
Paper Process calculi
and the verification of security protocols

Michele Boreale and Daniele Gorla

Abstract — Recently there has been much interest towards
using formal methods in the analysis of security protocols.
Some recent approaches take advantage of concepts and tech-
niques from the field of process calculi. Process calculi can
be given a formal yet simple semantics, which permits rigor-
ous definitions of such concepts as “attacker”, “secrecy” and
“authentication”. This feature has led to the development of
solid reasoning methods and verification techniques, a few of
which we outline in this paper.

Keywords — cryptographic protocols, Dolev-Yao model, obser-
vational equivalence, process calculi, spi calculus.

1. Introduction

Security protocols have become an essential ingredient of
communication infrastructures. When executed in a hostile
environment, these protocols may be subject to a number
of attacks, that can compromise the security of the data be-
ing exchanged over a network. An attacker might typically
learn a piece of information which is supposed to remain
secret, or it might fool an agent into accepting a compro-
mised key as authentic. Proving a protocol resistant to such
attacks is notoriously a difficult task. In the last decade,
formal methods have been successfully used to analyse se-
curity protocols, sometimes uncovering flaws in protocols
that were thought to be correct.
The BAN logic [12] was one of the first, partially success-
ful attempts at using formal methods in the field of security.
Later on, finite-state model checking has been extensively
used (see e.g. [21, 26]). Some recent developments of
formal methods stem from concepts well established in the
field of process calculi. In particular, Abadi and Gordon
have proposed the spi-calculus [3] by elaborating on Milner,
Parrow and Walker’s π-calculus [24], a process language
based on synchronous message passing. The spi-calculus
extends the π-calculus with cryptographic primitives, thus
allowing the description of security protocols as systems
of concurrent processes that can exchange encrypted data.
The main advantage of this approach is that process calculi
can be given formal yet simple semantics that permit rig-
orous definitions of such notions as “attacker”, “secrecy”
and “authentication”. Another distinguishing feature of the
π-calculus is its reliance on the powerful scoping constructs
of the π-calculus to get a clean formalization, at a linguistic
level, of such concepts as “nonce”, and “newly generated
key”. In a sense, the spi-calculus improves both the BAN
logic, which provides formal reasoning rules but not an
operational model, and finite-state methods, which provide

a precise operational model but not a convenient basis for
formal reasoning. These features have led to the develop-
ment of solid reasoning techniques and verification methods
(e.g. [4, 5, 7, 8, 10]), a few of which we will survey in this
paper.
In Section 2 we give a brief overview of the spi-calculus,
mainly concentrating on syntax and informal explanation
of its operators. Section 3 is devoted to presenting a sim-
plified version of the Kerberos protocol [20], which will
serve as a running example. While this small protocol is
well suited for illustrating the key ideas of the approaches
presented here, the reader should be warned that proofs for
more sophisticated, in particular multi-session, protocols
require a higher degree of ingenuity (see [3, 10]). In Sec-
tions 4 and 5 two formal semantics of the spi-calculus are
outlined: the first is based on observational equivalences,
the second is centered around the idea of trace analysis.
Based on these semantics, rigorous reasoning principles
and verification methods are described. Section 6 compares
the presented approaches, while Section 7 contains a few
concluding remarks and comparison with related work.

2. An outline of the spi-calculus

In this section, we intend to give an informal account of the
spi-calculus, by concentrating on syntax and intuitive ex-
planation. The reader is referred to [3, 10] for full technical
details.
There are several versions of the spi-calculus. In the rest
of this paper, we will consider a variant supporting shared-
key cryptography only. This limited language is sufficient
to illustrate the key ideas of the approach, while avoiding
many technicalities.
Syntax. The syntax of the language is summarized in
Table 1. A countable set N of names a;b: : : ;h;k; : : : ;
x;y;z: : : is assumed. Names can be used as variables, com-
munication channels, primitive data or keys: we do not
distinguish between these four kinds of objects (notation-
ally, we prefer letters h;k; : : : when we want to stress the
use of a name as a key). Messages are built via pairing
and shared-key encryption. In particular, fMgk represents
the ciphertext obtained by encrypting M under key k, using
a shared-key encryption system. An informal explanation
of the process operators might be the following:

� 0 is the process that does nothing;

� τ:P does one internal computation step (we do not
care precisely what), and then proceeds like P;

28

Process calculi and the verification of security protocols

� a(x):P waits for a message on channel a and then
binds it to variable x within P;

� ahMi:P sends message M on channel a and then be-
haves like P;

� [M =N]P behaves like P if the M equals N, otherwise
it is stuck;

� case M of fygk in P attempts decryption of M us-
ing k as a key: if the decryption succeeds, i.e. if
M = fM0gk for some M0, then M0 is bound to vari-
able y within P, otherwise the whole process is stuck;

� pair M of hx;yi in P attempts splitting M; if this is
possible, i.e. if M is a pair hM0;N0i, the two compo-
nents M0 and N0 are bound, respectively, to variables
x and y within P, otherwise the whole process is
stuck;

� (vb)P creates a new name b which is only known
to P;

� P+Q can behave either as P or Q: the choice may
be triggered either by the environment or by internal
computations of P or Q;

� PjQ is the parallel execution of P and Q;

� !P can be thought of as unboundedly many copies of
P running in parallel, i.e. as PjPjPj � � � .

Table 1
Syntax of the calculus

a;b: : : ;h;k; : : : ;x;y;z: : : namesN

M; N ::= a j hM; Ni j fMgk messagesM

P; Q ::= processesP
0 (null)
j τ:P (internal action)
j a(x):P (input pre f ix)
j ahMi:P (out put pre f ix)
j [M = N]P (match)
j case M of fygk in P (decryption)
j pair M of hx;yi in P (splitting)
j (vb)P (restriction)
j P+Q (choice)
j PjQ (parallel)
j ! P (replication)

For the sake of simplicity, we are not considering integer
data values present in [3], nor the general form of boolean
guard used in [10]. In the definition of this language there
are a few implicit assumptions on the underlying shared-key
encryption system. We try to make them explicit below:

1) a plaintext M encrypted under a key k can only be
decrypted using k; if the attacker does not know k,
he/she cannot guess or forge this key (perfect encryp-
tion);

2) the only way to produce a ciphertext that looks like
fMgk is to encrypt M under k;

3) there is enough redundancy in the structure of mes-
sages to tell whether a given ciphertext is correctly
decrypted with a given key.

The first assumption implies that we can say nothing
about attacks that exploit probabilistic or statistical anal-
ysis, which may arise in practice, as showed in [28]. In
fact, we are concentrating on high-level, logical properties
of protocols. The second assumption is an abstraction of
the small probability, for real cryptosystems, that different
hplaintext, keyi pairs collide onto the same ciphertext. The
third assumption is in practice implemented by attaching
a cryptographic checksum to every plaintext before encryp-
tion.
We fix now a few notational shorthands that will be used
in the remainder of the paper:

� a(x): � � � is a binder for x; case � of fygk in � � � is
a binder for y; pair � of hx; yi in � � � is a binder
for x and y and restriction (ν b) � � � is a binder for b.
We shall also say that x, y and b are bound names.
Bound names can be renamed to fresh names without
affecting the meaning of a process term. We shall
always assume that bound names are distinct from
each other and from the names that are not bound.

� Names that are not bound are free. We use the nota-
tion P(x) to emphasize that name x may occur free
(i.e. not in the scope of any binder for x) in P and, for
any message M, write P(M) to abbreviate P[M=x] i.e.
P with each free occurrence of x replaced by of M.
The set of free names of a process P will be written
as f n(P).

� [M = N;M0 = N0] stands for two consecu-
tive matchings [M = N][M0 = N0]. Simi-
larly, we shall use the shorthands (νa;b)P
for (νa)(νb)P and pair M of hx;y;zi in P for
pair M of hx; li in pair l of hy;zi in P. The tilde
symbol e� will be used to denote vectors of objects.

A small example illustrates the use of the calculus for de-
scribing cryptographic protocols.

Example. Consider the simple protocol where two princi-
pals A and B share a private key k. A wants to send B
a datum d encrypted under k, through a public channel c.
B accepts any message encrypted with k that is sent along c:

A! B : fdgk on channelc:

This informal notation can be translated into the spi-
calculus process P defined as follows:

29

Michele Boreale and Daniele Gorla

A def
= chfdgki :0

B def
= c(x) : case x of fygk in F(y)

P def
= (νk)(AjB):

A stops after outputing fdgk on c. B picks up any message
from c and then tries to decrypt it using k. If decryption
succeeds, the result is bound to variable y within F(y).
The latter is some expression describing the subsequent
behaviour of B, depending on the result of the decryption, y.
The whole protocol P is the parallel composition AjB, with
the restriction (νk) indicating that the key k is only known
to A and B.
On restricted names. The restriction operator plays a cru-
cial role in the spi-calculus. (νk)P makes the name k pri-
vate to P. This resembles declarations of local variables
in structured programming languages. There is one cru-
cial difference, however: in spi-calculus, a restricted name
can be exported outside its original scope, while remain-
ing distinct from every name of the recipient. As such,
the restriction operator is ideal for modelling those “fresh
unguessable quantities” (like random numbers) that are an
important ingredient of many cryptographic protocols. The
following equation, for instance, explains the creation of
a nonce n and its transmission from one principal to an-
other, along a private channel c:

(νc)
��

(νn) chni :A
�
j c(x) :B(x)

�
= τ :(νc; n)

�
AjB(n)

�
:

The symbol = above can be given a precise meaning
in terms of observational semantics, as we shall see in
Section 4. Informally, this equation says that the con-
sumption of complementary input and output prefixes�
c(x) : andchni :

�
gives rise to an internal communication

(represented by the τ: prefix) in which n is communicated.
This also causes the scope of the restriction (νn) to be ex-
tended so as to include B. The scope extension is capture-
avoiding, in the sense that n is automatically renamed if it
happens to clash with some name in B. This phenomenon
is called scope extrusion of name n.
A slightly more complicated equation holds when c is
a public, rather than private, channel. In this case, the
equation also explains the possible interaction of the two
principals with the external environment along c.

3. The BAN Kerberos protocol

We shall illustrate the techniques presented in later sections
on the version of the Kerberos protocol considered by Bur-
rows, Abadi and Needham in [12]. This section is devoted
to an informal presentation of this protocol.
Consider a system where two agents A (the initiator) and
B (the responder) share two long-term secret keys, kAS and
kBS respectively, with a server S. The protocol is designed
to set up a new secret session key kAB between A and B.
Informally, the protocol can be described as follows:

A�! S : A;B
S�! A :

�
T;kAB;B;fT;kAB;AgkBS

	
kAS

A�! B : fT;kAB;AgkBS
;fA;nAgkAB

B�! A : fnAgkAB
:

In the first message, A starts the protocol by simply com-
municating to S his intention to establish a new connection
with B. In the second message, Sgenerates a fresh key kAB
and inserts it into an appropriate certificate, which is sent
to A. The certificate uses a timestamp T , meant to assure A
and B about the freshness of the message: this is to counter
attacks based on replays of old messages. In the third mes-
sage, A extracts B’s part of the certificate

�
f� � �gkBS

�
and

forwards it to B, together with some challenge information
containing a new nonce nA. The fourth message is B’s re-
sponse to A’s challenge: the presence of nA is meant to
assure A he is really talking to B.
In the next two sections, relying on two different techniques,
we shall verify one session configuration of this protocol,
under the hypothesis that an old session key k

old
between A

and B has been compromised. We shall not consider the
multi-session case, which requires a more complex analysis.
For the sake of simplicity, we shall also suppose that the
protocol is always initiated by A and that the responder is
always B.

4. Observational equivalences

Following [3], a powerful way of expressing authentica-
tion properties of a security protocol P is to require that
P is equivalent to a process Q that, by definition, exhibits
the desired behaviour (e.g., Q never accepts non-authentic
messages). Secrecy as well can be expressed via this no-
tion of equivalence. For example, let P(d) be a process in
which a secret datum d is exchanged, properly encrypted,
along a public channel. A way of asserting that P(d) keeps
d secret is requiring that P(d) be equivalent to P(d0), for
every other d0. An appropriate notion of equivalence is
here may-testing [3, 9, 14]. Its intuition is precisely that no
external observer (which in the present setting can be read
as “attacker”) can notice any difference when, e.g., running
in parallel with P(d0) or P(d). Formally, we define an ob-
server as a process that is possibly capable of a distinct
“success” action ω ; the latter is used to signal that the ob-
served process has passed observer’s test. If one interprets
“passing a test” as “revealing a piece of information”, then
processes that may pass the same tests may potentially re-
veal the same information to external observers: as such,
they should be considered equivalent from a security point
of view. This also accounts for implicit information flow,
by which an observer might extract useful information from
the overall behaviour of a system.

In the definition below, R
ω

=) means that R can execute
zero or more internal computation steps, followed by an
ω–action.

30

Process calculi and the verification of security protocols

Definition 1 (may-testing). Two spi-calculus processes P
and Q are may-testing equivalent, written P ' Q, if for
every observer O, PjO

ω
=) iff Q jO

ω
=) .

A similar intuition is supported by other contextual equiv-
alences, like barbed equivalence [25]. While rigorous
and intuitive, the definitions of these equivalences suffer
from universal quantification over contexts (attackers), that
makes equivalence checking very hard. It is then important
to devise proof techniques that avoid such quantification.
Results in this direction are well-known for traditional pro-
cess calculi. For example, both in CCS [14] and in the
π-calculus [9], may-testing is easily proven to coincide with
trace equivalence, which requires that two equivalent pro-
cesses generate the same sequences of actions (I/O events).
Similarly, barbed equivalence is proved to coincide with
early bisimulation. The latter requires that each action of
one process be “simulated” by the other, and that the target
processes be still bisimilar. In this section we outline a way
of obtaining similar results in the case of the spi-calculus;
full details can be found in [10]. We then discuss a few
resulting reasoning rules and apply them to the Kerberos
protocol.

4.1. A labelled transition system for the spi-calculus

In non cryptographic calculi (like the π-calculus) processes
and observers share the same knowledge of names. This
means, in essence, that the external environment may en-
able any action that a process is willing to take. This is
not true anymore when moving to the spi-calculus. In fact,
consider the process P that sends a fresh name b encrypted
with a fresh key k and then executes P0. This is written
(ν b;k)chfbgki:P

0. When an observer receives fbgk, it does
not acquire automatically the knowledge of b, because k is
still secret. Thus, if P0 is willing to input something at b

(say P0 def
= b(x):P00), the environment cannot satisfy P0’s ex-

pectations. For this reason, execution traces à la π-calculus
fail to capture the interactive behaviour of processes.
This discrepancy leads us to make the concept of environ-
ment explicit, as a record of the knowledge of names and
keys that an external observer has acquired about a cer-
tain process. More precisely, we model an environment as
a mapping σ from a set of variables to a set of messages.
Intuitively, an environment is a set of locations named by
distinct variables, where an observer (usually an attacker)
will store information known. We want now to describe
how the environment is modified by the actions performed
by the process and how actions that the process can perform
are constrained by the environment. To this purpose, we in-
troduce an environment-sensitive labelled transition system
(written e.s.–lts in the sequel), whose states are configura-
tions σ .P, where σ is the current environment and P is
a process. Transitions between configurations represent in-
teractions between σ and P, and take the form

σ .P
µ

j��!
δ

σ 0 .P0 ;

where µ is the action of process P and δ is the comple-
mentary environmental action. More precisely, µ can be of
three forms: an internal action – τ – an input – aM – or an
output – (νeb)ahMi. The latter makes explicit the private
names eb that are being extruded. Accordingly, the envi-
ronmental action δ is a “no-action”, an output or an input.
Therefore, three kinds of transitions may arise:

1. The process performs an output and the environ-
ment an input. As a consequence, the environment’s
knowledge gets updated. For instance:

σ .P
(νeb)ahMi

j������!
z(x)

σ [M=x].P0 ;

where σ [M=x] is the update of σ with the new entry
[M=x], for a fresh variable x. Here, eb is the set of pri-
vate names the process extrudes. For the transition
to take place, channel a must belong to the knowl-
edge of σ , which in this case amounts to saying that
σ(z) = a.

2. The process performs an input and the environment
an output. Notice that messages from the environ-
ments cannot be arbitrary, but must be built via en-
cryption, decryption, pairing and projection, from the
messages recorded in σ , plus some fresh names the
environment can create. Thus, a transition might be:

σ .P
aM

j������!
(νeb)zhζ i

σ [eb=eb].P0:

Here, eb is the set of new names the environment has
just created and added to its knowledge, while ζ is
an expression describing how M has been built out
of σ and eb. This expression uses the variables in the
domain of σ . For example, if σ = [c=x1;

k=x2; : : :]
and M = fcgk, then ζ might be fx1gx2

, indicating
that message M results from encrypting the x1–entry
using the x2–entry as a key. Again, a must belong to
the knowledge of σ , thus σ(z) = a.

3. The process performs an internal move and the envi-
ronment does nothing:

σ .P
τ

j��!
�

σ .P0:

Having introduced the e.s.-lts, we can define a new equiv-
alence on top of it. The equivalence should only re-
late configurations that exhibit equivalent environments.
Informally, two environments are equivalent if there is
no way of telling them apart by performing elementary op-
erations (like projection, decryption, comparison and so on)

on their entries. For instance, σ def
= [a=x;b=y;fagk=z] and σ 0 def

=
[a=x;b=y;fbgk=z] are equivalent, while σ [k=w] and σ 0[k=w]
are not, because k enables decryption of the z-entry, and
then comparing the obtained cleartext with the first two

31

Michele Boreale and Daniele Gorla

entries yields different results. A formalization of these
concepts can be found in [10]; for our purposes, this in-
formal explanation suffices. The taken point of view is
that two equivalent configurations should exhibit the same
environmental actions, no matter what the process actions
are. These consideration lead to the definition below. We
write j=) for the reflexive and transitive closure of

τ
j��!

�

(i.e., a sequence of zero or more
τ

j��!
�

transitions) and,

inductively, s
j==)

u
for j=)

µ
j��!

δ

s0

j==)
u0 when s= µ � s0 and

u= δ �u0. With this notation we have:

Definition 2 (e.s. trace equivalence). Let σ1 and σ2 be
equivalent environments. Given two processes P and Q, we
write (σ1 ; σ2) ` P'tr Q if whenever σ1.P

s
j==)

u
σ 0

1.P0

then there are s0, σ 0
2 and Q0 such that σ2 .Q

s0

j==)
u

σ 0
2 .Q0

and σ 0
1 is equivalent to σ 0

2 , and symmetrically for σ2.Q.

This definition highlights a major difference between the
π-calculus and the spi-calculus. In the π-calculus “exact”
correspondence is required between actions of two equiva-
lent processes P and Q, in the sense that if P is capable of an
α-action, then Q must be capable of α too. On the contrary,
the presence of cryptography in the spi-calculus allows for
a “looser” correspondence. In fact, encrypting two different
messages with a secret key makes the two messages indis-
tinguishable for any external observer. Hence, for example,

the processes P
def
= (ν k)chfagki:0 and Q

def
= (ν k)chfbgki:0

are equivalent, even though they do not perform the same
(process) actions.
Trace equivalence avoids quantification over contexts and
only requires considering transitions of the e.s.-lts. Thus,
when compared to the contextual definition of may testing,
trace equivalence make reasoning on processes much easier.
The following theorem ensures that 'tr is a sound and
complete characterization of may-testing equivalence ' .
We denote by εV the environment that acts as the identity
on the set of names V.

Theorem 1. Let P and Q be spi-processes, and let
V = fn(P;Q). It holds that (εV ; εV) `P'tr Q iff P ' Q.

A similar result holds for barbed equivalence and an
environment-sensitive version of bisimulation.

4.2. Sound reasoning principles

Trace equivalence can be used to justify some rules for
syntax-driven reasoning, which are at the core of a sound
and complete proof system for the spi-calculus [11]. The
rules we are going to list are valid for both bisimulation
and trace equivalence. Thus, in what follows, we shall
generically write (σ1 ; σ2) ` P = Q to mean that the
configurations σ1 . P and σ2 . Q are equivalent, without
specifying the actual equivalence.

Structural laws. Table 2 lists a few fundamental equa-
tions, mostly inherited from the π-calculus [23], that are
valid for any “reasonable” process equivalence. Most
of them have to do with “static” structure of processes.
Usually, the last three equations are not included in struc-

Table 2
Structural equivalence

P + 0� P P+ Q�Q + P
P + (Q + R)� (P + Q) + R

Pj0� P PjQ�Q jP
Pj (Q jR)� (P jQ) jR

Pj ! P� ! P

(ν b)0� 0
(ν a)(ν b)P� (ν b)(ν a)P
((ν a)P) jQ� (ν a)(P jQ) if a 62 fn(Q)

[M = M]P� P (ν n)[n= M]P� 0 if M 6= n

casefNgkof fygk inP� P[N=y]

pair hM1;M2i of hx;yi in P� P[M1=x;M2=y]

tural equivalence; we have included them here because they
are natural in a cryptographic setting. The least equivalence
relation over process terms that contains these equations is
denoted by � and called structural equivalence. One can
easily prove the following rule sound:

P�Q

(σ ; σ) ` P= Q
.

In our example of Section 4.3 we shall make extensive use
of two laws derived from structural equivalence. The first
one is the so called extrusion law:

(EXTR)
k 62 fn(Q)

(σ ; σ) ` ((ν k)P) jQ= (ν k)(P jQ)
:

It states that, if a restricted name k of P does not occur in
a process Q running in parallel with P, then the scope of
the restriction can be extended so as to include Q.

The second law we shall use is actually a pair of laws (that
we shall globally refer to as (MATCH)) can be derived
from the structural laws for the matching predicate [M =N].
In what follows, we call context a process C[� ; : : : ; �]
with n “holes” that can be filled with n terms, thus yielding
a proper process:

32

Process calculi and the verification of security protocols

(MATCH)

(σ ; σ) ` C[P + [M = M]Q] = C[P + Q]

M is not a name bound by (ν n)C[�]

(σ ; σ) ` (ν n)C[P + [n= M]Q] = (ν n)C[P]
:

Transitivity. We shall also widely use the obvious transi-
tivity rule:

(TRANS)

(σ1 ; σ2) ` P= Q ^ (σ2 ; σ3) `Q= R

(σ1 ; σ3) ` P= R
:

Parallel composition. The spi-representation of a security
protocol is usually built up by putting in parallel a few sim-
ple spi-processes, corresponding to the principals involved
in the protocol. A desirable property of each process cal-
culus is that equivalence proofs can be done composition-
ally, i.e. by proving equivalences between subprocesses
and then combining together such partial results to get the
wanted claim. Unluckily, observational equivalences on the
of spi-calculus are not closed under some operators, notably
parallel composition. In particular, a naive law like

(σ1 ; σ2) ` P= Q ^ (σ1 ; σ2) ` R= S

(σ1 ; σ2) ` PjR= Q jS

is not valid. This is due to the interplay between cryp-
tography and private names. As we have already shown
at the beginning of Subsection 4.1, a private name k can
be extruded and hence become free, without this implying
that k is learnt by any observer. As a consequence, we are
sometimes confronted with equivalences like: (σ1 ; σ2) `
chfagki:P1 = chfbgki:P2 where both σ1 and σ2 know a, b
and c, but neither knows k. In general, this kind of equa-
tions are not preserved by parallel composition. For in-

stance, when putting R
def
= chki:0 in parallel to both sides

of the previous relation, the equivalence breaks down. The
reason is that R may provide an observer with the key k
to open fagk and fbgk, thus enabling a distinction between
these two messages. Similar problems arise from the out-
put prefix (see [11] for a general discussion about problems
arising with compositional techniques in the spi-calculus).
Fortunately, a more restrictive formulation does hold. Let
us denote by Rσ the result of replacing each name x oc-
curring free in R by σ(x). Then we have:

(PAR)
(σ1 ; σ2) ` P= Q

(σ1 ; σ2) ` PjRσ1 = Q jRσ2

if fn(R)� dom(σ1) = dom(σ2) :

The side condition reduces the set of processes that can be
composed with P and Q, by requiring that the composed
processes are consistent with the knowledge available to σ1

and σ2. In spite of this limitation, the rule allows for non
trivial forms of compositional reasoning, as shown in [11].

case elimination. A common situation for an agent in-
volved in a protocol is waiting for a message and then
trying to decrypt it using a key k. This is written as

P
def
= p(x):casexof fygk inP0. Now, suppose that, in some

configuration, P comes equipped with an environment

σ def
= σ 0[fbgk=w], such that neither k nor f�gk appears in σ 0.

Before P evolves, the only message of the form f�gk that σ
can produce is fbgk. In other words the only message P can
receive and then properly decrypt using k is fbgk. Thus the
behaviour of P in σ is equivalent to p(x): [x= fbgk]Q[b=y].
The rule below generalizes this reasoning. We use the
notation ∑n

i=1Pi to denote the process P1 + : : :+Pn (this
notation is well-defined since the non-deterministic choice
is associative).

(CASE)

(σ ; σ) ` (νeh;k) (C[fM1gk; : : : ;fMngk] j

D[casexof fygk in Q]) =

(νeh;k) (C[fM1gk; : : : ;fMngk] j

D[∑n
i=1[x= fMigk] Q[Mi=y]])

If k does not occur in contexts C[�; : : : ; �] and D[�]
and 8 i = 1; : : : ;n C does not bind names in Mi .

4.3. The Kerberos example

Specification. For the sake of readability, we will use in the
sequel a few obvious notational shorthands. For example
a(hy;zi):P stands for a(x):pair x of hy;zi in P, a(fMgk):P
stands for a(x):casexof fygk in [y=M]P, and a(fM;Ngk):P
stands for a(x):casexof fygk in pair y of hz; ti in [z =
M; t = N]P.
Table 3 gives a high level specification of the protocol using
these abbreviations, while Table 4 gives its translation into
the syntax of Table 1. All bound names in K are assumed to
be distinct from one another and from the free names. Sub-
scripts should help reminding the expected value of each
input variable. For instance, the expected value for xcertB is
B’s certificate, i.e. fT;kAB;AgkBS

. Names A and B present
in K refer the identity of the principals involved; names inA
and reB are symbolic names that refer the processes associ-
ated to A and B respectively (i.e. the principal named A is
the initiator of the protocol, while the principal named B is
the responder). We decided to keep these names different
in order to better distinguish between the principals and the
code implementing them.
When starting the protocol execution, all the principals im-
plicitly synchronize on the current time T (clockhTi). This
is an approximation of what happens, as the spi-calculus
does not provide explicit timing constructs implementing
secure clock synchronization (a difficult task which may
require complex interactions). Note that reB checks the
presence of the timestamp T in the first received message
and rejects any message not containing T.

33

Michele Boreale and Daniele Gorla

Table 3
The Kerberos protocol in spi-calculus

inA
def
= cAShA;Bi: cAS(fT;xkAB

;B;xcertB
gkAS

):cABhxcertB
;fA;nAgxkAB

i:cAB(fnAgxkAB
):commitAhi:0

reB
def
= cAB(fT;ykAB

;AgkBS
;fA;ynA

gykAB
):cABhfynA

gykAB
i: commitBhi:0

S
def
= cAS(A;B):cAShfT;kAB;B;fT;kAB;AgkBS

gkAS
i:0

L
def
= losthfT

old
;k

old
;AgkBS

;k
old
i:0

C
def
= clockhTi:0

K
def
= (ν kAS;kBS)(L j (ν T)(C j ((ν nA)inA) j reBj ((ν kAB)S)))

Table 4
Full details of inA, reB and S for the Kerberos protocol

inA
def
= cAShA;Bi:cAS(x1):casex1of fx

0
1gkAS

in pair x01 of hxT ;xkAB
;xB;xcertB

i in

[xT = T;xB = B] cABhxcertB
;fA;nAgxkAB

i:cAB(x2): [x2 = fnAgxkAB
]commitAhi:0

reB
def
= cAB(y):pair y of hy1;y2i in casey1of fy

0
1gkBS

in pair y01 of hyT ;ykAB
;yAi in

[yT = T;yA = A] casey2of fy
0
2gykAB

in pair y02 of hy0A;y
0
nA
i in

[y0A = A]cABhfy
0
nA
gykAB
i:commitBhi:0

S
def
= cAS(z):pair z of hzA;zBi in [zA = A;zB = B]cAShfT;kAB;B;fT;kAB;AgkBS

gkAS
i:0

Outputs at channels commitA and commitB are used to signal
that inA and reB have completed successfully the protocol.
For readability, we have omitted the messages carried by
these two actions, which are irrelevant here. The lost-
output action accounts for the accidental loss of an old
session key k

old
and of the corresponding certificate for B,

fT
old

;k
old

;AgkBS
.

Intuitively, everything works well because the long term
keys kAS and kBS remain secret. Of course, if an intruder
could forge e.g. kBS, it would be possible for him to cre-
ate a new certificate (with the current timestamp but with
a non-authentic key) and it would be impossible for B to
detect the event. Note that the system is not specified so
as to guarantee that a commit will eventually be reached:
we are only interested in checking that no “wrong” commit
will ever happen.

Verification. We will consider authentication of the session
key: “B and A only accept the key kAB generated by S”.
Formally, we want to prove that

(εI ; εI) ` K = Kaut,

where εI denotes the environment that acts like

the identity on the set of names I
def
= fn(K;Kaut) =

fclock; lost; cAS; cBS; cAB; commitA; commitB; A;
B; T

old
; k

old
g and Kaut, defined below, formalises the de-

sired protocol’s behaviour. inAaut and reBaut can commit
only upon receipt of the expected kAB generated by S; in

fact, note that Kaut is obtained from K’s definition by adding
the matchings [xkAB

= kAB] and [ykAB
= kAB] in inA and reB

respectively, upon reception of their certificates.

inAaut
def
= cAShA;Bi:cAS(fT;kAB;B;xcertB

gkAS
):

cABhxcertB
;fA;nAgkAB

i:cAB(fnAgkAB
):

commitAhi:0

reBaut
def
= cAB(fT;kAB;AgkBS

;fA;ynA
gkAB

):

cABhfynA
gkAB
i:commitBhi:0

Kaut
def
= (ν kAS;kBS;kAB)(

L j (ν T)(C j ((ν nA)inAaut) j

reBaut jS))

We will prove the desired equality by applying the laws of
Section 4.2. The proof consists of three steps:

(i) By (EXTR), (εI ; εI) ` K =
(ν kAS; kBS; kAB; nA; T)(L jC j inA jSj reB).
By (CASE) applied to case x1 of : : : in inA, then
by structural equivalence (axiom for pair splitting)
and finally by (TRANS), we obtain (εI ; εI) ` K =
(ν kAS; kBS; kAB; nA; T)(L jC j inA0 jSj reB), where

inA0 def
= cAShA;Bi:cAS(x1):

[x1 = fT;kAB;B;fT;kAB;AgkBS
gkAS

]

cABhfT;kAB;AgkBS
i:fA;nAgkAB

cAB(x2): [x2 = fnAgkAB
] commitAhi:0 :

34

Process calculi and the verification of security protocols

(By (MATCH), we have deleted the tautolog-
ical matchings [T = T;B = B]). We now
apply (CASE) to case y1 of : : : in reB
and similarly we obtain (εI ; εI) ` K =
(ν kAS; kBS; kAB; nA; T)(L jC j inA0 jSj reB1)

where

reB1
def
=

cAB(y):pair y of hy1;y2i in (
[y1 = fT;kAB;AgkBS

;T = T;A= A]

casey2of fy
0
2gkAB

in pair y02 of hy0A;y
0
nA
i in

[y0A = A] cABhfy
0
nA
gkAB
i:commitBhi:0 +

[y1 = fTold;kold;AgkBS
;T

old
= T;A= A]

casey2of fy
0
2gk

old

in pair y02 of hy0A;y
0
nA
i in

[y0A = A] cABhfy
0
nA
gk

old

i:commitBhi:0)

By (MATCH), we can delete the tautological match-
ings [T =T;A=A] from the first summand and delete
the second summand (the latter is stuck because of
the failure of the matching between T and T

old
).

Hence, by (TRANS), we have

(εI ;εI) ` K = (νkAS;kBS;kAB;nA;T)

(L jCj inA0 j reB0) (1)

where

reB0 def
= cAB(y):pair y of hy1;y2i in

[y1 = fT;kAB;AgkBS
]

casey2of fy
0
2gkAB

in

pair y02 of hy0A;y
0
nA
i in [y0A = A]

cABhfy
0
nA
gkAB
i:commitBhi:0:

(ii) Similarly, (εI ; εI) ` Kaut =
(ν kAS; kBS; kAB; nA; T)(L jC j inA0 jSj reBaut).
Then, applying (CASE) to case y1 of : : :
in reBaut, we obtain (εI ; εI) ` Kaut =
(ν kAS; kBS; kAB; nA; T)(L jC j inA0 jSj reB0

aut)

where

reB0
aut

def
=

cAB(y):pair y of hy1;y2i in (
[y1 = fT;kAB;AgkBS

;T = T;A= A]

[kAB = kAB] casey2of fy
0
2gkAB

in

pair y02 of hy0A;y
0
nA
i in [y0A = A]

cABhfy
0
nA
gkAB
i:commitBhi:0 +

[y1 = fTold;kold;AgkBS
;T

old
= T;A= A]

[k
old

= kAB] casey2of fy
0
2gk

old

in

pair y02 of hy0A;y
0
nA
i in [y0A = A]

cABhfy
0
nA
gk

old

i:commitBhi:0)

Again by (MATCH), we can delete the tautological
matchings from the first summand and delete the sec-
ond one, obtaining

(εI ;εI) ` Kaut = (νkAS;kBS;kAB;nA;T)

(L jCj inA0 jSj reB0) (2)

(iii) The right hand sides of (1) and (2) are the same.
Hence by (TRANS), we obtain the desired (εI ; εI)`
K = Kaut.

Finally, notice that without the matching [yT = T] in reB’s
definition, the equivalence would be broken. In particular,
upon receipt of fT

old
;k

old
;AgkBS

, reB would perform a final

commitB, which reBaut cannot do. In essence, removing
the check [yT = T] would recreate the well-known attack
against the Needham-Schroeder protocol with symmetric
encryption (see e.g. [12]).

5. Trace analysis

We outline here a verification method that departs from
the concept of observational equivalence discussed in the
previous section. The method is based on analysing the
execution traces of a single process representing the proto-
col. Recall that a trace is a sequence of I/O events (actions)
executable by a given spi-calculus process. Roughly, a sen-
sible way of expressing authentication of A towards B, in
our version of Kerberos, is requiring that, in every trace
generated by K, B’s final input action is preceded by an
A’s output of the same message, i.e. B will only accept
messages originating from A (similarly for authentication
in the other direction).
Trace-based formalizations of authentication and secrecy
are generally less demanding than equivalence-based for-
mulations, but more amenable to automatic checking. We
will say more on pros and cons of the two approaches in
Section 6.
A crucial aspect of the trace analysis method is a notion of
symbolic execution [7] that avoids having to explicitly con-
sider the infinitely many traces generated by the protocol.
This form of state-explosion is related to the interaction of
each participant with the external environment. Symbolic
execution has been implemented as part of a prototype ver-
ification tool named STA (Symbolic Trace Analyzer) im-
plemented in ML [8].
In the rest of the section we will first outline the model
underlying trace analysis, then touch upon the method of
symbolic execution and finally re-consider the Kerberos ex-
ample in the light of trace analysis.

5.1. Overview of the model

The model underlying the trace analysis method is very
close in spirit to Dolev-Yao’s one [15]. Informally, agents
executing the protocol communicate through a network of
public channels that are under the control of an adversary,

35

Michele Boreale and Daniele Gorla

therefore there are no private, secure channels. Sending
a message just means handing the message to the adversary.
Conversely, receiving a message just means accepting any
message among those the adversary can produce. The ad-
versary records all messages that transit over the network,
and can produce a message by either replaying an old one,
or by combining old messages (e.g. by pairing, encryption
and decryption) and/or by generating fresh quantities.
Formally, a state of the system is a pair s.P, called con-
figuration: s is a trace of past I/O events (actions), and
represents the current adversary’s knowledge; P is a spi-
term, describing the intended behavior of honest partici-
pants. The set of all configurations is denoted by C . The
dynamics of configurations is given by a transition relation
�!� C �C , that describes elementary steps of computa-
tions. In Table 5 we report the rules defining the transition
relation, for a subset of the language introduced in Sec-
tion 2. In particular, since we are looking for an automatic

Table 5
Transition relation on configurations (�!)

(INP) s.a(x):P �! s�ahMi.P[M=x]

if s ` M and M is closed

(OUT) s.ahMi:P �! s�ahMi.P

(CASE) s. casefMgkof fygk inP �! s.P[M=y]

(SPLIT) s.pair hM;Ni of hx;yi in P �!
�! s.P[M=x; N=y]

(MATCH) s. [M = M]P �! s.P

(RES) s. (ν a)P �! s[a0

=a].P[a0

=a]

if a0 is fresh for s

(PAR)
s.P �! s0 .P0

s.PjQ �! s0 .P0 jQ

plus symmetric version of (PAR).

method, we have omitted replication, which would make
the problem undecidable (see e.g. [16]). Rules (INP)
and (OUT) concern sending and receiving messages, re-
spectively. Since sending a message just means handing
the message to the adversary, any output action ahMi fired
by a process is recorded in the adversary’s current knowl-
edge s (rule (OUT)). Conversely, receiving a message just
means accepting any message among those the adversary
can produce. Therefore, in rule (INP) the variable x can
be replaced by any message M non-deterministically chosen
among those the adversary can synthesize from its current
knowledge s. The synthesis of a message M from a set of

known messages S is formalized by a deduction relation ` .
Here is a sample of deduction rules defining ` (see [7]):

M 2 S

S` M

S` M S` k

S` fMgk

S` fMgk S` k

S` M

The other operational rules in Table 5 govern how a pro-
cess decrypts a message (caseMof fygk inA), splits a pair
(pair hM;Ni of hx;yi in A), compares two messages for
equality ([M = N]A), handles a new name ((ν a)P) and in-
terleaves execution of parallel threads (A jB).

It is worthwhile to point out that there is no need for an
explicit description of the adversary’s behavior, as the lat-
ter is wholly determined by its current knowledge – the
s in s.P – and by the deduction relation ` . This is some-
how in contrast with other proposals [21, 26], where the
adversary must be explicitly described, but it is comform
to [6, 18, 27].

Given a configuration s.P and a trace s0, we say that s.P
generates s0 if s.P �!� s0 .P0 for some P0 (�!� is the
reflexive and transitive closure of �! , i.e. zero or more
steps of �!). We express properties of the protocol in
terms of the traces it generates. In particular, we focus on
correspondence assertions of the kind:

for every generated trace, if action β occurs in
the trace, then action α must have occurred at
some previous point in the trace,

that is concisely written as α - β . More accurately, we
allow α and β to contain free variables, that may be instan-
tiated to ground values. Thus α - β actually means that
every instance of β must be preceded by the correspond-
ing instance of α , for every generated trace. We write
s. P j= α - β if the configuration s. P satisfies this re-
quirement. This kind of assertions is flexible enough to
express interesting secrecy and authentication properties.
As an example, the final step of many key-establishment
protocols consists in A’s sending a message of the form
fNgk to B, where N is some authentication information,
and k the newly established key. A typical property one
wants to verify is that any message encrypted with k that
is accepted by B at the final step should actually originate
from A (this ensures B he is really talking to A, and that k is
authentic). If we call �nal

A
and �nal

B
the labels attached

to A’s and B’s final action, respectively, then the property
might be expressed by �nal

A
hfxgki - �nal

B
hfxgki, for x

a variable. The scheme also permits expressing secrecy
as a reachability property (in the style of [5, 18]): this is
further discussed in Section 6.

36

Process calculi and the verification of security protocols

5.2. Symbolic execution

When synthesizing new messages, the adversary can apply
operations like pairing, encryption and generation of fresh
names, an arbitrary number of times. Thus the set of mes-
sages the adversary can synthesize at any time is actually
infinite in general (i.e. if not empty). Any such message
can be non-deterministically chosen by the adversary and
sent to a participant willing to receive it; therefore every
model based on Dolev and Yao’s is in principle infinite.
Our model makes no exception: in rule (INP) the set of
M s.t. s ` M is always infinite, and this makes the model
infinitely-branching. This can be regarded as a state explo-
sion problem induced by message exchange.
To overcome this problem, the STA tool implements a ver-
ification method based on a notion of symbolic execution.
A new transition relation (written �!

S
, below) is intro-

duced in order to condense the infinitely many transitions
that arise from an input action (rule (INP) in Table 5) into
a single, symbolic transition. The received message is now
represented simply by a free variable, whose set of possi-
ble values is constrained as the execution proceeds. Tech-
nically, a constraint takes the form of most general unifier
(mgu), i.e., the most general substitution that makes two
expressions equal. The set of traces generated using the
symbolic transition relation constitutes the symbolic model
of the protocol. Differently from the standard model given
by �! , the symbolic model is finite, because each input
action just gives rise to one symbolic transition and agents
cannot loop.
For a flavor of how symbolic execution works, let us
consider an example focusing on shared-key encryption.
Suppose that agent P, after receiving a message, tries
decrypting this message using key k; if this succeeds
and y is the result, the agent checks whether y equals
b and, if so, proceeds like P0. This is written as

P
def
= a(x):casexof fygk in [y= b]P0, for y fresh. Let us ex-

plain how the symbolic execution proceeds, starting from
the initial configuration ε . P. After the first input step,
in the second step the decryption casexof fygk in � � � is re-
solved by unifying x and fygk, which results in the substi-
tution [fygk=x]. In the third step, the equality test [y= b] is
in turn resolved by unifying y and b, that results in [b=y].
Formally,

ε .P �!
S

ahxi. casexof fygk in [y= b]P0

�!
S

ahfygki. [y= b]P0[fygk=x]

�!
S

ahfbgki.P0[fygk=x][b=y]:

An important point is that symbolic execution actually ig-
nores the deduction relation ` and thus may give rise to
“inconsistent” symbolic traces. These inconsistencies can
be detected and discovered via a refinement procedure de-
scribed in [7].
The verification method based on symbolic execution is
proven sound and complete w.r.t. the standard model, in
the sense that every consistent attack detected in the sym-
bolic model (relation �!

S
) corresponds to some attack in

the standard model (relation �!), and vice-versa. In other

words, the symbolic model captures all and only the attacks
of the standard model. For instance, the method detects
type-dependent attacks, which usually escape finite-state
analysis, e.g. [22]. In this kind of attacks, the adversary
cheats on the type of some messages, e.g. by inserting
a nonce where a key is expected according to the protocol
description.

5.3. The Kerberos example

We illustrate the trace analysis method and the use of the
automatic tool STA on the simplified Kerberos protocol
of Section 3. The tool follows the syntax and semantics
of the formal model, with a few minor differences. E.g.,
action prefixing is written >>, parallel composition is writ-
ten ||, restriction is written new-in, while 0 is written
stop. Output actions are written as a!M, while input ac-
tions are written as a?M. Note that M can be a generic mes-
sage pattern: this means receiving any adversary-generated
message whose form matches M. To this purpose, we distin-
guish explicitly between names and variables (the latters, by
convention, start by x, y, : : :). Finally, with <-- we mean
the predicate - and with [] @ K the configuration ε .K.
What follows is the complete STA script defining one ses-
sion of Kerberos, and the desired authentication properties.
Since all channels are public and controlled by the environ-
ment, we have made all channel names distinct and used
them as references for process actions. Also, we need not
make commit actions explicit now, thus we have dropped
them.
Conf is the initial configuration of the protocol, composed
by an empty list of actions and by K while AuthKey,
AuthAtoB and AuthBtoA represent the properties we want
to check of this configuration. AuthKey states that any
message accepted by A at a2 should originate from S: this
implies the adversary cannot fool A into accepting a key
different from kAB. Property AuthAtoB states that any mes-
sage accepted by B at b1 should originate from A at a3.
AuthBtoA can be explained similarly. The three properties
together guarantee that A and B always talk to each other,
and that they agree on the exchanged data (in particular, on
the established key), which are authentic.
If we ask STA to check any of the three properties listed
above, we get this answer:

> val it = "No attack was found, 61
symbolic configurations reached."

: string
which means that STA has explored the whole symbolic
state-space of the protocol, consisting of 61 configurations,
without finding any trace violating the property (this explo-
ration takes STA a fraction of a second). Thus there are no
attacks on this configuration of the protocol.
Suppose now we modify B so that it omits the check on
the freshness of T , i.e. we re-define
val reB=b1?(ft,ykAB,AgkBS,fA,ynAgKAB) >>

b2!fynAgykAB >> stop;
where we have replaced the timestamp T by an arbitrary
variable t in b1. STA finds an attack on the property

37

Michele Boreale and Daniele Gorla

val inA = nA new-in (a1!(A,B) >> a2?fT,xkAB,B,xCertBgKAS >>
a3!(xCertB, fA,nAgxkAB) >> a4?fnAgxkAB >> stop);

val S = kAB new-in (s1?(A,B) >>
s2!fT,kAB,B,fT,kAB,AgkBSgkAS >> stop);

val reB = b1?(fT,ykAB,AgkBS,fA,ynAgykAB) >>
b2!fynAgykAB >> stop;

val K = kAS new-in kBS new-in (lost!(kOld,fTOld,kOld,AgKBS)>>stop ||
T new-in (clock!T >> stop || inA || reB || S));

val Conf = ([] @ K);
val AuthKey = (s2!t <-- a2?t);
val AuthAtoB = (a3!u <-- b1?u);
val AuthBtoA = (b2!w <-- a4?w);

AuthAtoB. The attack is reported under the form of a trace
violating the property:

> val it = "An attack was found:
lost!(kOld,fTOld,kOld,AgkBS).
clock!T. a1!(A,B).
b1?(fTOld,kOld,AgkBS1,fA,ynAgkOld)

4 symbolic configurations
reached." : string

The attack is based on the adversary’s replaying the old,
compromised key kOld and the corresponding certificate
fTOld,kOld,AgkBS acquired thanks to the lost action.
Note that the trace contains a free variable ynA: it can take
on any value which is known to the attacker.

6. A comparison of two methods

An important problem left open by current research is that
of establishing a precise relationship between the notions
of authentication and secrecy conveyed by the two models
outlined in the previous sections.
The equivalence-based formalization is seemingly more de-
manding than the trace-based one. In fact, the former takes
into account the overall behaviour of the protocol – includ-
ing I/O traffic – while the latter takes into account only
correspondence between single actions, or exposure of se-
cret data items. Surprisingly, the two notions are formally
incomparable: we show below that neither is stronger than
the other. Thus, adopting one notion or the other is not
a matter of relative strength. We shall confine our discus-
sion to secrecy, but we feel that similar arguments apply
in the case of authentication. First of all, let us state more
precisely the notions of secrecy we are interested in.
Definition 3 (two notions of secrecy). Let P(x) be a spi-
calculus process. We say that:

� P(x) keeps x E-secret if for every x0: P(x) ' P(x0);

� P(x) keeps x T-secret if there is no configuration
s0 .P0 s.t. ε .P(x) �!� s0 .P0 and s0 ` x.

Now, consider the process P(x)
def
= (ν k)(a(y):[y =

x]bhfxgki:0. The process P(x) keeps x T-secret (by in-

spection), but not E-secret. In fact, consider the ob-

server O
def
= ahxi:b(z):ω :0: we have P(x) jO

ω
=) , but not

P(x0) jO
ω

=) , hence P(x) 6' P(x0) for x0 6= x.

On the other hand, consider Q(x)
def
= a(y):([y =

x]bhxi:0 j !bhyi:0). Clearly, Q(x) does not keep x T-secret.
However, Q(x) and Q(x0) are trace-equivalent, hence test-
ing equivalent, for any x0; this is a consequence of the fact
that bhxi:0 j !bhxi:0�!bhxi:0.
The above examples show that E-secrecy does not imply
T-secrecy, and, conversely, that T-secrecy does not imply
E-secrecy.

7. Concluding remarks and related work

We have outlined some recent approaches to the analysis of
security protocols, centered around concepts derived from
the field of process calculi, such as observational semantics
and symbolic transition systems.
Early work on reasoning methods for the spi-calculus was
presented in [4], where framed bisimulation was introduced
as a proof technique, though incomplete, for reasoning on
contextual equivalences. The environment sensitive tran-
sition system presented here was introduced in [10], and
based on that, the complete characterizations of contextual
semantics discussed in Section 4 were obtained. Some of
the reasoning principles used in this paper were introduced
there. A sound and complete proof system is discussed
in [11].
Concerning trace analysis, [7] develops the theory underly-
ing the verification tool STA, while [8] presents verification
examples and compares the results to those obtained using
finite-state methods. Initial work on symbolic analysis is
due to Huima [19]. Symbolic techniques are also exploited
in [5, 13, 29], but the algorithms they use are quite different
from ours.
Another possible approach consists in deriving properties
via type systems: example of these techniques are the type
systems in [1, 2] for secrecy and in [17] for authentication.
When compared to more traditional methods – like CSP-
based model checking [21, 26] – major benefits of the

38

Process calculi and the verification of security protocols

equivalence-based approach seem to be a host of syntax-
driven reasoning principles and a fully satisfactory formal-
ization of many important properties, including implicit in-
formation flow (that may arise due, e.g., to traffic analysis).
On the other hand, the equivalence-based method lacks at
present automatic verification techniques. Symbolic trace
analysis appears to be closer in spirit to model checking,
but does not suffer from the state-explosion problems of
model checking, which requires considering approximate
models, even when the number of protocol sessions is
bounded. Moreover, finite-state model checking has proven
very effective in practice to find bugs in security proto-
cols, e.g. [22]. Analysis of real-life case-studies could tell
whether the approaches derived from the spi-calculus may
represent a valid alternative to the established techniques.

Acknowledgements
We are very grateful to the editor for careful reading and
useful suggestions.
This work has been partially supported by EU within
the FET – Global Computing initiative, project MIKADO
IST-2001-32222 and by MIUR project NAPOLI. The fund-
ing bodies are not responsible for any use that might be
made of the results presented here.

References
[1] M. Abadi, “Secrecy by typing in security protocols”, J. ACM, vol. 46,

no. 5, pp. 749–786, 1999.
[2] M. Abadi and B. Blanchet, “Analyzing security protocols with se-

crecy types and logic programs”, in POPL’02. ACM Press, 2002.
[3] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols:

the spi-calculus”, Inform. Comput., vol. 148, no. 1, pp. 1–70, 1999.
[4] M. Abadi and A. D. Gordon, “A bisimulation method for crypto-

graphic protocols”, Nord. J. Comput., vol. 5, no. 4, pp. 267–303,
1998.

[5] R. M. Amadio and S. Lugiez, “On the reachability problem in cryp-
tographic protocols”, in Proc. CONCUR’00, LNCS. Springer, 2000,
vol. 1877 (full version: RR 3915, INRIA Sophia Antipolis).

[6] D. Bolignano, “Towards a mechanization of cryptographic protocol
verification”, in International Conference on Computer Aided Veri-
fication, LNCS. Springer, 1997.

[7] M. Boreale, “Symbolic trace analysis of cryptographic protocols”,
in ICALP’01, LNCS. Springer, 2001, vol. 2076, pp. 667–681.

[8] M. Boreale and M. G. Buscemi, “Experimenting with STA, a tool
for automatic analysis of security protocols”, in ACM Symposium on
Applied Computing 2002. ACM Press, 2002.

[9] M. Boreale and R. De Nicola, “Testing equivalence for mobile pro-
cesses”, Inform. Comput., vol. 120, pp. 279–303, 1995.

[10] M. Boreale, R. De Nicola, and R. Pugliese, “Proof techniques for
cryptographic processes”, in LICS’99, Proceedings. IEEE Computer
Society Press, 1999, pp. 157–166 (full version to appear in SIAM
J. Comput.).

[11] M. Boreale and D. Gorla, “On compositional reasoning in the spi-
calculus”, in FoSSaCS’02, Proceedings, M. Nielsen and H. U. Eng-
berg, Eds., LNCS. Springer, 2000, vol. 2303, pp. 67–81.

[12] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication”,
ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990.

[13] H. Comon, V. Cortier, and J. Mitchell, “Tree automata with one
memory, set constraints and ping-pong protocols”, in ICALP’01,
LNCS. Springer, 2001, vol. 2076, pp. 682–693.

[14] R. De Nicola and M. C. B. Hennessy, “Testing equivalence for pro-
cesses”, Theor. Comput. Sci., no. 34, pp. 83–133, 1984.

[15] D. Dolev and A. Yao, “On the security of public-key protocols”,
IEEE Trans. Inform. Theory, vol. 2, no. 29, pp. 198–208, 1983.

[16] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov, “Undecidability
of bounded security protocols”, in Proc. FLOC Worksh. Form. Meth.
Secur. Protoc., Trento, Italy, 1999.

[17] A. D. Gordon and A. Jeffrey, “Authenticity by typing for security
protocols”, in 14th IEEE Comput. Secur. Found. Worksh., 2001,
pp. 145–159.

[18] J. Goubault-Larrecq, “A method for automatic cryptographic proto-
col verification”, in Proc. 15th IPDPS Workshops, LNCS. Springer,
2000, vol. 1800, pp. 977–984.

[19] A. Huima, “Efficient infinite-state analysis of security protocols”,
in Proc. FLOC Worksh. Form. Meth. Secur. Protoc., Trento, Italy,
1999.

[20] J. Kohl and B. Neuman, “The Kerberos network authentication ser-
vice (version 5)”. Internet Request for Comment RFC-1510, 1993.

[21] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key
protocol using FDR”, in TACAS’96, Proceedings, T. Margaria and
B. Steffen, Eds., LNCS. Springer, 1996, vol. 1055, pp. 147–166.

[22] G. Lowe, “A hierarchy of authentication specifications”, in Proc.
10th IEEE Computer of Security Foundations Workshop. IEEE Com-
puter Society Press, 1997.

[23] R. Milner, “The polyadic π-calculus: a tutorial”, in Logic and Alge-
bra of Specification, F. L. Hamer, W. Brauer, and H. Schwichtenberg,
Eds. Springer, 1993.

[24] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes
(Part I and II)”, Inform. Comput., vol. 100, pp. 1–77, 1992.

[25] R. Milner and D. Sangiorgi, “Barbed bisimulation”, in ICALP’92,
Proceedings, W. Kuich, Ed., LNCS. Springer, 1992, vol. 623,
pp. 685–695.

[26] J. C. Mitchell, M. Mitchell, and U. Stern, “Automated analysis of
cryptographic protocols using Murϕ”, in Proceedings of Symposium
Security and Privacy. IEEE Computer Society Press, 1997.

[27] L. C. Paulson, “The inductive approach to verifying cryptographic
protocols”, J. Comput. Secur., no. 6, pp. 85–128, 1998.

[28] D. Pointcheval, “Asymmetric cryptography and practical security”,
J. Telecommun. Inform. Technol., no. 4, pp. 41–56, 2002.

[29] M. Rusinowitch and M Turuani, “Protocol insecurity with finite num-
ber of sessions in NP-complete”, in 14th Computer Security Foun-
dations Workshop. IEEE Computer Society Press, 2001.

Michele Boreale received
a Laurea degree in Scienze
dell’Informazione from the
University of Pisa in 1991, and
a Ph.D. degree in computer
science from the University
“La Sapienza”, Rome, in 1995.
He has been research associate
at the Dipartimento di Scienze
dell’Informazione of University

“La Sapienza” from February 1996 to July 1999, when
he moved to the Dipartimento di Sistemi e Informatica of
the University of Florence. His research interests include
formal methods for specifying and verifying concurrent
and reactive systems; process calculi and behavioral
equivalences, particularly from the angle of elucidating
their expressive power and finding tractable proof methods.
e-mail: boreale@dsi.unifi.it
Dipartimento di Sistemi e Informatica
Università di Firenze
Firenze, Italy

39

Michele Boreale and Daniele Gorla

Daniele Gorla was born in
Rome in 1976; he received his
master degree “cum laude” in
computer science by the Uni-
versity of Rome “La Sapienza”
in 2000. He is currently a Ph.D.
student in Florence under the
supervision of prof. Rocco De
Nicola within the Concurrency

and Mobility Group, and he collaborates with the Univer-
sity of Rome.
e-mail: gorla@dsi.uniroma1.it
University of Rome, Italy
e-mail: gorla@dsi.unifi.it
Dipartimento di Sistemi e Informatica
Università di Firenze
Firenze, Italy

40

