
Paper Greedy randomised adaptive
search procedures for topological design

of MPLS networks
Andrzej Mysłek

Abstract — In this paper, the IP/MPLS network cost opti-
misation problem of selecting localisation of nodes and links,
combined with link’s dimensioning, is discussed. As the con-
sidered problem is hard, we discuss and propose greedy ran-
domised adaptive search procedure (GRASP) based solution
method. GRASP is an iterative randomised sampling tech-
nique which combines adaptive randomised greedy function
in constructing initial solution with local search optimisation.
The effectiveness of the method is illustrated by means of a nu-
merical study. We compare the GRASP results with results
for both exact and heuristic methods obtained in previous re-
search concerning topological design problem.

Keywords — network design, optimisation, MPLS, GRASP, lo-
cal search.

1. Introduction

New communications systems, such as ATM or IP back-
bone networks, have to be deployed in a short time due to
user’s demand for provision of new services. Furthermore,
ensuring the high quality of supplied services is required.
Whereas the IP network does not possess built-in capabili-
ties to ensure the quality of service (QoS), the multiprotocol
label switching (MPLS) introduced to the IP network can
add mechanisms for QoS assurance.
Effective and fast network deployment requires good net-
work design tools, incorporating fast network optimisation
algorithms for diverse optimisation tasks. To identify the
problem described in this paper in the range of different
network optimisation problems, we can use the following
classification, proposed in [1]:

– access network topology optimisation problems are
usually looking for hierarchical network structures,
assuming a simple traffic demand pattern;

– backbone network topology optimisation problems
require (arbitrary) mesh topology with traffic de-
mands between each pair of end nodes given.

The optimisation problem, called the transit node and link
localisation problem (TNLLP), is a general instance of the
backbone network topology optimisation problem.
The TNLLP is characterised as follows.
For a given set of access nodes and the demand between
each pair of access nodes find:

– number and locations of the actually installed transit
nodes (in these nodes non traffic is originated, they
only switch the traffic streams between access node
pairs);

– capacity of links connecting access nodes to transit
nodes;

– capacity of links interconnecting transit nodes;

such that the demand is realised at a minimum total network
cost, which is composed of:

– fixed installation cost of each transit node,

– fixed installation cost of each link,

– capacity-dependent cost of each link.

The considered problem can be applied to MPLS-
capable IP networks, with the access nodes representing
ingress/egress label edge routers (LER), and the transit
nodes – label switching routers (LSR). Since the evolving
IP/MPLS networks will comprise large numbers of LERs
and LSRs to be placed in many possible sites, the prob-
lem of optimal node and link location becomes important,
especially for economical network extension. The problem
definition is general enough to describe topology design
problem without node localisation (cf. ONDP in [1]).
A subproblem of the TNLLP, known as optimal network
design problem (ONDP) was widely studied in [2–5] using
greedy and branch-and-bound algorithms. In [6] the mul-
ticommodity capacitated network design problem, an arc-
based formulation with variable cost of flow and installa-
tion cost of multiple facilities installed on the arc, is solved
combining the cutting plane method with the Lagrangean
relaxation and heuristics. In Ref. [7] the dualascent proce-
dure in the Lagrangean relaxation to solve an uncapacitated
network design problem is used. Other references can be
found in [1].
Since a problem very similar to the considered one is
known to be NP-complete [8], one cannot expect to find
time efficient algorithms for exact solving of the TNLLP.
The branch-and-bound approach [9], although exact, is in
general too time-consuming, especially for large networks.
Hence, we have to use heuristic methods. Some heuristics
were already studied in [1], and some of them (H4B, SAL,
SAN) supply quite good suboptimal solutions. In this paper
we inspect another heuristic method called the greedy ran-
domised adaptive search procedure, that comprises greedy,

26

Greedy randomised adaptive search procedures for topological design of MPLS networks

but randomised construction of the initial solution, and the
local search method. GRASP has already been applied to
many different problems (cf. [10–12]), and seems to be
a good metaheuristic method, which may be adapted to
solve TNLLP.

This paper is a continuation of [1] and [9], and it is organ-
ised as follows. In Section 2 we give a formal statement
of the considered problem. Section 3 consists of GRASP
method’s presentation. A discussion of GRASP implemen-
tation for TNLLP is provided in Section 4. In Section 5
we illustrate efficiency of the GRASP implementation using
numerical examples. Conclusions are drawn in Section 6.

2. Problem formulation

Let us consider two disjoint sets of nodes: access nodes
labelled with w= 1; : : : ;W, and transit nodes labelled with
v= 1; : : : ;V . The nodes are connected by undirected links,
labelled with e= 1; : : : ;E. The links connecting access
nodes to transit nodes are called access links, and transit
links interconnect transit nodes. There are no links between
the access nodes. The incidence of links and transit nodes
is given by the binary incidence coefficients bev : bev = 1
if link e is incident with transit node v, and bev= 0 other-
wise.

The access nodes are installed (fixed) and cost nothing1.
A transit node v can be provided or not. If it is installed,
it costs lv. Any transit or access link can also be provided
or not. An installed link costs ceye+ ke (where ye is the
capacity of the link e), otherwise it costs nothing. Since
the network must be consistent, if a link is provided then
its end nodes must be provided as well.

The demands, which are imposed on network and labelled
with d= 1; : : : ;D, are realised by means of flows allocated
to admissible paths. With each demand d there is associated
its origin node sd, destination (target) node td and demand
volume hd.

There are two main ways of formulating the flow problem
for such a graph: link-path formulation and node-link for-
mulation. The former requires to define for each demand
a set of admissible paths labelled with j = 1; : : : ;Jd. Each
such path begins at node sd, then traverses (a non-empty)
subset of transit nodes, and ends at node td. The paths
are defined by the binary incidence coefficients aed j, where
aed j = 1 if link e belongs to path j of demand d, and
aed j = 0 otherwise.

Transit nodes and links localisation problem can be for-
mally stated in its link-path formulation as the following
mixed-integer programme (MIP).

1Introduction of the installation cost of the access nodes would change
an objective function just for a constant value, because provision of access
links is determined by imposed demands. Hence, it does not change our
optimisation problem.

TNLLP1 (link-path formulation)
indices

d= 1;2; : : : ;D demands
j = 1;2; : : : ;Jd paths for realising flows of demand d
v= 1;2; : : : ;V transit nodes
e= 1;2; : : : ;E links

constants

hd volume of demand d
aed j = 1 if link e belongs to path j of demand d, 0 otherwise
ce cost of capacity unit of link e
ke fixed cost of installing link e
Ye upper bound for the capacity of link e
bev = 1 if link e is incident with transit node v, 0 otherwise
lv fixed cost of installing transit node v
Ye upper bound for the capacity of link e
Gv upper bound for the degree of transit node v

variables

xd j flow realising demand d allocated to path j
(non-negative continuous variable)

ye capacity of link e (non-negative continuous variable)
σe = 1 if link e is provided, 0 otherwise (binary variable)
εv = 1 if node v is provided, 0 otherwise (binary variable)

objective

minimise C= Σeceye+Σekeσe+Σvlvεv (1)

constraints

Σ j xd j = hd d= 1;2; : : : ;D (2)

ΣdΣ j aed jxd j = ye e= 1;2; : : : ;E (3)

ye�Yeσe e= 1;2; : : : ;E (4)

Σebevσe�Gvεv v= 1;2; : : : ;V: (5)

In TNLLP1 constraints (2) assure that the demands are
realised, and constraints (3) and (4) that the capacity of
a non-provided link is equal to 0. Constraints (5) assure
that if a link is provided then also its end nodes are. The
objective is to minimise the cost of all links and of transit
nodes. Parameters Ye and Gv are high enough not to limit
the capacity of edges and the number of edges outgoing
from node respectively.
The set of admissible paths for each demand d may be
defined as the set of all paths between sd and td, or it may
be somehow limited (e.g. to at most two-hop paths). In
the former case, the values of Jd can be very large, leading
to an excessive amount of flow variables in the link-path
problem formulation given above. For such a problem, we
can use the alternative node-link problem formulation.
The node-link formulation of TNLLP uses link flows in-
stead of path flows and requires the flows to be directed.
Hence, with each link e we associate two directed arcs
traversing the link in two opposite directions. Note that
also the demands are directed. To suppress the number of
flow variables we use flow variables aggregated by origi-
nating node (non-negative continuous variables).

27

Andrzej Mysłek

TNLLP2 (node-link formulation)
indices

v = 1;2; : : : ;V transit nodes
w = 1;2; : : : ;W access nodes
e = 1;2; : : : ;E links
t = 1;2; : : : ;T directed transit arcs (between transit nodes)
f = 1;2; : : : ;F directed access arcs (between access and

transit nodes)

constants

hww0 demand originating at access node w and destined
for access node w

Hw = Σw0hww0 total demand originating at access node w
bev = 1 if node v is incident with link e, 0 otherwise
btv =�1 if transit arc t is incoming to transit node v

= 1 if transit arc t is outgoing from transit node v
= 0 otherwise

bfv =�1 if access link f is incoming to transit node v
= 1 if access link f is outgoing from transit node v
= 0 otherwise

bfw =�1 if access link f is incoming to access node w
= 1 if access link f is outgoing from access node w
= 0 otherwise

aet = 1 if transit arc t is realised on link e, 0 otherwise
ae f = 1 if access arc f is realised on link e, 0 otherwise
Ye upper bound for the capacity of link e
Gv upper bound for the degree of transit node v

variables

xtw flow realising all demands originating at access node w
on transit arc t

xfw flow realising all demands originating at access node w
on access arc f

ye capacity of link e
σe = 1 if link e is installed, 0 otherwise (binary variable)
εv = 1 if node v is installed, 0 otherwise (binary variable)

objective

minimise (1)

constraints

ΣtaetΣwxtw+Σ f ae fΣwxfw = ye e= 1;2; : : : ;E (6)

Σ f bfw0 xfw =Hw w= 1;2; : : : ;W (7)

Σ f bfw0xfw = hww0 w= 1;2; : : : ;W; w0
= 1;2; : : : ;W (8)

Σt btvxtw+Σ f bf vxfw = 0 v= 1;2; : : : ;V; w= 1;2; : : : ;W (9)

ye�Yeσe e= 1;2; : : : ;E (10)

Σebevσe�Gvεv v= 1;2; : : : ;V: (11)

In the formulation of the constraints in TNLLP2 only the
following flow variables are used:

� xtw for all pairs (t;w) such that t = 1;2; : : : ;T;
w= 1;2; : : : ;W

� xf w for all pairs (f ;w) such that f = 1;2; : : : ;F;
w= 1;2; : : : ;W and either access link f is outgo-
ing from access node w (i.e. bf w = 1) or link
f is incoming to some other access node w0 with
hww0 > 0 (bf w =�1 and hww0 > 0).

In TNLLP2 each link e supports two directed arcs (either
both access or both transit) whose numbers are specified
by coefficients ae f and aet (respectively) equal to 1. Con-
straint (7) forces the total demand Hw generated in access
node w to flow out, constraint (8) – that the portion hww0

of the flow originated at node w and destined for node w0

stays at w0, and constraint (9) – that no flow stays in a transit
node.
The savings in the number of variables and constraints
while using TNLLP2 instead of TNLLP1 are illustrated
in [1].
Note that in the optimal solution of TNLLP, the de-
mands can be routed on single paths, so if a demand corre-
sponds – to an MPLS tunnel, the solution guarantees that
the tunnel is realised on one path. This follows from the
linearity of the capacity-dependent cost used in the cost
function: for each fixed configuration of nodes and links,
the capacity dependent part of (1) is minimised by assign-
ing the entire demand volume hd to one of its shortest paths
with respect to the link metrics ce. This property was used
in [9] to construct a lower bound for the branch-and-bound
algorithm.

3. Greedy randomised adaptive search
procedure

A greedy randomised adaptive search procedure [10, 11]
is one of neighbourhood search methods, like local search
and tabu search methods. The GRASP is metaheuristic ap-
proach, that was applied to various optimisation problems:
graph, scheduling, assignment and other problems, and for
different domain-specific problems like aircraft routing or
network planning (for the full bibliography of the GRASP
see [12]).
A general GRASP heuristic is a two-phase iterative pro-
cess. In each GRASP iteration there are two phases – the
construction of a new greedy randomised solution, which
consequently is used as the starting point for the second
phase, and a local search algorithm that is run afterwards.
This procedure is executed repeatedly until some termina-
tion criterion is met. The best solution over all iterations
is the result. Pseudo-code for a generic GRASP method is
given in Source 1.

28

Greedy randomised adaptive search procedures for topological design of MPLS networks

Source 1. Pseudo-code for GRASP

procedure GRASP (var bestSolution);
begin

repeat
ConstructGreedyRandomisedSolution(solution);
LocalSearch(solution);
UpdateBestSolution(solution,bestSolution);

until TerminationCriterion();
end;

In the construction phase we are looking for a solution,
building it up from smaller parts. If we describe the solu-
tion as a vector of, for example, binary decision variables,
constructing a solution means to choose variables one by
one, and decide about their values. Randomly choosing
and setting one of the best variables is the probabilistic
component of the GRASP method.
To make construction process more formal and applicable
to different problems, in Ref. [11], the concept of a list
of candidates, called restricted candidate list (RCL) is in-
troduced. The RCL is a list of the best candidates (parts
of a solution) that can be used to form a new solution. It
is restricted, because instead of looking for just the best
candidate we allow worse candidates to be chosen to form
the solution. Candidates are chosen randomly, and after
adding a candidate to the solution, we adapt greedy func-
tion, i.e. we calculate the impact of our choice for the
greedy function. This procedure is presented in Source 2.

Source 2. Pseudo-code for the GRASP construction phase

procedure ConstructGreedyRandomisedSolution
(var solution);

begin
solution = Ø;
while not SolutionConstructed(solution) do
begin

MakeRCL(RCL);
s = SelectRandom(RCL);
solution = solution [fsg;
AdaptGreedyFunction(s);

end;
end;

The solution obtained in the construction phase is not guar-
anteed to be locally optimal with respect to simple neigh-
bourhood definition. Hence, we try to improve the solu-
tion, applying a local search loop. This algorithm works
in an iterative fashion by moving to a better solution in
the neighbourhood of the current solution. It terminates
when no better solution can be found (in the neighbour-
hood). A neighbourhood N(s) of the solution s relates this
solution to a set of solutions. Choosing the best solution
from the neighbourhood we run the greedy local search.
The two phases of GRASP give foundation for the good op-
timisation technique. A greedy choice of candidates forms

random (but good) solution, which is then improved by
a local search.

4. GRASP implementation for TNLLP

Greedy randomised adaptive search procedure uses a two-
phase iterative approach to solve the problem. In the first
phase, the construction phase, construction of restricted
candidate list is repeated. In each iteration of the con-
struction phase we choose a part of the solution to form
initial solution for the second phase of GRASP.
In TNLLP a solution is a set of edges and nodes provided,
and the set of paths used to realise demands (each demand
on a single path). Note, that if we decide which edge and
node should be provided, we can easily find paths for de-
mands using the shortest path according to variable cost
of edges. Hence, our construction phase would consist of
repeatedly choosing one edge and adding it to the solu-
tion. We could select, for example, edges with the highest
flow belonging to the shortest path according to the modi-
fied weights from [9] (incorporating the installation cost of
nodes and links, and the variable cost of edges).
Selecting edges to form a solution seems to be a good
method. We can rank edges according to their flow or the
number of demands realised on and we have termination
criterion for construction (when all the edges not chosen
do not bare the flow). However, the solutions generated by
this method are usually poor.
The better starting solution can be constructed using de-
mand’s flows allocation. This method was used in [1] to
construct starting solution for heuristics, but here we can
add some randomisation. Let each demand’s flow be routed
through the shortest paths, according to the current state of
the network. We calculate the length of the path as the
sum of the variable cost of the demand and the fixed cost
of not provided links (and optionally nodes) on that path.
We adapt our greedy function by setting the edges (and
nodes) as provided after the shortest path is found. Our
modified construction phase is shown in Source 3.

Source 3. Pseudo-code for the GRASP modified
construction phase (for TNLLP)

procedure ConstructGreedyRandomisedSolution
(var solution);

begin
solution� = Ø;
MakeRCL(demandRCL);
repeat

d = SelectRandom(demandRCL);
path = FindShortestPath(solution,d);
solution = solution [NodesAndEdges(path);

until size(demandRCL)= 0;
end;

� solution consists of edges and nodes

29

Andrzej Mysłek

In the construction phase we first construct a demand RCL.
Then, selecting in each iteration one demand at random, we
route this demand through the shortest path, updating the
solution. When all the demands are routed, the construction
phase is done. Our initial solution is good enough to apply
efficiently the local search phase. Moreover, our initial
solutions are well randomised, since the order of demands
routed is random in each run of the construction phase.

Next, we try to improve GRASP initial solution obtained in
the construction phase applying a local search. To identify
the local search procedure for TNLLP we have to choose
the neighbourhood model (the solution model was deter-
mined by the construction phase). Certainly, we could use
the model from the construction phase (the demand reallo-
cation), but to make the search more exhaustive we select
nodes and links switching. An iteration of the local search
will comprise switching selected edge (or node), i.e. mak-
ing edge unavailable if it is provided and vice versa.

Switching an edge off requires rerouting demands which
use the edge. It is rather simple, since the shortest paths
of other demands do not change and there are not so many
edges provided. Alternatively, switching edge on should
involve rerouting all the demands, because any shortest path
can change2.

Finally, a GRASP iteration is composed of the construction
phase, where we obtain the initial solution randomly rout-
ing demands on the shortest paths, and the local search,
that improves the initial solution. We repeat the GRASP
iteration until some arbitrary termination criterion is met,
for example maximum iteration limit is reached or there
was no improvement for last n iterations.

The GRASP for TNLLP, as it was described above, has
some variants. We can use the installation cost of transit
nodes during construction phase combined with the vari-
able cost of demand and installation cost of edges, or just
the variable cost of demand and installation cost of edges
to determine the shortest path for a demand. In the local
search phase the nodes can be switched first, and then edges
instead of switching edges only.

5. Numerical results

We have considered three artificially generated network
structures (N7, N14 and N28) determined by the geo-
graphical locations of nodes, and one realistic network
(PL49) reflecting Polish public backbone network. The
networks were used in [1] and are available on the web
site [13]. The basic parameters of the networks are given
in Table 1. All links are potentially available.

The unit cost ce of link e is in all cases proportional to its
geographical length. The fixed installation cost is given by
ke = ce � 10n (n is a parameter in computations; the fixed
cost of access links is additionally multiplied by 3, and for

2Finding the shortest path is the most time-consuming activity in the
demand’s routing.

the transit links by 2). The fixed installation cost of a transit
node is the same for all nodes and is given by lv= 10k (k is
another parameter in computations).

Table 1
Test networks parameters

Network W V F T D minhd maxhd Σdhd

N7 7 5 70 20 42 240 1920 34 320

N14 14 11 308 110 182 120 7560 172 320

N28 28 15 840 210 756 120 30 240 892 492

PL49 49 12 1178 132 2352 36 53 572 2 788 073

Applied GRASP methods vary in network installation cost
factors used in the solution construction, node switching
and edge adding. G1 operates on the fixed cost of nodes
and the cost of flow (variable cost of edges times demand
volume) during the construction phase and removes edges
in the local search. The fixed cost of nodes was added as
a factor in the construction phase of G2. Methods G3 and
G4 are respectively similar to G1 and G2, but in a local
search phase they try to switch off transit nodes first, and
then remove edges. All the four methods G1–G4 have their
counterparts G1+–G4+, which in the local search phase not
only remove edges, but can add them too.

Table 2
Results for TNLLP (cost in units of 106)

Network n k H4B* SAN* SAL* EX* G1 G2

N14 4 4 58.93 81.38 57.61 57.61 58.54 58.54

N14 4 5 59.92 81.83 58.60 58.60 59.53 62.24

N14 4 6 69.82 84.07 69.53 67.14 69.43 75.28

N14 5 4 266.23 426.88 265.32 — 276.39 276.39

N14 5 5 267.22 427.24 267.22 — 277.38 277.38

N14 5 6 277.12 430.84 277.88 — 287.28 287.28

N28 4 4 253.21 274.45 262.46 — 262.32 262.32

N28 4 5 254.56 277.21 256.34 — 263.67 263.67

N28 4 6 268.06 283.51 284.04 — 277.17 318.72

N28 5 4 751.60 1369.97 742.94 — 781.85 781.85

N28 5 5 752.95 1370.78 769.64 — 783.20 795.81

N28 5 6 761.37 1378.88 784.93 — 796.70 809.31

PL49 4 7 1199.75 1186.80 1207.50 — 1272.84 1361.90

* Results for the best methods published in [1].

Table 3
Results for TNLLP – continued (cost in units of 106)

Network n k G3 G4 G1+ G2+ G3+ G4+

N14 4 4 58.54 58.54 57.61 57.61 57.61 57.61

N14 4 5 59.53 62.24 58.60 58.60 58.60 58.60

N14 4 6 69.43 75.28 68.50 75.28 68.50 75.28

N14 5 4 276.39 276.39 271.25 271.25 271.25 271.25

N14 5 5 277.38 277.38 272.24 272.24 272.24 272.24

N14 5 6 287.28 287.28 282.14 282.14 282.14 282.14

N28 4 4 262.32 262.32 250.02 250.02 250.02 250.02

N28 4 5 263.67 263.67 251.37 251.86 251.37 251.86

N28 4 6 277.17 318.72 264.87 277.15 264.87 277.15

N28 5 4 781.85 781.85 756.25 756.25 756.25 756.25

N28 5 5 783.20 795.81 757.60 757.60 757.60 757.60

N28 5 6 796.70 809.31 771.10 771.10 771.10 771.10

PL49 4 7 1272.84 1361.90 1197.89 1361.90 1197.89 1361.90

30

Greedy randomised adaptive search procedures for topological design of MPLS networks

Table 4
Relative cost difference for TNLLP with respect to the

optimal solution [%]

Net-
work

n k H4B� SAN� SAL� G1 G2 G3 G4 G1+ G2+ G3+ G4+

N14 4 4 2.28 41.24 0 1.61 1.61 1.61 1.61 0 0 0 0
N14 4 5 2.24 39.63 0 1.59 6.21 1.59 6.21 0 0 0 0
N14 4 6 3.98 25.21 3.55 3.41 12.12 3.41 12.12 2.03 12.12 2.03 12.12

� Results for the best methods published in [1].

Results for TNLLP are given in Tables 2–4 together with
results for specialised heuristic H4B, simulated annealing
(SAN) and simulated allocation (SAL) from [1]. Results
for G1–G4 were obtained after 100 iterations of the algo-
rithm, except PL49, for which results were obtained after
50 iterations. Methods G1+–G4+ were run for 20 itera-
tions.
Table 5 presents convergence of methods. Running times
are shown in Tables 6 and 7. We can notice that methods
that employ the node cost in the construction phase, i.e.
search the shortest path using the installation cost of nodes,
the installation cost of edges and the flow cost, give worse
results then, one might think less reasonable, method of
constructing a solution using just the installation cost of
edges and the flow cost.

Table 5
Convergence to the optimal solution [%]

Net- n k G1, G3 G2, G4 G1+

work 20� 50� 100� 20� 50� 100� 5� 20� 100�

N14 4 4 10.57 6.32 1.61 10.57 6.32 1.61 1.61 0.00 0.00
N14 4 5 10.39 6.21 1.59 10.39 6.21 6.21 1.59 0.00 0.00
N14 4 6 11.10 7.45 3.41 12.12 12.12 12.12 3.41 2.03 2.03
� Number of iterations.

We can also find that methods using node switching in
their local search give the same results as their counter-
parts, and run for a slightly longer time. Nevertheless,
these methods can be much faster for networks that have
high fixed cost of nodes, because they remove in one local
search iteration a bunch of edges. Certainly, they can miss
the better solution then.

Table 6
Running times for TNLLP [s] (H4B, SAN, G1–G3:

Sun Sparc Ultra-4; SAL: PC 800 MHz)

Network n k H4B* SAN* SAL* G1 G2 G3
N14 4 4 3.71 326.74 21.36 18.55 18.69 24.18
N14 4 5 3.77 327.14 3.14 18.40 19.20 23.98
N14 4 6 3.59 318.09 64.08 18.55 7.75 24.26
N14 5 4 3.77 317.61 5.15 13.11 13.06 16.44
N14 5 5 3.78 316.90 19.45 13.01 13.07 16.55
N14 5 6 3.77 324.74 7.46 13.33 12.95 16.84
N28 4 4 35.90 1287.99 78.08 245.01 241.91 300.66
N28 4 5 36.61 1272.05 193.14 242.51 258.77 300.99
N28 4 6 38.65 1271.74 58.66 243.09 84.70 299.33
N28 5 4 35.92 1321.07 58.64 131.13 135.81 160.54
N28 5 5 35.82 1314.30 44.83 130.53 150.39 159.83
N28 5 6 35.00 1304.07 89.97 131.78 133.38 160.58
PL49 4 7 135.46 265.19 146.11 452.67 94.69 514.30
� Results for the best methods published in [1].

Table 7
Running times for TNLLP [s] – continued

(G4, G1+–G4+: Sun Sparc Ultra-4)

Network n k G4 G1+ G2+ G3+ G4+

N14 4 4 23.89 143.55 145.70 151.23 152.01

N14 4 5 25.18 143.01 142.10 150.92 149.89

N14 4 6 11.53 146.95 40.63 163.52 42.81

N14 5 4 16.68 23.51 24.09 24.97 25.01

N14 5 5 16.57 23.76 24.05 24.66 25.03

N14 5 6 16.75 24.20 23.79 24.90 24.95

N28 4 4 297.97 4062.85 4047.29 4164.93 4176.44

N28 4 5 305.95 4080.50 4183.02 4150.94 4289.03

N28 4 6 116.61 4154.86 1961.39 4155.54 2005.43

N28 5 4 160.71 1431.43 1427.85 1522.83 1485.44

N28 5 5 162.96 1435.02 1430.90 1474.59 1506.80

N28 5 6 163.65 1438.98 1491.40 1471.11 1499.58

PL49 4 7 114.45 25439.00 562.95 25736.20 573.21

Finally, edge switching, instead of edge removing, is much
better in terms of the final result of GRASP, but it takes a lot
of time, because usually there are not as many edges chosen
for initial solution (thus not as many to check for removing)
as edges not included in the initial solution. In edge switch-
ing all the edges of a network must be checked (whether
to be removed or included), what can change the method
running time for an order of magnitude or even more.
G1 and G3 methods in one case give better results than
other heuristic methods from [1] (N14, n= 4; k= 6), but
generally results are 3–5% worse. Their running time is
usually longer than the running time for H4B and SAL, but
shorter than for SAN. G1+ and G3+ methods give results
in 2% neighbourhood (+=�) of other heuristic methods
from [1], but their running times are very long (cf. PL49).

6. Conclusions

In the paper we proposed a GRASP method implementation
to solve topological node and link localisation problem.
The problem, consisting in optimal locating of links and
nodes under demand constraints, is NP-hard, and hence
heuristic methods are needed. Heuristics become a must
for larger networks, for which the running time of exact
algorithms becomes infinite.
Numerical examples show that some of GRASP implemen-
tations drawn here, which use the demand routing through
the shortest path and the local search, are quite efficient
and supply good suboptimal solutions. Our study shows
that during the construction phase (when we construct the
initial solution) it is better not to use installation cost of
nodes. Using edges switching in the local search phase in-
stead of edge removing can give better results after fewer
iterations, but the time of one iteration is large, and the
overall running time of modified method can be order of
magnitude larger.
Certainly, the proposed method can still be improved, for
example by incorporating more advanced procedures to
the construction phase to prepare better initial solution.
RCL concept of GRASP can be further deployed by intro-

31

Andrzej Mysłek

duction of a function of ranking demands. The promising
way might be employing simulated allocation instead of the
local search.

References
[1] M. Pióro, A. Jüttner, J. Harmatos, Á. Szentesi, P. Gajowniczek,

and A. Mysłek, “Topological design of telecommunication networks.
Nodes and links localization under demand constraints”, in 17th Int.
Teletraf. Congr., 2001.

[2] M. Minoux, “Network synthesis and optimum network design prob-
lems: models, solution methods and application”, Networks, vol. 19,
pp. 313–360, 1989.

[3] H. H. Hoang, “A computational approach to the selection of an
optimal network”, Manag. Sci., vol. 19, pp. 488–498, 1973.

[4] D. E. Boyce, A. Farhi, and R. Weischedel, “Optimal network
problem: a branch and bound algorithm”, Envir. Plan., vol. 5,
pp. 519–533, 1973.

[5] R. Dionne and M. Florian, “Exact and approximate algorithms for
optimal network design”, Networks, vol. 9, pp. 37–59, 1979.

[6] B. Gendron, T. G. Crainic, and A. Fragnioni, “Multicommodity ca-
pacitated network design”, in Telecommunication Network Planning,
B. Sanso and P. Soriano, Eds. Boston: Kluwer, 1996.

[7] A. Balakrishnan, T. L. Magnanti, and R. T. Wong, “A dual-ascent
procedure for large-scale uncapacitated network design”, Oper. Res.,
vol. 37, no. 5, pp. 726–740, 1989.

[8] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnoy Kan, “The
complexity of the network design problem”, Networks, vol. 8,
pp. 279–285, 1978.

[9] M. Pióro, A. Mysłek, A. Jüttner, J. Harmatos, and Á. Szentesi,
“Topological design of MPLS networks”, in Globecom, San Antonio,
2001.

[10] T. A. Feo, M. G. C. Resende, and S. H. Smith, “Greedy random-
ized adaptive search procedure for maximum independent set”, Oper.
Res., vol. 42, no. 5, pp. 860–887, 1994.

[11] T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive
search procedures”, J. Glob. Opt., vol. 6, pp. 109–133, 1995.

[12] M. G. C. Resende, “GRASP bibliography”,
http://www.research.att.com/ mgcr/doc/graspbib.pdf

[13] Examples of TNLLP networks,
http://www.tele.pw.edu.pl/networks/TNLLP/

Andrzej Mysłek was born in
Poland in 1973. He received
M.Sc. degrees in telecommu-
nications and in management
from the Warsaw University of
Technology in 1997 and 2000,
respectively. He is now prepar-
ing his Ph.D. theses, concerning
topological design of telecom-
munications networks, at the
Warsaw University of Technol-

ogy, in the Institute of Telecommunications.
e-mail: amyslek@tele.pw.edu.pl
Institute of Telecommunications
Warsaw University of Technology
Nowowiejska st 15/19
00-665 Warsaw, Poland

32

