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Abstract — One of main features in financial investment
problems is that the situation changes very often over time.
Under this circumstance, in particular, it has been observed
that additional learning plays an effective role. However, since
the rule for classification becomes more and more complex
with only additional learning, some appropriate forgetting
is also necessary. It seems natural that many data are for-
gotten as the time elapses. On the other hand, it is expected
more effective to forget unnecessary data actively. In this pa-
per, several methods for active forgetting are suggested. The
effectiveness of active forgetting is shown by examples in stock
portfolio problems.

Keywords — pattern classification, potential method, additional
learning, forgetting.

1. Introduction

In many practical problems, e.g., financial investment prob-
lems, the situation changes very often over time. In ma-
chine learning, therefore, decision rules are needed to adapt
for such changeable situations. To this end, additional
learning should be made on the basis of new data. One
of the authors and his collaborators have reported the ef-
fectiveness of additional learning in several machine learn-
ing techniques: mathematical programming approach [1],
potential method [2] and RBF networks [3–5].
On the other hand, since the rule for classification becomes
more and more complex with only additional learning,
some appropriate forgetting is also necessary. Although
several trials of forgetting in machine learning have been
also suggested, they are concernced in such a way that the
degree of importance of data decreases over time [3–5].
We call the way of forgetting based only on the time elapse
“passive forgetting”. However, it seems more effective to
forget data which give bad influences to the current judg-
ment. We call this way of forgetting “obstacle data” actively
“active forgetting”. In this paper, the effectiveness of active
forgetting will be proved through some examples in stock
portfolio problems.

2. Potential method

To begin with, the potential method suggested by one of
the authors et al. [2] is reviewed briefly. The idea of
potential method is originated from the static electric the-
ory. Another similar method is the restricted Coulomb en-

ergy (RCE) classifier by Cooper [6] and Reilly et al. [7].
RCE tries to increase the ability of classification by adjust-
ing the radia of hyperspheres which approximate the region
of influence of data.
Unlike RCE, however, the potential method adjusts “charge”
associated with each data in order to increase the ability
of generalization. Each hidden unit corresponds to each
teacher’s pattern xj( j = 1; � � � ;N), which has some amount
of charge cj in which the sign depends on which category
it belongs. Letting D(x;xj) denote a distance between x
and xj , the output unit is connected to

z(x) = sgnP(x) ;

where

P(x) =
N

∑
j=1

cj

D(x;xj)
:

Here, P is the well known potential function, which sign
decided on which category a given test data belongs to.
Note that the potential method can classify each teacher’s
data xj ( j = 1; � � � ;N) correctly without doing anything, be-
cause P(xj) = +∞ for cj > 0 and P(xj) = �∞ for cj < 0.
This means that the potential method can make the per-
fect learning for given teachear’s data without doing any-
thing. If we use the potential method as it is, however, it
yields several small isolated influence regions just like “is-
lands” in many problems. Clearly, this phenomenon causes
a poor generalization ability. Therefore, in oder to obtain
as smooth a discriminant surface as possible, we adjust
the charges of data. This is the learning of the potential
method.
A way of learning in the potential method can be summa-
rized as follows:
Step 0. At the beginning, all teacher’s data have an equal
amount of charge except for the difference in its sign (sup-
pose that each data of the class A has a positive charge,
while each data of the class B a negative charge).
Step 1. Consider the ith pattern xi (i = 1; � � � ;N). Examine
whether it is categorized correctly or not on the basis of
the sign of output of

P̃(xi) =
N

∑
j 6=i

cj

D(xi ;xj)
:

If the pattern xi is not categorized correctly, then add the
index i to the set Ierror. If Ierror is empty, then stop the
iteration. Otherwise go to the next step.
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Step 2. Find the pattern xp with the highest error,
namely

jP̃(xp)j= max
i2Ierror

jP̃(xi)j:

Step 3. Find the pattern xq in the other category than
of xp nearest to the pattern xp. Change the charge cj of
pattern xj ( j = 1; � � � ;N) in such a way that the potential at
xm = (xp+xq)=2 becomes zero. Namely, suppose that the
new charge c

0

j is given by

c
0

j = cj exp
�
� P̃(xj)γ

�
j = 1; � � � ;N ; (1)

where denoting qj = cj=D(xm;xj); ( j = 1; � � � ;N), γ solves

q1exp
�
� P̃(x1)γ

�
+ � � �+qN0 exp

�
� P̃(xN0)γ

�
+

+qN0+1exp
�
P̃(xN0+1)γ

�
+ � � �+qN exp

�
P̃(xN)γ

�
= 0: (2)

Here, x1; � � � ;xN0 have positive charges, while xN0+1; � � � ;xN
negative charges. The sign � in Eq. (1) means that cj > 0
takes “�” and cj < 0 “+”.
Replace the charge of each pattern by the new one given
by Eq. (1), and go to Step 1.

Remark 1. In changing charges, we focus our attention on
a data whose position has the highest potential in the oppo-
site category. It is possible to consider all data whose posi-
tions have potentials with the opposite sign. In this event,
the equation to be solved becomes a system of several non-
linear equations. Although the authors examined several
methods for solving the system of nonlinear equations, any
technique have some difficulties, say, being trapped in local
minima, no convergence sometimes, time consuming and
so on. Although the above method based on the Eq. (2)
produces just an approximate solution to our modification
problem of charges, it shows good performance in our ex-
periences.

Remark 2. The potential method belongs to a class of ker-
nel methods for machine learning in which the approximate
function is given by

f (x) =
n

∑
j=1

Kj(x;xj )yj ;

where yj = 1 for xj 2A and yj =�1 for xj 2B. In addi-
tion, the kernel Kj(x;xj ) is a symmetric function that usu-
ally (but not always) satisfies the following properties [8]:

(i) K(x;x0)� 0 nonnegative,
(ii) K(x;x0) = K(jjx�x0jj) radially symmetric,
(iii) K(x;x) = max takes on its maximum

when x= x0,
(iv) limt!∞ K(t) = 0 monotonically decreasing

with t = jjx�x0jj.
The potential methods uses the kernel K(x;x0) =
= c

jjx�x0jj (c> 0). In this event, the above property (iii)
should be interpreted in such a way that the kernel has
an infinite maximum when x= x0. Although the infinity
property is not desirable in many mathematical analysis, it
has a positive meaning in pattern classification problems.

For cases in which the kernel is infinite at a test pattern,
the potential at the test pattern has the correct sign without
any learning. The only problem is that the generalization
ability without adjustment of “charge” is poor in general.
Therefore, the learning in the potential method is to adjust
“charge” in order to increase the generalization ability.

Remark 3. The potential method can be extended by using
a generalized potential

P(x) =
n

∑
j=1

cj

fD(x;xj)g
r :

As r becomes larger, the influence of the data nearest to
the test pattern gets larger. In the case of r !∞, therefore,
the potential method with a generalized potential becomes
the same as the k-nearest neighbour method with k= 1.

3. Additional learning

We can show that the additional learning can be made easily
by using the potential method. Let xt be a data added newly
to the existing teacher’s data. The procedure of additional
learning can be divided into 1) the case in which xt is
classified correctly by the present rule, and 2) the case in
which xt is misclassified by the present rule. The details
are as follows:

Case 1. When the new data xt is classified correctly by the
present rule, find a data xa closest to xt but in the different
category of xt . In addition, find a data xb closest to xa

but in the different category of xa. Let xabm be the middle
point of xa and xb, i.e., xabm= (xa+xb)=2. If the potential
of xabm has a different sign from that of xt , then put the
charge ct on xt in such a way that we have

P0(xabm) := P(xabm)+ct=D(xt ;xabm) = 0:

Namely, we put

ct =�P(xabm)�D(xt ;xabm) :

However, if the potential of xabm has the same sign as that
of xt , then we do not put any charge on xt (i.e, ct = 0).
The purpose of consideration of the potential of xabm is
to check whether the discriminant surface can be made
correctly by adding xt . Also, by excluding unnecessary
data from additional learning, the computation time can be
made shortened.

Case 2. When the new data xt is misclassified by the
present rule, find a data xa closest to xt but in the different
category from xt . Let xatm = (xt + xa)=2. Then put the
charge ct on xt in such a way that we have

P0(xatm) := P(xatm)+ct=D(xt ;xatm) = 0:

Namely, we put

ct =�P(xatm)�D(xt ;xatm) :
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4. Forgetting

If we make only additional learning according as some
new knowledge are added, the newly obtained rule be-
comes more and more complex. Clearly, this does not give
us a good effect in generalization ability of the method.
Rather, it seems that unnecessary (or, inappropriate) rule
in the present situation should be excluded. Human beings
seem to grow up in such an adaptive way. Therefore, we
should introduce forgetting as well as additional learning
in machine learning.
How to forget is a difficult problem in machine learning.
Maybe, one way is to forget unimportant data. In this event,
we have to consider the degree of importance of data. In the
potential method, the degree of importance for each data
is considered to be given by the value of kernel function
Ki(x;xi) =

ci
D(x;xi )

.

4.1. Passive forgetting

In many situations, it seems natural that the degree of im-
portance of data reduces as the time passes. A method for
forgetting may be given by

c0f = cf exp (�αt) ;

where t denotes the time elapsed, α – the coefficient of
forgetting, cf – the original charge, and c0f – the charge
after t-time passed. Additionaly, it is supposed that the
data xf is extracted from the set of teacher’s data, if t is
beyond a threshold (the forgetting period).
The above method for forgetting depends only on the time
elapse. However, it seems more effective to forget more
actively data which give bad influences to correct judgment.
We call the way of forgetting depending on the time elapse
“passive forgetting”, whereas the one of forgetting data with
bad influence actively “active forgetting”. We shall discuss
the way of active forgetting in more detail below.

4.2. Active forgetting

A key for active forgetting is to find data giving a bad
influence to correct judgment. We call such data “obstacle
data”. One way for finding obstacle data is given as follows.
Suppose that a test pattern xt is misjudged by the potential
method. Let IF denote the set of data in the other category
from xt . Removing a data xi 2 IF , judge the category of
test data xt on the basis of its potential. If the judgment
is correct, the data xi is considered an obstacle data. Find
such an obstacle data by checking all data xi 2 IF .
Several ways for forgetting obstacle data is possible. Two
simple ways (methods) are discussed below.

Method 1. Constant rate of forgetting with respect
to the distance. The importance of obstacle data (i.e.,
the value of kernel) is decreased by controlling only the
charge regardless the distance between the obstacle data

and the test pattern. Let cf denote the charge of the obsta-
cle data xf . A modified charge c0f is given, for example,
by

c0f = αcf :

Here, the rate of forgetting α takes a value from [0,1].

Method 2. Increasing rate of forgetting with respect to
the distance. In many cases, as the distance between a data
xi and the test pattern xt becomes smaller, the influence of
the data xi becomes larger. Therefore, it seems natural
to increase the rate of forgetting as the distance between
the obstacle data and the test pattern becomes smaller. In
this event, the value of kernel is controlled directly. One
example is given by

K0
i = αβKi ;

where α takes a value from [0,1], and β is given by

β =
2

1+e�θD(xi;xt)
�1:

The parameter θ is determined mainly by experience.

5. Applications to stock portfolio
problems

5.1. Single stock investment

Our problem is to judge whether a stock is to be purchased
or not. Seven economic indices are taken into account. We
have the data in the 119 periods in the past for which it is
already known to be purchased or not. We made a test of
discriminant ability of the potential method taking the first
50 data as the teacher’s ones, and examined the ability of
classification for the rest 69 data. Figure 1 compares the re-
sult without additional learning and the one with additional
learning with/without forgetting. Flags represent misclas-
sified data. It can be observed that the additional learning
provides a good effect in classification, in particular, around
the period of 80’s.

5.2. Portfolio mix problems

Our problem here is to make a portfolio mix among
213 stocks in the market. As in the previous subsection, it
is known in the past 50 periods (1987.1-1991.2) whether
each stock is to be purchased or not. In this event, each
stock is considered in terms of 10 economic indices. The
return rate is given by

return rate=

=
the highest price during the anteceding 6 periods

current price �1:

We judge a stock to buy if the return rate is over a certain
threshold. In the following simulation, we suppose this
threshold is 0.2 (Fig. 2).
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Table 1
Index of advantage over the market

Potential method RBF network 1-NN method

Top30% Free Top30% Free Top30% Free

Getting Getting Getting Getting Getting Getting

Initial learning only 1.49 1.46 1.59 1.23 0.85 1.30

(63.0) (100.4) (63.0) (103.8) (63.0) (130.3)

Additional learning 1.40 1.64 1.85 2.37 1.05 1.65

(without forgetting) (63.0) (49.0) (63.0) (37.3) (63.0) (57.7)

Additional learning 1.58 2.17 1.75 2.84 1.01 1.60

(with passive forgetting only) (63.0) (25.9) (63.0) (15.4) (63.0) (52.6)

Additional learning 5.39 13.04 1.84 4.09 — —

(with active forgetting only) (63.0) (49.9) (63.0) 23.5 — —

Additional learning 6.62 24.99 2.11 8.48 — —

(with active & passive forgetting) (63.0) (46.8) (63.0) (10.9) — —

The average number of invested stocks is indicated with a bracket.

Table 2
Index of advantage over the market for various forgetting schedules

(Free Getting active and passive forgetting)

Forgetting rate r

α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

1.00 1.91 2.56 2.87 3.77 6.10 7.28 9.51 14.90 16.29 21.12

(49.1) (49.4) (49.1) (48.4) (47.6) (46.1) (45.3) (45.3) (43.7) (45.4)

0.70 2.66 3.20 3.77 4.65 6.29 9.61 11.10 12.81 17.09 18.78

(49.2) (48.9) (49.0) (47.7) (46.4) (45.7) (45.3) (45.3) (43.7) (45.5)

0.50 7.28 6.88 8.83 9.61 9.34 9.81 12.56 13.79 14.22 18.57

(46.1) (45.9) (45.6) (45.7) (45.8) (44.8) (44.7) (44.3) (44.0) (44.5)

0.30 6.24 6.58 8.41 10.46 12.94 13.79 14.37 18.20 16.01 21.17

(46.4) (45.8) (45.2) (44.1) (44.1) (44.3) (44.1) (44.5) (44.7) (45.7)

0.10 15.84 16.66 15.33 17.11 16.87 18.57 18.34 22.54 20.13 21.72

(43.5) (44.4) (44.2) (44.7) (44.0) (44.5) (45.3) (45.8) (46.3) (47.8)

0.09 17.25 16.86 19.15 20.96 19.83 21.57 19.69 23.38 19.36 22.26

(44.5) (45.9) (44.8) (45.3) (45.5) (45.2) (45.5) (45.9) (47.2) (48.2)

0.07 17.43 17.85 16.87 18.22 21.87 22.60 22.21 23.37 23.48 20.78

(44.9) (43.7) (44.5) (44.6) (45.1) (45.3) (45.6) (46.2) (46.7) (48.3)

0.05 23.30 24.13 21.05 22.24 20.17 20.84 21.75 24.99 23.10 19.41

(46.8) (46.8) (47.0) (47.1) (46.6) (46.5) (47.2) (46.8) (47.9) (48.6)

0.03 20.78 20.30 20.24 21.31 20.19 22.41 21.26 21.59 19.54 21.34

(47.1) (47.6) (47.6) (47.4) (47.6) (47.5) (48.1) (48.0) (48.3) (48.5)

0.01 22.52 21.43 19.91 20.04 19.03 19.42 19.35 21.09 21.36 20.89

(47.5) (48.1) (48.2) (48.3) (48.4) (48.5) (48.7) (48.5) (49.0) (49.2)

The number of average invested stocks is indicated with a bracket.
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Fig. 1. Potential method with additional learning and forgetting:
(a) initial learning, misclassified patterns 55; (b) only additional
learning, misclassified patterns 16; (c) with passive forgetting,
r =� lg0:1=60, misclassified patterns 15; (d) with active forget-
ting (method 1), α = 0:7, misclassified patterns 14; (e) with active
forgetting (method 2), α = 0:5, misclassified patterns 13.

In the following, the way of Free Getting purchases only
stocks which are judged to be purchased, while Top30%
Getting the stocks of top 30% after sorting the stocks ac-
cording to the degree of potential.
We made an examination of performance of portfolio mix
by our method in the anteceding periods (1991.9-1996.3).
Here, the index of advantage over the market IA is de-
fined by

IA =
(1+α1)(1+α2)��� �� (1+αT)

(1+β1)(1+β2)��� �� (1+βT)
;

where αi is the return rate of our portfolio mix at the ith pe-
riod and βi is the one of the market (usually called “index”)
at the ith period.
The initial learning was made for 50 periods between
1987.1 and 1991.2. The test with or without additional
learning and forgetting is for 55 periods between 1991.9
and 1996.3.
The forgetting rates in cases with active forgetting only are
α = 0:03 and r = 0:8 for Top30% Getting, while α = 0:01
and r = 0:2 for Free Getting. On the other hand, the for-
getting rates in cases with active and passive forgetting
α = 0:05 and r = 0:7 for Top30% Getting, while α = 0:05
and r = 0:3 for Free Getting. These values are the ones

Fig. 2. Return rate by active and passive forgetting.

which provided the best result. Table 1 shows a comparison
among potential method, RBF network and 1-NN method
with various forgetting ways. The result for free getting
with various forgetting schedules is shown in Table 2.

6. Concluding remarks

It has been observed that the effect of active forgetting
is larger than that of passive forgetting. In general, the
additional learning with forgetting provides a better per-
formance than the mere additional learning. In the above
example, however, the effect of appending forgetting to ad-
ditional learning is not so remarkable in comparison with
that of appending additional learning to the initial learn-
ing. In addition, the effectiveness of forgetting depends
on its schedule. This implies that the forgetting is not so
easy to use as the additional learning. It seems that human
beings make forgetting in an effective way with almost opti-
mal forgetting schedule on the basis of experience. Further
examinations in practical problems are needed to find an
optimal forgetting way in machine learning.
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