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Abstract — This paper addresses a problem in the area of
intelligent, knowledge-based systems, namely the generation
of knowledge, by presenting a proposal for the automation of
this task. The proposed approach is limited however by focus-
ing on fuzzy control systems (FCSs). Results obtained from
different experimental investigations indicate the potential of
the approach.
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1. Introduction

Knowledge is a central component in any intelligent,
knowledge-based system. Problems obtaining or generat-
ing knowledge can arise from different sources. They may
be due to the complexity of the domain, the accessibility
and availability of domain knowledge or domain experts,
the number of rules needed for a rule base, or the con-
sistency and maintenance of such a base, for example [5].
Note that due to the focus of the paper the discussions here
emphasise issues related to FCSs. Rules are not the only
means by which knowledge is captured in a FCS. Fuzzy
sets, their shape and arrangement, as well as the mecha-
nisms by which they communicate in a system are also very
important [15]. FCS design also very often has a strong
trial and error nature in which the system designers very
often play a vital role. One of the insights we gained from
this underlying trial and error approach is that it is very
often possible to generate multiple FCS solutions for the
same problem. For example, the only difference between
two FCS solutions could be the defuzzification technique
they employ, but it also could be the slightly different shape
of particular fuzzy sets. Another observation is that many
FCSs show similarities in their dynamic behaviour. For ex-
ample, the dynamic behaviour of a FCS application might
look similar to the illustration given in Fig. 1.
This illustration actually is taken from an example applica-
tion provided with the commercial fuzzy logic tool Cubi-
Calc 2.0 that was used in this study. Note however that the
circled line in the figure has been added manually to ease
forthcoming discussions. Figure 1 illustrates the trajecto-
ries of two objects, A and B, moving from left to right in
time. Y and X in the figure define a co-ordinate system.
The objective of object B is to approach and finally catch
object A. Both objects move with constant, but individual
speeds, and so a dot or circle at position (X, Y) in the figure
represents the position of an object in time. For simplic-
ity object A moves on a straight line. Object B has to be

more flexible due to the definition of its task. Note that
although Fig. 1 illustrates two trajectories for object B, at
the moment only the trajectory labelled with the number 1
is of interest. Figure 1 indicates that object B, following
trajectory 1, really approaches object A, and therefore pro-
vides a solution to the given task. It was mentioned earlier
that this or a similar dynamic behaviour could be found in
many other situations. Indeed, Fig. 1 could illustrate the
movement of a robot arm trying to grasp an object on an
assembly line, it could illustrate the control of the temper-
ature in a room, but also the path of a remotely controlled
vehicle on a planet approaching an object for probing, for
example.

Fig. 1. Dynamic behaviour of an example FCS.

For later discussions it is also important to understand that
with most commercial tools it is usually possible to record
the values of selected variables (e.g., the X, Y positions
of object A and B in Fig. 1) at each step in a time series.
A time series therefore, in a sense, contains information
about the dynamic behaviour of the system.
Another point that needs mentioning is illustrated by the
second (circled) trajectory for object B in Fig. 1. Like tra-
jectory 1, this trajectory finally approaches object A, and
thus, a FCS generating this trajectory could be regarded as
a solution to the problem too. The solution finally selected
however could be the FCS that produces trajectory 1, be-
cause for many problems FCS designers prefer a system
that converges towards a solution with some smoothness.
Simply imagine the two trajectories in Fig. 1 as being pro-
posed solutions for the robot arm mentioned before. It is
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not difficult to select the one more appropriate for the task.
The following provides a synopsis of these observations:

� In the field of FCSs it is very often possible to gen-
erate multiple solutions for a problem.

� FCSs applications in different problem-solving situ-
ations show similarities in their dynamic behaviour.

� Convergence with a certain degree of smoothness can
be a requirement in some FCS applications.

These observations form the basis for this work, which in
broad terms can be summarised as a study investigating
the similarities in FCSs, mentioned before. The means by
which we aim to achieve this goal are:

1. The convergence of a proposed FCS solution is ex-
amined by a measure of convergence.

2. A fractal dimension algorithm on the other hand, de-
termines the smoothness of a solution.

We investigated a number of FCSs and other models for
quality assessment. The results generated in these stud-
ies indicate the potential of the approach. The reminder of
the paper is organised as follows. Section 2 explains the
measures we use in investigation in this study. Section 3
describes the FCSs and models we investigated. Section 4
presents the results from these investigations. Section 5 pro-
poses an integrated system. Section 6 reviews related work,
and Section 7 ends the paper with a summary.

2. Two measures used in this study

The measures introduced in this paper relate to some degree
to what is sometimes loosely termed chaos theory. This the-
ory has its origins in the study of nonlinear dynamical sys-
tems, and hence nonlinear differential equations [17]. It ob-
tained increasing attention within the natural sciences about
four decades ago. A key element being the fast progress in
computer technology within this period [14]. With com-
putes growing more and more powerful it was possible to
investigate more and more complex systems with increas-
ing efficiency. Lorenz, for example, investigated the extent
to which weather is predictable [11]. Lorenz’s work also
produced an interesting by-product, the so-called Lorenz-
attractors. The artistic beauty of many attractors led to an
increasing awareness and popularity of the theory. Nowa-
days chaos theory is studied in many domains including
medicine, engineering, and computer science, for exam-
ple [3, 6, 8]. Out of these studies emerged a variety of new
concepts and measures.
Before the two measures are explained in more detail we
use the forthcoming section to discuss another concept from
chaos theory that is important in the context of this paper,
namely that of an attractor.

2.1. Attractors

Attractors, also often referred to as strange attractors, or
fractals, are a very important concept in chaos theory. In
chaos theory an attractor is more or less the state devel-
opment of a dynamic system over time. The temporal de-
velopment of these systems is often illustrated in so-called
phase-state plots or phase diagrams. Very often these math-
ematically generated illustrations bear a striking similarity
with structures we can find in nature. The shapes and forms
of trees, lungs, shells, and clouds are typical examples [12].
To understand and connect mathematically generated at-
tractors and fractals with these observations in nature is
a strong motivation for the study of chaos theory, and so
it is needless to say that a lot of work has been done in
this area already. Little work however has been done on
a particular view on attractors. In this particular view we
suggest that the principle of an attractor appears quite fre-
quently, often under different names, in our everyday life.
The different expressions we use for the term attractor in
many of these situations include the terms goal, aim, or
target, for instance. The following two examples help il-
lustrating this relationship. The goal of a person planning
a holiday can be to be at a specific location over time. Or,
the aim of an autonomous agent over time can be to avoid
a number of obstacles. It is important to understand that
the main objects (person, autonomous agent) in the two ex-
ample systems move towards an attractor, or goal, or aim
over time.
We humans are able to discuss natural structures, goals,
and aims more or less elegantly via the use of our natural
language. On the other hand, the language of chaos theory
is mathematics. Although the mathematics of attractors and
fractals can be relatively simple in some cases, it remains
a fact that the mapping and interpretation of mathematical
statements into the real world often can be very difficult, if
not impossible. Let us therefore say:

– there is some sort of a gap between the mathematical
world and the natural (problem-solving) world.

This observation makes this study in the area of FCSs inter-
esting and promising, because by its very definition fuzzy
logic provides a means for acting as a communicator be-
tween the mathematical world and the natural (linguistic)
problem-solving world. Note also, that although the discus-
sion here concentrates on attractors there are other concepts
from chaos theory that are also very relevant in this context
(e.g. self-similarity, and self-organisation) [16].

2.2. A measure of convergence

The previous section revealed that convergence could be
an important feature in FCSs. For example, the task for
object B in Fig. 1 was to approach and finally catch object
A. The trajectories of the two objects consequently need
to converge towards each other. The measure used in this
study for distinguishing the convergence of different sys-
tems aims to reflect this behaviour. For example, let Fig. 2
illustrates the trajectories of two objects A and B.
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Fig. 2. Trajectories of two objects A and B.

In Fig. 2 d(T0) shall be the distance d between objects
A and B at time T0, and d(T0+∆t) the distance at time
t = T0+∆t. In order to use the distance development be-
tween the two objects over time we here define a measure
of convergence (MOC) as follows:

MOC=
1

N�1

N�1

∑
n=1

lg

����dn+1

dn

���� : (1)

Note that the variable N in the equation stands for the num-
ber of data points in the time series. The features of this
measure that could be useful in this study are:

� MOC< 0, may be an indicator for a system that pro-
duces convergent trajectories.

� MOC= 0, might indicate a system that is in some
sort of steady state mode, for example, objects A
and B moving on two parallel lines.

� MOC> 0, very likely an indicator for a system that
produces non-convergent trajectories.

Here it could be interesting to refer to the so-called Lya-
punov Exponent λ found in chaos theory. The Lyapunov
Exponent is a measure to assist in the distinguishing be-
tween different types of orbits or trajectories of dynamic
systems [10]. It is based on the mean exponential rate of
divergence of two initially close trajectories, and describes
the dynamic of a system qualitatively as:

� λ < 0, the orbit is attracted to a stable fixed point or
a stable periodic orbit.

� λ = 0, the orbit is a neutral fixed point. The system
is in some sort of steady state mode, like a satellite
in a stable orbit, for example.

� λ > 0, the orbit is unstable and chaotic. Nearby
points, no matter how close diverge to any arbitrary
separation.

Although it is not the intention here to use the MOC for de-
termining whether a system is chaotic or not it is interesting
here to identify the similarity it bears with the Lyapunov
Exponent.

2.3. A measure of smoothness

Section 1 suggested that convergence alone is very fre-
quently not the only criterion when developing FCSs. Very
often a solution should have certain smoothness too. The
basic assumption is that, given different FCS solutions,
a smoother trajectory is more likely to be selected than
a trajectory that is rather jagged or irregular.
The study of so-called fractals may provide a possibility
for quantifying the shape of a trajectory in terms of its
smoothness, or jaggedness, respectively. Very generally,
fractals are patterns or structures which, when being dealt
with mathematically, produce results or properties that
are difficult to be interpreted, or conflicting with predic-
tions of traditional mathematics. An example would be the
Koch-snowflake curve, a geometric object with finite area,
but infinite circumference. Outstanding mathematicians at-
tempted to come to grips with these objects. Mandelbrot
for example, associates these pathological structures with
forms that can be found in nature [12]. Hausdorff and Besi-
covitch on the other hand came forward with a general def-
inition for the calculation of a (fractal) dimension for such
objects. Their definition of a fractal dimension is based on
an investigation of how geometric figures fill the space in
which they are represented [4]. It is important here to men-
tion that there exist many definitions for measurements on
fractals. This paper, for instance, uses a method proposed by
Gough for the calculation of a fractal dimension [7]. Also,
remember that the geometric objects investigated here are
time series representing the development of the distance
between the trajectories of two objects. However, let the
time series illustrated in Fig. 3 represents the distance de-
velopment of an example system.

Fig. 3. Distance development of two trajectories, and length
estimation using a ruler length of five.

Figure 3 illustrates that individual distance measurements
are connected to a continuous line. Gough’s method is used
to calculate a fractal dimension from such a line. Initially
the method determines different estimates of the length L of
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the line by measuring it with different so-called rulers of
length r . The line in Fig. 3 for instance is measured with
a ruler of length five. A length measurement for a particular
ruler is determined by the following equation:

MOC=
1

N�1

N�1

∑
i=1

�n
r2+(xir �x

(i+1)r)
2
o 1

2
+

+
n
(N� rk�1)2+(xrk�xN�1)

2
o 1

2
�
:

In this equation k = Trunc
�

N�1
r

�
, r represents the ruler

length, and N the number of distance measurements in the
time series. In simple terms a single length estimate (Lr ) is
a summation of hypotenuses. In order to extract a fractal
dimension from such a diagram the method then plots the
logarithm of the length estimates (lgLr ) against the log-
arithm of the ruler length (lg r). Figure 4 illustrates an
example of such a graph.

Fig. 4. Extraction of a fractal dimension.

The establishment of a fractal dimension from such a dia-
gram is not that simple however. The traditional definition
by Hausdorff and Besicovitch leads towards using the slope
of a regression line (dashed line in Fig. 4) through the data
points as an approximation for a fractal dimension. Other
researchers came up with other interpretations. Kaye for ex-
ample generates regression lines and fractal dimensions for
separate regions in a plot (the two dotted lines in Fig. 4 for
example), and compares these fractal dimensions with the
features of “structure” and “texture” in fine-particle science
[9]. This paper follows Kaye’s view, and so it could be said
that a measurement with longer rulers identifies the global
behaviour (structure) of the distance development between
two trajectories. On the other hand, measurement with
smaller rulers provides information about the behaviour of
the distance function at smaller scales (texture).

3. Investigated systems

Figure 5 illustrates some of the systems we investigated.
The systems will be referred to as System 1, 2, 3, and so
forth. The first three systems are FCS applications taken

from an example library that is included in the software tool
that has been used in the study. System 1 has already been
introduced in Section 1 and therefore a description of it is
omitted here. System 2 is a FCS that controls the movement
of a truck (B) that tries to enter a parking slot. Figure 5
illustrates three parking attempts. The starting position of
the truck is always randomly selected. The parking slot (A)
remains at position 50.0 on the x-axis. The three scenarios
in Fig. 5 show that the trajectories produced by the truck
always converge towards the parking slot. FCS System 3
faces the problem of trying to suspend a metal object (B) in
air at a stable position midway between an electromagnet at
height 10.0 and the ground (height 0.0). Figure 5 illustrates
two attempts. For example, take the attempt where the
initial position of the metal object is at height 7.0 between
the ground and the electromagnet. The FCS controls the
magnetic field generated by the electromagnet according to
the position of the metal object between the magnet and the
ground. The field is continually changed until object (B) is
suspended midway (height 5.0) between the electromagnet
and the ground. This position is labelled (A) in Fig. 5. The
x-axis in the figure represents the number of iterations the
FCS goes through over time. Figure 5 illustrates that the
trajectories produced in both attempts represent a solution
to the problem.
To make the study more comprehensive we investigated
various other systems. Some of these systems, Systems 4
to System 12, are illustrated in Fig. 5. Each illustration in
Fig. 5 contains two trajectories (y1 and y2), corresponding
to the movement of two imaginary objects. For example,
the first trajectory for System 4 is defined by the exponen-
tial function y1 = 100e�0:02x, and the second trajectory by
the function y2 = 0. Note that apart from System 6 and
System 9 the second trajectory is always defined as y2 = 0.
Note also that the range for the values along the x-axis
is the same for these system, namely [0, 200]. Further,
System 4, 5, and 6 illustrate systems exhibiting convergent
behaviour, whereas System 7, 8, 9, 10, 11, and 12 are used
to represent non-convergent behaviour. The non-convergent
systems can be further divided. System 10 and 11 indicate
objects moving along in parallel (System 10) or oscillating
parallel (System 11). Trajectory y1 of System 12 finally
was generated randomly.

4. Results

Table 1 illustrates MOCs and fractal dimensions extracted
from these systems using the techniques described before.

Column 1 in Table 1 indicates the system, and column 2 the
number of data points in a time series. Column 3 holds the
MOC for each system. Column 4 and 5 finally contain frac-
tal dimensions. The two columns differ in using different
sets of rulers for the measurement of a fractal dimension of
a time series. For example, taking a system with 200 data
points, Ruler 1 to 10 means that the time series has been
measured with rulers of length 1; 2; : : : ; 10. For the same
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Fig. 5. Example systems studied in this work.
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Table 1
MOCs and fractal dimensions of some of the example

systems investigated in this study

System
Data

points
MOC

Ruler
(1 to 10)

Ruler
(10 to 40)

System 1 75 -0.0280 1.0000 1.0000
System 2 61 -0.0342 1.0000 1.0010
System 3 200 -0.0070 1.0000 1.0000
System 4 200 -0.0086 1.0000 1.0021
System 5 200 -0.0069 1.0003 1.0022
System 6 200 -0.0017 1.0355 1.2250
System 7 200 0.0086 1.0001 1.0019
System 8 200 0.0084 1.0318 1.1776
System 9 200 0.0001 1.0355 1.2250

System 10 200 0.0000 1.0000 1.0000
System 11 200 0.0001 1.0355 1.2250
System 12 200 -0.0052 1.9754 1.6497

200 0.0010 1.9510 1.6183

200 data points, Ruler 10 to 40 stands for a measurement
with rulers of length 10; 11; : : : ; 40.

4.1. Discussion of results

Table 1 illustrates that the MOCs of the six convergent
systems (System 1, 2, 3, 4, 5, and 6 in Fig. 5) are all
negative. The MOCs of the non-convergent systems (Sys-
tem 7, 8, and 9) are all positive. The MOC of System 10
(parallel) is zero, and that of System 11 (oscillating paral-
lel) is very close to zero. These results are encouraging,
because the MOC so far separates convergent from non-
convergent systems. They are also interesting when being
compared with the qualitative interpretation of a Lyapunov
Exponent in Section 2.1, where a negative exponent indi-
cated stable systems, a positive exponent unstable systems,
and one of zero systems that are in some sort of steady
state. Table 1 however also reveals that it is possible to ob-
tain positive as well as negative MOCs for different random
systems (System 12). Initially this seems to be problematic,
but the fractal dimension values in column 4 and 5 indi-
cate a possible solution to this problem. Remember that the
“preferred” solutions are less jagged and irregular, and so
should have a smaller fractal dimension. The fractal dimen-
sion values for the two random examples clearly reflect this
assumption. It is also interesting to see that the three FCSs,
as well as System 4, 7, and 10 all have very low fractal di-
mensions (close to 1.000), which is corresponding to the
smoothness they illustrate. The remaining systems, apart
from System 5, all have higher fractal dimensions. Note
that although this discussion refers to the values in column 4
in Table 1, an interpretation of column 5 leads to similar
observation.
It was mentioned earlier that the systems in Fig. 5 are repre-
sentative instances of a larger group of systems we investi-

gated. For example, the y-axis for System 4 to System 12 in
Fig. 5 is scaled from 0 to 100 in this paper, but we also have
evaluated systems showing similar trajectories at different
scales. The results established by these other systems did
allow an interpretation similar to the interpretation given
before. From the viewpoint of the motivation behind this
paper the results established in this study therefore can be
interpreted as quite positive and encouraging to undertake
further research in this direction.

5. Proposal for an implementation

Figure 6 at the end of this section illustrates our vision of
a system that could be capable to automatically generate
components for the knowledge base of a FCS application.

Fig. 6. Proposal for an implementation of the techniques pre-
sented before into a full system.

Figure 6 basically illustrates the integration of the methods
presented in this paper with a genetic algorithm (GA). For
example, the GA initially generates a pre-defined number
of FCSs. Each of these FCSs is tested, and each of them
produces a time series when tested. On the basis of this
time series it is possible to estimate the potential of a FCS
according to the MOC and the fractal dimension it pro-
duces. Solutions that indicate as being better than others
are selected and modified by the GA to achieve further im-
provement. This process runs until a pre-defined threshold
is reached. A system developer would evaluate the final
proposal of the system.
Certainly, this process can be implemented at different lev-
els of complexity. The GA could be used for the generation
of a rule base only. Additionally it could be used for the
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generation of fuzzy sets, and the selection of different in-
ference mechanisms. Our intention therefore is to begin
with the testing of less complex systems. This strategy is
also supported by the fact that very often the description of
a problem and its solution could be very simple in a FCS.
For example, FCS System 1 uses only five rules, eight fuzzy
sets, one input variable, and one output variable.

6. Related work

Control systems, including FCSs have been studied exten-
sively, with different interests, in the past [1, 15]. This
section mentions some of the work that motivated us in
our research.
Chen and Hwang for example, indicate that it is nearly al-
ways possible to describe FCS applications in completely
different domains with a relatively small number (about five
to eight) of very often similar fuzzy sets [2]. An early paper
by Miller supports Chen and Hwang’s work by identifying
the number seven plus/minus two as a benchmark in many
complex situations [13]. For example, instead of a lengthy
explanation chess player often only mention a small number
of key features of a game. These examples so far parallel
the observations mentioned earlier here in terms of the sim-
plicity and the similarity of many FCS applications. The
simplicity aspect in particular can be advantageous for the
system we bear in mind. For example, the discussion so
far suggest the generation of a relatively small number of
fuzzy sets for a FCS by the GA in Fig. 6, and this would
keep the complexity of the full system low. Further rel-
evant material can be found in a paper by Schuster [16].
Schuster discusses the relationship between self-similarity
in chaos theory and so-called adaptive fuzzy sets in the
context of intelligent systems. Schuster argues that a set of
fuzzy sets used for the description of a system variable of-
ten can be used for the same variable at different scales, but
also very often for a completely different variable. Finally,
in the field of FCSs researchers nearly always emphasise
the trial and error nature of the development process and
the importance of the system developer. The integration of
the techniques presented in this paper with a search strat-
egy such as a genetic algorithm therefore seems to be very
promising for the problem at hand.

7. Summary

This paper presented a proposal for the task of automated
knowledge generation. The proposal includes ideas and
concepts from chaos theory. The results we obtained from
different experimental investigations are encouraging in our
opinion. Although our study concentrated on a particular
type of knowledge based systems, namely FCSs, we be-
lief that the presented approach may have the potential to be

useful for a wider range of problems. Our current efforts
revolve around an implementation of the presented proposal
in a system similar to the system described in Section 5.
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