrain square with 4�4 km
size, so 4 km/20 = 200 m is side length for each of
400 cells). If we assume, that each company has 3 platoons
then in the same simulation time we must plan movement,
in the worst case, for 2� 3 = 6 platoons (as non-divided

1Using computer with 1 GFLOPS processor (like PENTIUM III
800 MHz).
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Fig. 4. Calculations time for single shortest path problem using
Dijkstra algorithm in regular grid network with V nodes.

Fig. 5. Calculations time for single shortest path problem defined
as linear programming problem and solved using GAMS solver
in regular grid network with V nodes.

objects). Because these calculations must be done sequen-
tially (having single processor), so estimation of computa-
tional time for all objects is about 6�100 ms = 600 ms.
In this case we assumed that all processor power is used
for path planning algorithm but it is some simplifica-
tion, of course. Having, i.e. two-sided battalion fighting
(2�3�3= 18 platoons to plan movement in the same sim-
ulation time, in the worst case) we need 18�100ms � 2 s.
This delay has significant effect on smoothness of simula-
tion and its visualisation. And we should take into consid-
erations that the network with 20�20 cells is small from
among needed in battlefield simulation process.
There are three ways to increase effectiveness of considered
problems:

– decreasing the size of terrain-based graph to de-
crease the computational time of paths planning al-
gorithms [1];

– using specific on-line paths planning algorithms
[10, 12, 13, 16, 32];

– using some partial path update approaches [23, 26].

Each of mentioned above ways has some advantages and
disadvantages.

Advantage of the first way (decreasing the size of graph)
is that the number of merged cells into regions will, in
general, be far fewer than the number of grid cells. The
disadvantages include difficulty in defining the center of the
region and the computation difficulties in determining the
optimum paths between two adjacent cells.
Some partial path planning algorithms (the second way)
plan an off-line path, let the object follow the path, and if
any new environment information is gathered, they partially
re-plan the existing solution. Similar approach for multi-
convoy redeployment in stochastic, dynamically changed
environment, was presented in [26, 27]. Disadvantage of
this approach is that some times, a small change in the
environment may cause re-plan almost a complete path,
which may take a long process time (when the network
size is big).
The basic idea of on-line path planning approach (the
third way), in generally, is that the object is moved step-by-
step from cell to cell using some heuristic method. This
approach is borrowed from movement robots path planning
[13, 23, 32]. The decision about the next move (its di-
rection, speed, etc.) depends on the current location of
the object and environment status. For example, the idea
of RTEF (real-time edge follow) algorithm [32] is to let
the object eliminate closed directions (the directions that
cannot reach the target point) in order to decide on which
way to go (open directions). For instance, if the object has
a chance to realize that moving to north and east will not let
him reach the goal state, then it will prefer going to south
or west. RTEF find out these open and closed directions,
so decreasing the number of choices the object has. How-
ever, this approach has one basic disadvantage. Namely, in
this approach using a few criterions simultaneously to find
optimal (or acceptable) path is difficult and it is rather not
possible to estimate, in advance, moment of achievement
the destination. Moreover, it does not guarantee finding op-
timal solutions and even suboptimal ones may significanly
differ from acceptable.
From this cause, we present in the next section hybrid,
cells-merging-based and partial path planning approach for
route planning in dynamically changed environment.
Considering route planning in the battlefield simulation we
must mention multi-convoy (or multi-object) redeployment
and, in consequence, multi-paths planning. Complexity of
this process depends on the following conditions [29]:

– count of objects in each convoy (the convoy longer
the scheduling of redeployment more complicated);

– have convoys be redeployed simultaneously?

– can convoys be destroyed during redeployment?

– can terrain-based network be destroyed during rede-
ployment?

– have convoys be redeployed through disjoint routes?

– have convoys achieve selected places (nodes) at fixed
time?

– do convoys have to start at the same time?
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– have convoys determine any action strips for moving?

– can convoys be joined and separated during redeploy-
ment?

– have convoys cross through fixed nodes?, etc.

The most often problem related to multi-convoy redeploy-
ment is to move a few convoys through disjoint paths si-
multaneously [25, 30]. Disjoint paths condition results from
safety ensuring for moved convoys. In the battlefield sim-
ulation finding disjoint paths for moved objects (e.g. tanks
inside tank platoon) simplifies its movement because route
for each tank do not cross route for each other and we
avoid potential collisions. Disjoint paths optimization prob-
lem is NP-hard, so some heuristic or other suboptimal ap-
proaches are used [2, 21, 25, 31]. Description of some pro-
totype module for maneuvre planning using disjoint paths
approach was presented in [28].

4. A new multiresolution approach
for increasing route

planning effectiveness

Discussed, in the previous section, region approach for ter-
rain included difficulty in defining the center of the region
and the computational difficulties in determining the opti-
mum paths between two adjacent cells. In this section we
propose some multiresolution-based approach for finding
shortest paths in the big grid networks. We assume that we
have grid graph G = hVVV;AAAi (see Fig. 7) as representation
of terrain squares (see Fig. 6), where VVV describes set of

Fig. 6. Terrain space with division on regular grid squares. We
want to move object from the right-lower corner to the left side.

Fig. 7. Grid graph as representation of terrain squares from
Fig. 6. There is marked shortest path from node 64 to node 33.

nodes (squares of terrain), V = jVVVj, AAA describes set of arcs,
AAA= fhx;yi �VVV�VVV : square x is adjacent to square yg.
In this graph we may describe some functions (as
traversability, visibility, crossing time, crossing proba-
bility, detecting probability, etc.) obtaining network as
model of movement environment. We assume that for each
arc hx;yi 2AAA we have cost c(x;y). The idea of the approach
is to merge geographically adjacent small squares (nodes
belonging to VVV) into bigger squares (called b-nodes, see
Fig. 8) and build b-graph G (graph based on the b-nodes,
see Fig. 9) using specific transformation. This transforma-
tion is based on the assumption that we set arc (b-arc)
between two b-nodes x�VVV; y�VVV when exist such two
nodes x 2 x; y 2 y that hx; yi 2 AAA. In practice, as nodes
of G graph we will consider strongly connected compo-
nents of b-nodes. Cost c(x; y) of the b-arc hx; yi 2 AAA is
set on the basis of the biggest cost of some shortest paths
calculated inside the subgraph built on the nodes of x.
Next, in the b-graph we find shortest paths between such
pairs xs; yt of the b-nodes that source node s and target
node t belong to sets xs; yt , respectively.
Formal definition of the graph G is as follows:

G= hVVV;AAAi ; (1)

where:

VVV =
�

x1;x2; : : : ; xn
	

-set of b-nodes, jVVVj= n,

xi =
�

xi1;xi2; : : : ; xim

	�VVV, i = 1;n,

8
i; j
i 6= j

xi \xj =�; i = 1;n; j = 1;n;
nS

i=1
xi =VVV ,

AAA=

�
hx; yi �VVV�VVV : 9

x2x;y2y
hx; yi 2AAA

�
.
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Fig. 8. Merging geographically adjacent small squares from
Fig. 7 into n= 16 bigger squares (b-nodes).

Fig. 9. b-graph for squares merging from Fig. 8. As b-nodes we
use strongly connected components of b-nodes from Fig. 8.

Cost function c(x; y) for b-arc hx; yi we determine as:

c(x; y) = max
fx2xg

F(x; y) ; (2)

where:

F(x; y) = min�
y2y: 9

z2x
hz;yi2AAA

�L
�
P(x;y)

�
,

L
�
P(x; y)

�
=

l(P(x;y))�1

∑
i=0

c(xi ; xi+1),

P(x; y) = (x0 = x; x1; x2; : : : ; xl(P(x;y)) = y),

8
i=0;l(P(x;y))�1

hxi ;xi+1i 2AAA.

The merging algorithm for b-graph-based shortest paths
planning (MSP-algorithm) is following:

1. merge small squares from graph G (Fig. 7) into
n bigger squares (Fig. 8) (n is parameter of the
algorithm; we show in further discussion how we
can set the optimal value of the n);

2. inside each of the n big squares (b-nodes) deter-
mine strongly connected components obtaining at
least n subgraphs;

3. set each of subgraphs obtained from the Step 2 as
b-nodes and arcs as described by (1) obtaining
graph G (Fig. 9);

4. find shortest paths between each pair of nodes inside
each b-node (subgraph) of G to calculate cost c(x;y)
for each arc of G using Eq. (2);

5. find shortest path in G with cost function c(�; �) be-
tween such pairs xs; yt of b-nodes that source node s
and target node t belong to sets xs; yt , respectively.

It’s important to explain that setting in the Step 3 strongly
connected components as b-nodes assure that each node
inside such component is attainable from each other, so if
b-node x is connected (through b-arc) with b-node y then
exist path from each node of x to each node of y.
Let’s estimate time complexity of MSP algorithm. We will
estimate complexity of each step of the algorithm as follows
(we assume that each b-node is strongly connected):

2. determination of strongly connected components in
graph G: we have n b-nodes creating n merged sub-
graphs of G; each subgraph of G has no more than�

V
n

�
nodes, so we have complexity O

�
n � �V

n

��
=

= O(V);

3. we have n b-nodes so we obtain O(n);

4. shortest path problem between each pair nodes in
N-nodes graph has complexity O(N3); if each sub-
graph of G is strongly connected component of G,
then has n b-nodes (creating subgraphs), so each sub-
graph has

�
V
n

�
nodes, hence finding all-pairs shortest

paths in single subgraph has complexity O
��

V
n

�3
�

;

because we must calculate it n times, so we have
O
�

n � �V
n

�3
�

;

5. finding shortest paths in graph G: because G has
n b-nodes, so using standard Dijkstra’s shortest path
algorithm we have O(n2).

We omit the merging Step 1 because, having n, we can
prepare this step before simulation. Taking into consider-
ations above estimations we obtain total complexity of the
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algorithm as O
�

V3

n2 +n2+V
�

(we have also omitted O(n)

because n�V).
There is very interesting and important question from the
point of view of proposed approach effectiveness: how
should we set n to obtain the better effectiveness than
for V?
Let’s notice that computational complexity of the algorithm
based on the network with small squares2 is O(V2) and for

the algorithm based on the bigger squares is O
�

V3

n2 +n2+V
�

.

It means that, in sense of complexity symbol O(�), the
bigger squares approach is better if the following formula
is satisfied:

V3

n2 +n2+V <V2 (3)

or equivalently, when

n4� (V2+V)n2+V3 < 0: (4)

Solving this inequality we obtain, that n2 [n1;n2], where

n1 =

s
V2+V�

p
(V2+V)2�4V3

2
; (5)

n2 =

s
V2+V +

p
(V2+V)2�4V3

2
: (6)

For example, for the graph from Fig. 7 (V = 64) we obtain
n1 � 8, n2 � 64.
In order to estimate how many times faster we compute
problem for finding shortest path in the network with n

big squares (
�

V3

n2 +n2+V
�

) with relation to problem for

finding shortest path in the network with V small squares
(O(V2)) we may formulate acceleration function as fol-
lows3:

A(V;n) =
V2

V3

n2 +n2+V

: (7)

Exemplified graphs of A(V;n) are shown in Figs. 10 and 11.

Having grid network with V squares (nodes) we can for-
mulate following optimization problem: to find such cardi-
nal n�, for which

A(V;n�) = max
n2[n1;n2]

A(V;n) ; (8)

where n1, n2 are described by formulas (5) and (6).

2Using standard Dijkstra’s shortest paths algorithm (without modifica-
tions increasing its effectiveness).

3Exact to complexity estimation symbol O(�).

Fig. 10. Graph of A(V; n) function for the network with
V = 64 nodes.

Fig. 11. Graph of A(V; n) function for the network with
V = 10000nodes.

Let’s notice, that function (7), omitting constraint for n
integer, has real nonnegative maximum for the value
n� =

4
p

V3. It may be easily shown that for each V > 0,
n� 2 [n1; n2]. In practice we are interested in such value

n�� � n�, that square root of
V
n��

is cardinal number (it

results from the fact that each of n�� big squares consist

of
V
n��

small squares and in grid structure of the network

a big square has

r
V
n��

�
r

V
n��

small squares).

In Table 1 the influence of V on n�, n�� and A(V;n��)
is shown. It is easy to observe the best acceleration of
shortest path algorithm using presented approach in regular
grid network with V nodes may be approximated by value

A(V;n��)� 1
2

p
V.

Let’s notice that from presented estimations and Table 1 re-
sult that for 400-nodes grid graph considered at the begin-
ning of the previous section movement planning for two-
sided battalion fighting (for 18 platoons) will be done in
time 18�100=9:5 ms � 200 ms.
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Table 1
Influence of V on n�, n�� and A(V;n��)

V n� n��
�

V
n��
�

A(V;n��)

100 32 25 4 4.3

400 90 100 4 9.5

900 164 225 4 12.3

1600 253 169 9 14.7

2500 354 256 9 20.4

10000 1000 1089 9 49.0

40000 2828 2500 16 96.8

90000 5196 5625 16 147.9

160000 8000 6400 25 181.4

250000 11180 10000 25 243.7

5. Conclusions

The approach presented in the paper gives possibilities to
significantly decrease computational time in terrain-based
route planning when the terrain environment is represented
by regular grid of squares. This approach may be applied,
i.e. for route planning in the simulated battlefield.
The estimations of presented algorithm effectiveness may
be improved through a few ways. The first way is to use in
time complexity estimations the best known shortest-path
algorithm estimation (O(E+V � lg V)) instead complexity
of standard Dijkstra’s algorithm (O(V2)) because the regu-
lar grid graph is thin (maximal number of direct successors
for any node is 8), so O(8V +V lg V) < O(V2) nearly for
all V (exactly for V > 11). The second way is to improve
Step 4 of the algorithm because it seems to be unneces-
sary determinations all-pairs shortest paths in each b-nodes
(subgraphs). It’s seems that is enough to determine short-
est paths between “outside” nodes of b-nodes because only
these nodes are used to link b-node with another. Moreover,
to confirm presented estimations it is essential to conduct
calculations in real grid graphs.
Presented suggestions may be contribution for further
works.
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