
Paper Analysis of cryptographic
protocols using logics of belief: an overview

David Monniaux

Abstract — When designing a cryptographic protocol or ex-
plaining it, one often uses arguments such as “since this mes-
sage was signed by machine B, machine A can be sure it came
from B” in informal proofs justifying how the protocol works.
Since it is, in such informal proofs, often easy to overlook
an essential assumption, such as a trust relation or the be-
lief that a message is not a replay from a previous session,
it seems desirable to write such proofs in a formal system.
While such logics do not replace the recent techniques of au-
tomatic proofs of safety properties, they help in pointing the
weaknesses of the system. In this paper, we present briefly
the BAN (Burrows-Abadi-Needham) formal system [10, 11] as
well as some derivative. We show how to prove some prop-
erties of a simple protocol, as well as detecting undesirable
assumptions. We then explain how the manual search for
proofs can be made automatic. Finally, we explain how the
lack of proper semantics can be a bit worrying.

Keywords — cryptographic protocols, logics of belief, BAN,
GNY, decidability.

1. Why logics of belief?

Cryptographic protocols are usually specified as sequences
of messages in the following kind of format:

Needham-Schroeder shared-keys protocol [10, 17, 24]
1: P! S : P;Q;Np

2: S! P :
n

Np;Q;Kpq;
�

Kpq;P
	

Kqs

o
Kps

3: P!Q :
�

Kpq;P
	

Kqs

4: Q! P :
�

Nq
	

Kpq

5: P!Q :
�

Nq�1
	

Kpq

where S, P, Q are machines or principals, or rather roles for
machines in this protocol. S, as usual, designates a server.

Np and Nq are nonces [21, x10.5]; these are random num-
bers (in this case, chosen respectively by P and Q) used
to prevent replay attacks. Such attacks consist in an in-
truder replaying parts of messages recorded during previ-
ous sessions. The usual use of nonces is that the principals
check that the values in certain encrypted message fields
correspond to the correct values of the nonces for this ses-
sion; discrepancies, arising from instance from messages
recorded during previous sessions, get detected, preventing
the principals from accepting those messages in a success-
ful run of the protocol. From the point of view of proto-
col analysis, nonces are treated as being distinct from any

other data used in the protocol. A related concept is that
of confounders [21, x10.5], random numbers incorporated
into messages to foil chosen plaintext attacks on public-key
ciphers.
Kxy is a generic notation for a key shared between x and y.
The goal of this protocol is to allow P and Q to agree on
a shared communication key Kpq; for this, on the one hand,
P and Q call a trusted server Swhich generates the key dur-
ing the execution of the protocol; on the other hand, Scom-
municates with P and Q using shared keys, Kps and Kqs

respectively, which are supposed to be known initially by
the concerned parties.
The above description is a bit ambiguous, since it uses the
same name (say, K) both for data that a principal generates
by itself and for data that a principal receives from outside.
For instance, in message 1, Np is generated by P and thus
treated by P as a known constant, but is received by S and
thus treated by Sas a variable. It can nevertheless be made
unambiguous by distinguishing those two uses. From such
an explicit description we can derive a semantics; that is, we
describe in a mathematical way the actions of the principal.
We also assume that we are in the Dolev-Yao model [13]:
the cryptography is perfect, the intruder has full control of
the network and can listen to, cancel and forge messages.
Various analysis techniques, some of which considerably
automated [5, 6, 8, 20, 26, 29, 32, and many others], have
been applied to this model to obtain proofs of certain prop-
erties, and more particularly secrecy.
For all the successes of the Dolev-Yao model, using it to
plan the design of a protocol is unnatural for a human.
People do not design protocols by enumerating all the ac-
tions that could take place; they rather think of higher-order
concepts such as “secret key only known to A and B and
used to communicate between them” and form inferences
such as “if a message arrives encrypted with a key known
only to me and machine M, and I did not send it origi-
nally, then it must have been sent by M”1. Such reasoning
is informal, which can be seen as a weakness. For this
reason, some logics of belief, aiming at formalizing such
inferences, have been proposed. The first of these was
the so-called BAN logic from Burrows, Abadi and Need-
ham [10, 11], which was followed by more expressive and
elaborate extensions such as GNY (Gong, Needham and
Yahalom [16, 17]), (Syverson and van Oorschot [33, 34])
and CKT5 [9]. One limitation of these logics is the need
to annotate the protocols with logical assertions that are as-
sumed to represent the intent of the sender of the message,
as well as logical assumptions on the secrecy or freshness

1See [36] for a long discussion on such issues.

57

David Monniaux

of certain pieces of information. Also, they cannot ver-
ify secrecy; in fact, they make the implicit assumption that
secrets are protected [25].
BAN and subsequent logics are modal logics of belief ; they
deal with the beliefs that the principals can hold about
their environment, for instance, about the distribution of
the shared keys. That notion of “beliefs” is to be under-
stood as the beliefs that a human playing the role of the
principal may reasonably hold; “sensible” rules of deduc-
tion will be provided in the definition of the logic. As
we will explain later (Section 4), it is difficult to provide
a more precise semantics.

2. A short presentation of BAN and
GNY logics

2.1. BAN logic

BAN logic [10, 11] is a many-sorted modal logic, which
distinguishes between several sorts of objects: principals,
encryption keys, nonces, and formulas, or statements. The
first three sorts of objects have already been seen 1; the
last sort is defined by the following syntax (taken from
[10, pp. 4–5]; we left out two less used constructs):2

� Pj�X: P believes X.

� P/X: P sees X. P initially knew or has received the
message X and can read and repeat it.

� Pj�X: P once said X. P has at one time sent a mes-
sage containing the statement X. It is not known
whether the message was sent long ago or during the
current session of the protocol, but it is known that P
believed X when it sent the messages.

� P Z) X: P has jurisdiction over X and should be
trusted on this matter. For instance, key distribution
servers will be trusted for statements pertaining to
keys.

�](X): X is fresh; that is, X has not been sent in
a message at any time before the current run of the
protocol. This is usually true for nonces;](X) will
then be used as a complement to Pj�X to establish
that a message from P is really about the current
session and is not some old recorded message used
by the intruder in a replay attack.

� P
K
$Q: P and Q may use the shared key K to com-

municate. The key K is good, in that it will never be
discovered by any principal except P or Q, or a prin-
cipal trusted by either P or Q. Note that we make
here the assumption that secrets are protected. This

symbol is commutative, i.e. P
K
$Q is equivalent to

Q
K
$P.

2We use the original notation from the authors [10], who later preferred
a more readable, albeit more verbose, notation [11]. We unfortunately
cannot use this latter notation due to width constraints.

�
+K
7! P: P has K as a public key. The matching secret
key (the inverse of K, denoted �K) will never be
discovered by any principal except P, or a principal
trusted by P.

� fXgK : This represents the formula X encrypted un-
der the key K. A weird point of BAN-like logics is
that they consider that one can encrypt beliefs repre-
sented in formula. We shall now see why.

Since messages are considered from the point of view
of their meaning, a message Kpq conveying a key
to be used between P and Q is represented in the

logic as P
Kpq
 !Q. Since the key is generally en-

crypted so as to not being divulged to the intruder,
the actually transmitted message is encrypted, for
instance

�
Kpq

	
Kqs

. The corresponding formula is�
P

Kpq
 !Q

�
Kqs

.

� (X;Y) represents the pair, or concatenation, of X
and Y. Note that this symbol will be treated as com-
mutative and associative.

We shall now see the deduction rules of BAN logic. A de-
duction rule is simply a set of premises, or hypotheses
H1; : : : ;Hn and a conclusion C written as formulas with
variables. Those variables stand for any formula, principal
or nonce. We shall write such a rule as follows:

H1 � � � Hn

C
:

Such rules allow writing proofs as trees, whose leaves are
the assumptions of the protocol or some already proved
intermediary results and whose nodes are applications of
the rules (see Figs. 1 and 2 for examples of somewhat
complex proof trees). The notation

.... α1
H1 � � �

.... αn

Hn

C

means that αi designates the branch of the proof tree whose
root is Hi . In our list of the rules for BAN logic, we shall
use this notation to identify some premises in some rules,
the use of which will be explained in Subsection 3.2.

� The message-meaning rules concern the interpreta-
tion of messages authenticated by encryption using
a shared or private key:

.... p1

Pj�P
K
$Q

.... p2

P/fXgK
Pj�Qj�X

MM1

The reasoning behind that rule is that if a key K is
shared between two principals P and Q and is kept
secret, if P sees a message encrypted with K, then it

58

Analysis of cryptographic protocols using logics of belief: an overview

can assume it comes from Q. An additional (and easy
to overlook) assumption is that the message should
not have originally come from P. Burrows, Abadi
and Needham justify this by explaining that fXgK
is actually an abbreviation for fXgK from P, mean-
ing that the encryption was done by P. It is assumed
that each principal can recognize messages that it en-
crypted itself and ignore them. The message meaning
rule can then be rewritten as:

Pj�P
K
$Q P/fXgK f rom 6= P

Pj�Qj�X
MM1 :

This is a bit uneasy. GNY logic (Subsection 2.3) in-
troduces a symbol ?, meaning not originated here,
which makes such considerations internal to the
logic:

.... p1

Pj�
+K
7! Q

.... p2

P/fXg
�K

Pj�Qj�X
MM2 .

� The nonce verification or freshness rule expresses the
check that a message is recent (has been emitted in
the current session) and thus that the sender still be-
lieves in it. The freshness condition is thus meant
against replay attacks:

.... a
Pj�](X)

.... p
Pj�Qj�X

Pj�Qj�X
NV .

� The jurisdiction rule states that if P believes that Q
has jurisdiction over X then P trusts Q on the truth
of X:

.... p
Pj�Q Z) X

.... a
Pj�Qj�X

Pj�X
J .

� Unsurprisingly, a principal believes a group of state-
ments if and only if it believes each one. We recall
that pairs are treated as associative and commutative:

Pj�X Pj�Y

Pj� (X;Y)
BE1

.... p
Pj� (X;Y)

Pj�X
BE2

.... p
Pj�Qj� (X;Y)

Pj�Qj�X
BE3 .

Other similar rules may be introduced if necessary,
such as

Pj�Qj�X Pj�Qj�Y

Pj�Qj� (X;Y)
BE4 .

� Similarly, if a principal said a group of things, it said
each of them individually. Note that the converse is
not true, since it would imply that the principal said
all the things at the same moment:

.... p
Pj�Qj� (X;Y)

Pj�Qj�X
SG .

� If a principal sees a formula, then he also sees its
components, provided he knows the necessary keys:

.... p
P/ (X;Y)

P/X SP1

.... p1

P/fXgK

.... p2

Pj�P
K
$Q

P/X SP2 .

Note that the hypothesis is Pj�P
K
$Q, not P / K,

which would seem logical. In fact, this rule could
perhaps be replaced by the following pair of rules:

.... p
P/fXgK

.... a
P/K

P/X

.... p

Pj�P
K
$Q

P/K
:

The usual rule for public-key cryptosystems is that
message encrypted with the public keys are decipher-
able using the private key:

.... p
P/fXg

+K

.... a

Pj�
+K
7! P

P/X SP3 .

Note that this last rule supposes that if P believes that
K is its public key, then it holds the corresponding
private key.

The following optional rule expresses the fact
that for certain public-key cryptosystems (like
RSA [21, 28, 30]), it is possible for anybody with
the public key to decipher a message encrypted with
the private key:

.... p
P/fXg

�K

.... a

Pj�
+K
7! Q

P/X SP4 .

59

David Monniaux

� If one part of a formula is known to be fresh, then
the entire formula must also be fresh:

Pj�](X)

Pj�](X;Y)
FR1

Pj�](X)

Pj�](fXgK)
FR2 :

An important point about BAN logic is that it was intended
to be a starting point for logics adapted for certain partic-
ular uses. A person aiming at applying such techniques to
protocols may have to introduce additional constructs and
rules to reflect the particularities of the system. The use of
automatic decision procedures (see Section 3) may help in
this respect to identify the missing rules and assumptions –
which sometimes are indeed assumptions about the system
that the designer had not noticed.

2.2. The Needham-Schroeder protocol in BAN logic

We shall see here how to formalize and analyze the
Needham-Schroeder shared-keys protocol (see Section 1).
This protocol is of particular importance since many others,
such as Kerberos [22], have been derived from it; further-
more, it has a serious weakness, an undesirable assumption,
which can be demonstrated in the logical analysis.
We shall follow the analysis in [10, x 5]. The first step is
to convert the protocol description into a sequence of BAN
assumptions. Each line of the form A! B : F induces
a formula of the form B/F . We remove indications that
play no role in the logical deductions, such as the names
of the principals, and we replace some elements by their
semantic meaning: the freshly generated key Kpq, meant
to be used between P and Q, is idealized as the pair of

formulas P
Kpq
 !Q and]

�
P

Kpq
 !Q

�
:

2: S! P :

�
Np;P

Kpq
 !Q;]

�
P

Kpq
 !Q

�
;
n

P
Kpq
 !Q

o
Kqs

�
Kps

3: P!Q :
n

P
Kpq
 !Q

o
Kqs

4: Q! P :
n

Nq;P
Kpq
 !Q

o
Kpq

f rom Q

5: P!Q :
n

Nq;P
Kpq
 !Q

o
Kpq

f rom P:

The first message is omitted, since it does not contribute
to the logical properties of the protocol. We should never-
theless not forget that Np is created just before this first
message is sent and thus is assumed to be fresh. The
case of the last two messages is more interesting. In the
concrete protocol, Nq� 1 is used instead of Nq in mes-
sage 5 so that messages 4 and 5 are different. An in-
truder cannot replay to P its own message 4. We therefore
make this impossibility explicit by using the constructionn

Nq;P
Kpq
 !Q

o
Kpq

f rom P, give in the above explanation of

the message-meaning rule.

To start, we give some assumptions:

� The first assumptions state that the principals know
how to communicate using shared-key cryptography
between the clients and the server:

Pj�P
Kps
 !S Qj�Q

Kqs
 !S

Sj�P
Kps
 !S Sj�Q

Kqs
 !S

Sj�P
Kpq
 !Q:

� P and Q trust the server in producing a fresh and
correct shared key. They will accept whatever key K
that the server will supply; we shall therefore specify
these assumptions as axiom schemes, where K can
be instanced by any value:

8K Pj�S Z) P
K
$Q; Pj�S Z)]

�
P

K
$Q

�
8K Qj�S Z) P

K
$Q:

Since the only value for K that makes sense to reach
useful conclusions is Kpq, we can replace these axiom
schemes by axioms:

Pj�S Z) P
Kpq
 !Q Pj�S Z)](P

Kpq
 !Q)

Qj�S Z) P
Kpq
 !Q:

This is also required for our automatic proof tech-
nique (Section 3).

� Unsurprisingly, each principal believes in the fresh-
ness of what it generates:

Pj�](Np) Qj�](Nq)

Sj�](P
Kpq
 !Q) :

� This last assumption is needed to reach the protocol
goals, but is wrong. As pointed out in [10]:

[...] the protocol has been criticized for
using this assumption, and the authors did
not realize they were making it.

We shall discuss below the unwanted consequences
of this assumption:

8K Qj�](P
K
$Q) : (1)

Let us now see the proofs using BAN logic. First, principal
P has to ensure that the key is fresh (Fig. 1). It is then

possible to derive Pj�P
Kpq
 !Q (Fig. 2).

Also, P/

�
P

Kpq
 !Q

�
Kqs

. Since P has seen that part of the

message, it can retransmit it to Q. At this point, Q decrypts
the message, and we obtain:

Qj�Q
Kqs
 !S Q/

�
P

Kpq
 !Q

�
Kqs

Qj�Sj�P
Kpq
 !Q

MM1 .

60

Analysis of cryptographic protocols using logics of belief: an overview

Let us note that Q has no means to check that this message
is fresh except for assumption 1. If we make this assump-
tion, we get

The last two messages are for P and Q to be sure that
the other one has indeed received the key and is ready to
use it:

In other words, each principal P or Q trusts the other one
in believing they share a secret key Kpq.
Let us now discuss the weakness of the protocol: assump-

tion 1
�
8K Qj�](P

K
$Q)

�
. It means that Q will accept

a proposal for a key Kpq without being able to check
whether this key is appropriate for this session. In fact,
let us suppose that an intruder I has listened to the network
and recorded a session involving P and Q. It therefore has
recorded a valid message

�
Kpq;P

	
Kqs

. Let us additionally

assume that the intruder has managed to get hold of Kpq.
Now the intruder impersonates P to initiate a run of the
protocol with Q using that recorded information:

3: I !Q :
�

Kpq;P
	

Kqs

4: Q! I :
�

Nq
	

Kpq

5: I !Q :
�

Nq�1
	

Kpq
:

Now Q believes it can communicate with P using Kpq.
Q will in good faith start talking with the intruder, believ-
ing the intruder is P. In other words, if one session key has
been compromised, all subsequent sessions can be compro-
mised as well. This contradicts one of the very motivations
for the use of session keys which is “to limit exposure, with

respect to both time period and quantity of data, in the event
of (session) key compromise” [21, x12.2.2]. As [10] points
out:

Denning and Sacco pointed out that compro-
mise of a session key can have very bad re-
sults: an intruder has unlimited time to find
an old session key and to reuse it as though it
were fresh (1981). Bauer, Berson, and Feiertag
pointed out that there are even more drastic
consequences if [P]’s private key is compro-
mised: an intruder can use [P]’s key to obtain
session keys to talk to many other principals,
and can continue to use these session keys even
after [P]’s key has been changed (1983). It is
comforting that the logical analysis makes ex-
plicit the assumption.

BAN logic has thus been successful in identifying an un-
wanted assumption of a protocol on the freshness of a mes-
sage, indicating the possibility of a replay attack.

2.3. A simple example in GNY logic

BAN logic was much criticized, on the one hand for being
some kind of dubious idealization of the already idealized
Dolev-Yao model, on the other hand for making unwanted
assumptions. We have already seen the uneasy treatment
that BAN makes of the situation where a principal P is sent
a message fMgKpq

, where Kpq is a shared key for P and Q:
P can believe that this message originated from Q only if
P is sure that this message is not a replay of one of its own
messages. GNY logic is a BAN-like logic that solves this
issue as well as others [17]:

Our new approach seems to offer important ad-
vantages over the BAN approach. It does not
require several universal assumptions which
the BAN work does. For example, it does
not assume that redundancy is always present
in encrypted messages incorporating instead
a new notion of recognizability which captures
a recipient’s expectation of the contents of mes-
sages he receives. Also, it does not assume
that a principal can always determine whether
a message was not once originated by himself.

GNY logic also separates what a principal says, what it
believes and what it possesses. Other logics have been
proposed to alleviate some other weaknesses of BAN
logic [33, 34]. We shall restrict ourselves here to a cur-
sory glance at GNY logic [17].
We shall consider a very simple (and admittedly silly) pro-
tocol:

1: A! B : Na

2: B! A : fNag�Kb

3: A! B :
�

Kab

	
+Kb

:

61

David Monniaux

Fig. 1. Deriving freshness in BAN logic.

Fig. 2. Deriving that a key is shared in BAN logic.

This is to be understood as: in step 1, A sends a newly gen-
erated number Na to B; B answers with the encryption of Na

by its private key �Kb; A answers with the encryption of
a newly generated session key Kab with B’s public key +Kb.

To illustrate how belief-logic deductions work, we first
show the idealized version of the protocol in GNY:

1: B/Na

2: A/?fNag�Kb

3: B/?

��
Kab

	
+Kb
;A

Kab !B

�
:

The star means that the following term was not originated
by the party who receives it. The statement after the wavy
arrow in 3 is an annotation meaning that Kab is intended to
be a shared secret key for use between A and B.
We also need some assumptions, written as follows in GNY:

(a) A3+Kb (A possesses +Kb)

(b) Aj�
+B
7! +Kb (A believes that +Kb is B’s public key)

(c) Aj�φ(Na) (A believes Na to be recognizable; that is,
if A sees a message field that is supposed to be Na,
A can check whether it is or not)

(d) Aj�](Na) (A believes Na to be fresh; that is, to have
been used for the first time in this run of the proto-
col).

See [17] for a complete list of the GNY inference rules
and their designations. Using those rules, we can derive
the conclusion Aj�B3 Na as in Fig. 3.

This means that from the fact, coming from protocol
step 2, that A sees the message consisting of the encryption
of Na by the private key for the public/private couple of
keys Kb, from assumption a (A possesses the correspond-
ing public key), from assumption b (B uses the private key
of the couple Kb) and from assumption c (A believes that it
can recognize Na), we deduce using rule I4 that A is entitled
to believe that B once said Na. Then, using assumption d,
which is that Na is fresh (has never been used in another
session before), we deduce that A is entitled to believe that
B possesses Na.

The final goal of the protocol might be to cause B to believe

that A believes that Kab is the shared key (Aj�A
Kab !B).

However, message 3 could have been forged by any intruder
possessing +Kb, which is realistic since it is a public key,

62

Analysis of cryptographic protocols using logics of belief: an overview

Fig. 3. A derivation in GNY logic.

replacing Kab by any key of his choice. The logic (cor-
rectly) fails to conclude that the protocol accomplishes this
goal: this goal has no derivation in GNY logic from the
above set of hypotheses.

3. Decidability

A little known fact about the modal logics of belief (at
least BAN and GNY) is that they are decidable [23]. That
is, there exists an algorithm that, given a finite set of hy-
potheses H1 to Hn and a purported conclusion C, answers
whether or not C follows from H1; : : : ;Hn. We shall see in
this section the difficulties of establishing this property and
a practical algorithm.

3.1. Position of the problem

Let us first remark that not all logics are decidable. For
instance, set theory, the basis of usual mathematics, is un-
decidable [12]: that is, there exists no algorithm that takes
as input a mathematical proposition and answers whether it
is true or false. Furthermore, the analysis of cryptographic
protocols in the Dolev-Yao model, given some very reason-
able hypotheses, is also undecidable if an unbounded num-
ber of sessions is allowed, even with messages of bounded
depth [14] 3.
There are two traditional methods to test whether a for-
mula t admits a derivation from a set of hypotheses Γ in
a rule system ` (which we note by Γ ` t):

� Forward chaining, that is starting from the hypothe-
ses Γ, apply all the possible deduction rules to de-
duce new formulas, then start again with the union
of the hypotheses and the new formulas, until the
formula t is discovered.

� Backward chaining, that is, starting from the pur-
ported conclusion, find all the rules and all the instan-
tiations of the variables in them that yield that con-
clusion, then try recursively to prove the hypotheses
of each of these rules with each of the instantiations;
this requires backtracking.

There are two problems with the rule systems like BAN or
GNY:

3See also Comon and Shmatikov’s paper in this volume.

� Both forward chaining and backward chaining may
fail to terminate.

� There are rules that are unsuitable for forward-
chaining and rules that are unsuitable for forward-
chaining. For instance,

Pj�](X)

Pj�](X;Y)
FR1

has a conclusion in which there are variables that are
not found in the hypotheses. It is therefore impossi-
ble to apply forward chaining, except by introducing
variables representing unknown formulas. Similarly,
rule BE2 is not suitable for backward-chaining.

If we straightforwardly (and naively) implement the rules
of BAN or GNY logic in a general-purpose automatic the-
orem prover, as it has been done [31], the prover is likely
to search an infinite space of possible proofs, which means
that the system does not terminate when the conclusion
is not provable. Furthermore, even in cases of termina-
tion, the computation time might be prohibitive, because
the search procedure explores many useless avenues.
The approach taken by Kindred and Wing [19] and gen-
eralized by ourselves [23] is a refinement on a combina-
tion of forward and backward chaining. We shall expose
here briefly our method. This method analyses the GNY
logic [17], but is generic enough to be applied to most sim-
ilar logics. It is based on a careful application of forward-
chaining.

3.2. Composition and decomposition rules

Let us take a look at BAN logic4. We consider a partition
of the rules between these two classes:5

� Decomposition rules, in which all the variables of
the conclusion are found in the premises (these rules
are suitable for forward-chaining); for these rules, we
distinguish the principal premises (which can be one
or more) and the optional auxiliary premises; the

4We do similar work for a variant of GNY logic equivalent to GNY
logic in [23].

5This partition of the set of rules into two classes is very similar to that
of [19], where they are called respectively growing and shrinking rules.
This is also similar to the introduction and elimination rules of natural
deduction; see [15, p. 75] and [27 x II.1]. Our theorem on normal deriva-
tions is thus similar to the normalization theorem of natural deduction
[27, x IV.1] or Gentzen’s Hauptsatz [15, p. 105].

63

David Monniaux

variables in the auxiliary premises are a subset of
these in the principal premises; those rules in BAN
are the ones listed above as

.... p1
H1 � � �

.... pn

Hn

.... a1
Hn+1 � � �

.... am

Hn+m

C

� Composition rules, in which all the variables of the
premises are found in the conclusion (these rules are
suitable for backward-chaining).

The intuition is that composition rules introduce construc-
tors, like a pair, and decomposition rules break these con-
structors, as in taking the first projection of a pair.
GNY and similar logics fulfill the normal derivation crite-
rion: if there exists a derivation of Γ ` t then there must
also exist a normal derivation of Γ ` t. A derivation ∆ of
a conclusion Γ` t is said to be normal if there is no compo-
sition rule to be used as the root rule of the sub-derivation
for a principal premise of a decomposition rule: for any
decomposition rule d used in ∆:

...
P1

r1
� � �

...
Pn

rn

....
A1 � � �

....
Am

C d

where Pi are the principal hypotheses and A j the auxiliary
hypotheses, none of the rules r1; : : : ; rn is a composition
rule. In the opposite case, we say that there is a detour
at r .
Informally, that means that it must be possible to derive
anything that is derivable without having to compose some-
thing and decompose it afterwards;6 for instance, in

.... α
Pj�X

.... β
Pj�Y

Pj� (X;Y)
BE1

Pj�X
BE2

we compose a pair just to decompose it afterward, and we
could have reached the same conclusion directly using only
the α branch of the proof:

.... α
Pj�X :

3.3. Magic-set transformation

As we pointed out earlier, it is possible to implement
straightforwardly BAN or GNY logic into forward-chaining
or backward-chaining (Prolog-like) theorem provers; this is
nevertheless clumsy since:

6In terms of natural deduction and similar systems, this is often called
the inversion principle [27, ch. II].

� It is necessary to allow non-ground formulas, that is,
formulas containing variables representing unknown
sub-formulas. This means that the prover needs ap-
ply unification and not just pattern-matching when
applying rules. This makes the implementation far
more complex.

� Many unnecessary conclusions or intermediary goals
are generated. In the case of BAN or GNY logic, this
leads to non-termination when the purported conclu-
sion is not reachable from the hypotheses.

Similar problems were encountered in the field of logic
programming and queries in logical databases and led to
the introduction of the magic-set transformation [7]. This
transformation turns backward-chaining rules into forward-
chaining ones, by generating only “relevant” sub-goals.7

These sub-goals constitute the so-called “magic sets” as-
sociated with the predicates. The basic idea is that we
should only begin investigating sub-goals of a conclusion
only if some sub-goals have already been proved and some
variables instanciated (thus the vocabulary of Sideways In-
formation Passing Strategy or SIPS).
In our case, the partitions into composition and decom-
position rules, and in that latter class, between principal
and auxiliary premises gives us the SIPS. Furthermore, we
choose our partition so that all the forward-chaining rules
generated by the transformation make some measure de-
crease, thus ensuring termination. We then define another
logic, introducing a special symbol, goal. �X means that
“we would like to compose X”. Other authors call this
symbol “magic”.
Our transformation turns the composition rule

H1 � � �Hn

C

into a pair

�C H1 � � �Hn

C

�C

�H1 � � ��Hn

and adds to the decomposition rule

P1 � � �Pn A1 � � �Am

C
;

where the one or more Pi are principal premises and the
zero or more Ai are auxiliary premises, the triggering rule

P1 � � �Pm

�A1 � � ��An
:

It can be proved [23] that
Theorem 1: For any set of hypotheses H and purported
conclusion C for the ` proof system,

H ` C () H ;�C `0 C :

7As it has been pointed out [7, x II], “relevant” means “[that might] be
essential to the establishment of a fact that is in the answer”. “Relevant”
goals may actually be irrelevant to the query; the only insurance that we
have is that for any provable fact there will be one proof of that fact for
which we shall obtain all sub-goals as “relevant”.

64

Analysis of cryptographic protocols using logics of belief: an overview

3.4. The decision procedure

The interest of turning the original problem on ` into
a problem on `0 is twofold:

1. All rules in `0 are suitable for forward-chaining.

2. For any finite set of hypotheses H , the length of
the derivations of the `0-proofs starting from H is
bounded. This condition is proved by giving a weight
function assigning an integer weight jF j to each for-
mula F so that the weight of the conclusion of
a `0-rule is strictly less than the maximal weight of
the premises8 (Table 1).

To some extent, the existence of the weight function is intu-
itive: some rules are evidently composition rules (building
a pair, for instance) or decomposition rules (splitting a pair),
and the intuition is that the conclusion of a decomposition
rule is “smaller” than the premises, and that the conclusion
of a composition rule is “bigger” than the premises. The
additional condition that the auxiliary premises are smaller
than the principal ones is also intuitive, since the auxiliary
premises often represent keys and the principal premises
represent encrypted data containing the key as a sub-term.
The rules resulting from the magic-set transformation then
have conclusions that are “smaller” than their premises.

Table 1
The weight function for BAN logic

F jFj

K 1

P 1

Np 1

Pj�X 1+ jXj

P/X 2+ jXj

Pj�X 3+ jXj

P Z) X 3+ jXj

](X) 1+ jXj

P
K
$Q 2+ jKj

+K
7! P 2+ jKj

fXgK 3+ jXj+ jKj

(X;Y) 1+ jXj+ jYj

For any finite set H of hypotheses, the set of conclusions
that can be derived from H is finite and can be enumer-
ated by exhaustively applying the rules of `0; this is of-
ten referred to as the saturation of the hypotheses by the
forward-chaining system `0. The decision procedure for `0

is thus simple: to test whether A`0 B, it suffices to saturate
A by `0 and test whether B belongs to the set. Let us note
that although W is used to prove the termination of the sat-
uration process, that process does not need to compute W .

8The problem is slightly more complex for GNY logic because of its
jurisdiction rule [23].

Using Theorem 1, we obtain a decision procedure for `
(which can be BAN logic or a modified version of GNY
logic [23]).
Minimal care must be taken when implementing the satura-
tion procedure, especially for more complex logics such as
GNY. Naive implementations may lead to prohibitive costs.
For instance, trying all possible rules in the fashion that to
try a n-ary rule you match it against all the n-tuples of al-
ready derived formulas, until it ends, leads to prohibitive
costs (in the case of GNY, n= 6; which makes the num-
ber of matchings grow in D7; where D is the number of
derivable formulas).
A first optimization we tried was based on the fact that one
need not test all possible n-tuples, but only ones containing
at least one “new” formula; that is, a formula made during
the last application of the rules. This is not sufficient, since
it reduces only to D6; experimentally, this is far too slow.

Our implementation is based on the fact that to instanti-
ate all the variables in a rule, you need not consider all the
hypotheses; especially, in the modified versions of the com-
position rules, only one “goal” hypothesis suffices; in the
decomposition and trigger rules, only the principal premises
are needed. Expensive exhaustive searches for the fully in-
stantiated hypotheses are replaced by a much faster binary
search. On problems taken from the protocol literature, this
implementation performed within seconds.9 Implementa-
tions based on efficient general-purpose forward chaining
systems are likely to perform even better.
Our goal is not only to “prove” protocols in the logic, but
also to identify undesirable assumptions. Our analyzer can
also help in that regard, since it generates a list of possi-
bly desirable assumptions (the formulas F so that �F is
in the saturation of the problem by `0, while F is not).
Experimentally, the list given by the analyzer tends to con-
tain the missing assumptions, but also many ludicrous ones.
Heuristics may help to produce meaningful output to the
protocol designer.

4. Semantics

We have so far defined a system of rules. But are we
sure that they are the right rules? Are we sure we are not
going to deduce something wrong because of a loophole in
the system? It would be much better if we had a way of
representing the concepts that are embodied in the formulas
and check whether the deductive relationships expressed by
the rules are actually true. For this, we must define the
semantics of formulas in terms of models.
We shall remind the reader briefly of the semantic aspects
of axiomatic methods. Let us take a simple example. It is
possible to write proofs of facts in planar geometry using
a few structural rules (modus ponens and other rules for
basic logical connectors) as well as a few axioms on geo-
metrical properties. This is the usual geometry that chil-
dren learn at school. On the other hand, it is possible to

9The implementation is freely available from the author.

65

David Monniaux

build a theory of geometry based on set theory, the integer,
the rationals, the real field and Euclidean spaces. What is
the relationship between those two theories? Every object
(point, line : : :) of usual planar geometry can be repre-
sented by an object built from set theory. The same holds
for the relationships between those objects (parallelism, in-
tersections : : :) and even whole statements. These rep-
resentations constitute a model. We say that a model M
represents a formula F (noted M j= F) if and only if the
representation of the formula F is true in the model M .
A statement is said to be valid if it is true in all models.
There are then two problems to consider:

� Is the system of rules that we consider sound? That
is, are all deducible statements true in all models?

� Is the system of rules complete? That is, is there
a proof for every valid statement that can be written
in the system?

It is interesting to note that indeed it is possible to give
a sound and complete axiomatic system for planar geome-
try [37] and quite a few other interesting theories.
Early attempts at giving semantics for logics of belief for
cryptographic protocols gave only somehow “trivial” se-
mantics: they basically said that what a principal believes
is what it had come to believe following the rules. Such
a semantics does not shed any light on what “belief” means
in the context of cryptographic protocols. It seems de-
sirable to have logics of belief proved to be sound with
respect to a non-trivial semantics for beliefs, which will
involve a notion of possible worlds [18]. Improved belief
logics, proved to be sound with respect to possible world
semantics, were therefore proposed [4, 34]. Later, seman-
tics based on strand spaces were also proposed [35].

5. Conclusions

BAN, and similar logics, are useful to get an idea of the
assumptions underlying the design of a cryptographic pro-
tocol. Their handling can be (partially) automated. While
they do not provide the same sort of assurance as analy-
ses in the Dolev-Yao model [13] or the spi-calculus and
its variants [1–3], they can point mistakes in the design of
protocols, including misplaced trust or failure to prevent
replay attacks.

Acknowledgements

We thank J. Goubault-Larrecq, Jon Millen, and Luca
Vigano for their many suggested improvements to the paper.

References
[1] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols:

the spi calculus”, in ACM Conf. Comput. Commun. Secur., 1997,
pp. 36–47.

[2] M. Abadi and A. D. Gordon, “Reasoning about cryptographic pro-
tocols in the spi calculus”, in CONCUR’97, Concurrency Theory,
8th International Conference, A. Mazurkiewicz and J. Winkowski,
Eds., Lecture Notes in Computer Science. Springer, 1997, vol. 1243,
pp. 59–73.

[3] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols:
the spi calculus”. Res. Rep. 149, Compaq Systems Research Center,
Palo Alto, CA, USA, Jan. 1998.

[4] M. Abadi and M. R. Tuttle, “A semantic for a logic of authentica-
tion”, in 10th Annual ACM Symposium on Principles of Distributed
Computing, L. Logrippo, Ed. ACM Press, 1991, pp. 201–216.

[5] R. Amadio and D. Lugiez, “On the reachability problem in crypto-
graphic protocols”. Res. Rep. 3915, INRIA, 2000.

[6] R. Amadio and D. Lugiez, “On the reachability problem in cryp-
tographic protocols”, in CONCUR’00, Lecture Notes in Computer
Science. Springer, 2000, vol. 1877.

[7] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman, “Magic sets and
other strange ways to implement logic programs (extended abstract)”,
in International Conference on Management of Data and Symposium
on Principles of Database Systems. ACM, 1986.

[8] D. A. Basin, “Lazy infinite-state analysis of security protocols”, in
Secure Networking – CQRE (Secure) ’99, International Exhibition
and Congress, R. Baumgart, Ed., Lecture Notes in Computer Science.
Springer, 1999, vol. 1740, pp. 30–42.

[9] P. Bieber, “A logic of communication in hostile environment”, in
Comput. Secur. Found. Worksh. (III), 1990, pp. 14–22.

[10] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication”.
Tech. Rep. 39, Digital Equipment Corporation, Systems Research
Centre, Febr. 1989.

[11] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication”,
ACM Trans. Comput. Syst., vol. 8, no. 1, pp. 18–36, 1990.

[12] A. Church, “An unsolvable problem of elementary number theory”,
Am. J. Math., vol. 58, no. 2, pp. 345–643, 1936.

[13] D. Dolev and A. C. Yao, “On the security of public key proto-
cols”, IEEE Trans. Inform. Theory, vol. IT-29, no. 12, pp. 198–208,
1983.

[14] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov, “Undecidability
of bounded security protocols”, in Proc. Worksh. Form. Meth. Secur.
Protoc. (FMSP), N. Heintze and E. Clarke, Eds., 1999.

[15] J. Y. Girard, Proof and Types. Cambridge University Press, 1990.
(Translated and with appendices by Paul Taylor, Yves Lafont).

[16] L. Gong, “Cryptographic protocols for distributed systems”.
Ph.D. thesis, University of Cambridge, Cambridge, England, April
1990.

[17] L. Gong, R. Needham, and R. Yahalom, “Reasoning about be-
lief in cryptographic protocols”, in IEEE Symposium on Research
in Security and Privacy. IEEE Computer Society Press, 1990,
pp. 234–248.

[18] J. Hintikka, Knowledge and Belief: An Introduction to the Logic of
Two Notions. Cornell University Press, 1962.

[19] D. Kindred and J. M. Wing, “Fast, automatic checking of security
protocols”, in Second USENIX Workshop on Electronic Commerce.
USENIX, 1996, pp. 41–52.

[20] C. Meadows, “The NRL protocol analyzer: an overview”, J. Log.
Program., 1995 (to appear).

[21] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography. CRC Press, 1996.

[22] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, “Ker-
beros authentication and authorization system”, in Project Athena
Technical Plan. MIT, 1987, ch. E.2.1.

[23] D. Monniaux, “Decision procedures for the analysis of cryptographic
protocols by logics of belief”, in 12th Computer Security Founda-
tions Workshop. IEEE, 1999.

[24] R. M. Needham and M. D. Schroeder, “Using encryption for authen-
tication in large networks of computers”, Commun. ACM, vol. 21,
no. 12, 1978.

66

Analysis of cryptographic protocols using logics of belief: an overview

[25] D. Nessett, “A critique of the Burrows, Abadi and Needham logic”,
ACM Oper. Syst. Rev., vol. 24, no. 2, pp. 35–38, 1990.

[26] L. C. Paulson, “Proving properities of security protocols by induc-
tion”, in 10th Computer Security Foundations Workshop. IEEE Com-
puter Society Press, 1997, pp. 70–83.

[27] D. Prawitz, Natural Deduction: a Proof-Theoretical Study. Almqvist
& Wiksell, Stockholm, 1965.

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtain-
ing digital signatures and public key cryptosystems”, in SIMMONS:
Secure Communications and Asymmetric Cryptosystems, 1982.

[29] M. Rusinowitch and M. Turuani, “Protocol insecurity with finite
number of sessions is NP-complete”, in 14th IEEE Comput. Secur.
Found. Worksh., Cape Breton, Nova Scotia, Canada, June 2001.

[30] B. Schneier, Applied Cryptography. 2 ed. Wiley, 1996.

[31] J. Schumann, “Automatic verification of cryptographic protocols
with SETHEO”, in Proceedings of the 14th International Confer-
ence on Automated Deduction, W. McCune, Ed., Lecture Notes in
Artificial Intelligence. Berlin: Springer, 1997, vol. 1249, pp. 87–100.

[32] D. Song, “Athena: a new efficient automatic checker for security pro-
tocol analysis”, in 12th Computer Security Foundations Workshop.
IEEE, 1999.

[33] P. Syverson, “Adding time to a logic of authentication”, in 1st ACM
Conf. Comput. Commun. Secur., 1993, pp. 97–101.

[34] P. Syverson and P. C. van Oorschot, “On unifying some crypto-
graphic protocol logics”, in 1994 IEEE Comput. Soc. Symp. Res.
Secur. Priv., May 1994, pp. 14–28.

[35] P. Syverson, “Towards a strand semantics for authentication logics”,
in Electronic Notes in Theoretical Computer Science. 1999, vol. 20.

[36] P. Syverson and I. Cervesato, “The logic of authentication protocols”,
in FOSAD’00, R. Focardi and R. Gorrieri, Eds. Springer, 2001,
vol. 2171.

[37] A. Tarski, “What is elementary geometry?”, in The Axiomatic
Method, with Special Reference to Geometry and Physics, P. Sup-
pes and A. Tarski, Eds., Studies in Logic and the Foundations of
Mathematics. North-Holand, 1959, pp. 16–29.

David Monniaux is a re-
searcher at the Department of
Computer Science at Ecole
Normale Supérieure in Paris,
France. His research interests
include formal methods, pro-
gram semantics and abstract in-
terpretation, and the static anal-
ysis of cryptographic protocols,
critical software, and proba-
bilistic programs. He received

his Ph.D. degree in computer science from Université
Paris-Dauphine in 2002 and is an alumnus of Ecole Nor-
male Supérieure de Lyon.
e-mail: David.Monniaux@ens.fr
École Normale Supérieure
Département d’Informatique
45, rue d’Ulm
75230 Paris Cedex 05, France

67

