
Regular paper Implementation of the block
cipher Rijndael using Altera FPGA

Piotr Mroczkowski

Abstract — A short description of the block cipher Rijndael is
presented. Hardware implementation by means of the FPGA
(field programmable gate array) technology is evaluated. Im-
plementation results compared with other hardware imple-
mentations are summarized.

Keywords — block cipher, Rijndael, Altera FPGA.

1. Introduction

It has been announced recently that the cryptographic al-
gorithm named Rijndael is the winner of the Advanced
Encryption Standard competition. This international con-
test was organized by the National Institute of Standards
and Technology. In September 1997, NIST opened a for-
mal call for algorithms. A group of fifteen AES candi-
date algorithms were announced in August 1998. Next, all
algorithms were subject to assessment process performed
by various groups of cryptographic researchers throughout
the world. In August 2000, NIST selected five algorithms:
Mars, RC6, Rijndael, Serpent, Twofish as the final competi-
tors. These algorithms were subject to further analysis prior
to the selection of the best algorithm for the AES. Finally,
on October 2, 2000, NIST announced that the Rijndael al-
gorithm was the winner.
The primary criteria chosen by NIST to appoint the winner
for the AES included security, efficiency in hardware and
software, flexibility. The most important measure was the
resistance against all known and unknown attacks, but after
a thorough research it appeared that all algorithms consid-
ered in second phase were robust. The results of software
implementation were also comparable. Under such circum-
stances the efficiency of hardware implementation seemed
to be an important factor of the overall score.
Hardware implementations are designed and coded in hard-
ware description language (for example AHDL – Altera
hardware description language) and may be done using the
FPGA devices. Altera’s devices (FLEX 10K) consist of
thousands of universal building blocks (called macrocells),
dedicated memory blocks (called embedded array blocks –
EABs) connected by means of programmable interconnec-
tors. Block ciphers seem to fit extremely well the char-
acteristics of the FPGAs. The fine-granularity of FPGA
matches very well the operations required by block algo-
rithms such as bit-permutations, bit-substitution, look-up
table reads and boolean functions. The EABs are suitable
for implementing large S-boxes (such as 8�8 S-boxes used
in Rijndael).

2. Description of the Rijndael cipher

The Rijndael algorithm, which falls into the block cipher
category, has been designed by Joan Daemen and Vincent
Rijmen and its specification is given in [1].
The length of the block and the length of the key can be
independently specified to 128, 192 and 256 bits. The
structure of the variant of encryption algorithm with 128-bit
length of the block and the key is presented in Fig. 1.

Fig. 1. The encryption algorithm.

An input block of data and the intermediate cipher results
are represented by a square matrix with 4�4 of byte di-
mension (so-called the state). The state is presented in
Fig. 2.
The cipher input bytes are mapped onto the state bytes in
the order a0;0, a1;0, a2;0, a3;0, a1;0, a1;1, a1;2, a1;3; : : : At the
end of the cipher operation, the cipher output is extracted
from the state by taking the state bytes in the same order.
Every round except the initial (Round 0) and final
(Round 10) ones consists of four transformations:

1. ByteSub – a single nonlinear transformation, which
is applied to each byte of the data.

80

Implementation of the block cipher Rijndael using Altera FPGA

2. ShiftRow – which cyclically reorders the bytes of
row.

3. MixColumn – a linear transformation applied to
columns of the matrix.

4. AddRoundKey – which mixes the round key and the
intermediate data.

Prior to the first round the transformation AddRoundKey
is performed by using the main key as the round key
(Round 0). Next, nine basic rounds (Round 1� 9) con-
sisted of all four transformations are performed. In the
final round (Round 10) the transformation MixColumn is
skipped.
The decryption algorithm with the 128-bit data and key
option is presented in Fig. 3.

Fig. 2. Example of the state.

Fig. 3. The decryption algorithm.

In the first step of the decryption algorithm the inversion
of the final encryption round is performed (InvRound 10),

next nine inversions of the basic encryption rounds
(InvRound 9�1), and in the last step the transformation
AddRoundKey is calculated (InvRound 0). In the decryp-
tion round all transformations of the encryption round are
inverted in the reverse order.

2.1. ByteSub (InvByteSub) transformation

The ByteSub transformation is the byte substitution, oper-
ating on each of the state bytes independently. Each byte
is considered as representing coefficients of a polynomial
of degree less then 8 over GF(28). Firstly, we calculate the
inversion of this polynomial modulo (x8+x4+x3+x+1),
then we multiply the result by a fixed matrix and add a fixed
polynomial (an affine transformation). The affine transfor-
mation is defined by:
2
66666666664

y0
y1
y2
y3
y4
y5
y6
y7

3
77777777775

=

2
66666666664

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

3
77777777775

�

2
66666666664

x0
x1
x2
x3
x4
x5
x6
x7

3
77777777775

+

2
66666666664

1
1
0
0
0
1
1
0

3
77777777775

The inversion and affine transformations create a substitu-
tion table (S-box).
The InvByteSub transformation is obtained by the in-
verse, affine mapping followed by taking the inversion over
GF(28).
The inverse affine transformation and inversion create an
inverse substitution table (InvS-box).
The effect of the ByteSub (InvByteSub) transformation on
the state is presented in Fig. 4.

Fig. 4. The ByteSub (InvByteSub) transformation.

2.2. ShiftRow (InvShiftRow) transformation

In the ShiftRow transformation the bytes in the rows of the
state are cyclically shifted over different offsets according
to the following rule. Bytes in the first row are not shifted,
in the second are shifted by 1 byte, in the third by 2 bytes,
and in the last one by 3 bytes to the left (Fig. 5).
In the InvShiftRow, bytes in the first row are not shifted, in
the second are shifted by 3 bytes, in the third over 2 bytes
and in the last one by 1 byte to the left (Fig. 6).

81

Piotr Mroczkowski

Fig. 5. The ShiftRow transformation.

Fig. 6. The InvShiftRow transformation.

2.3. MixColumn (InvMixColumn) transformation

In the MixColumn transformation, the bytes located in
the columns of the state, are considered as coefficients
of polynomials of degree less then 4 over GF(28) field
and multiplied modulo (x4 + 1) with a fixed polynomial
c(x) = ‘03’x3 + ’01’x2 + ’01’x + ’02’, where ‘03’ de-
notes a hexadecimal value. Figure 7 illustrates the effect of
the MixColumn transformation on the state.
In the InvMixColumn transformation, the polynomi-
als of degree less then 4 over GF(28), which coef-
ficients are the elements in the columns of the state,
are multiplied modulo (x4 + 1) by a fixed polynomial
d(x) = ‘0B’x3 + ’0D’x2 + ’09’x + ’0E’, where ‘0B’,
’0D;’09’, ’0E’ denote hexadecimal values. Figure 7 il-
lustrates the effect of the InvMixColumn transformation on
the state.

Fig. 7. The MixColumn (InvMixColumn) transformation.

2.4. The AddRoundKey transformation

In the AddRoundKey mapping, the 128-bit round key,
which is derived from the key by the KeyExpansion al-
gorithm, is bytewise XORed with the state.

2.5. Key Expansion

The round key (subkey) of each round is derived from
the main key using the KeyExpansion algorithm [1]. The
encryption (decryption) algorithm needs eleven 128-bit
subkeys, which are denoted K0 � K10 (the first sub-
key K0 is the main key). The round keys are de-
rived as follows: let us denote the bytes of the ex-
panded key by B0; B1; B2; : : : ; B175 where the main key
is B0; B1; B2; : : : ; B15 (K0 = B0; B1; : : : ; B15). Then the
expanded key is derived from the formulae:

Bn=

8>>>><
>>>>:

Bn�16� SubByte(Bn�3)�RC[n
16]; if (n mod 16) = 0;

Bn�16� SubByte(Bn�3); if (n mod 16) 2 f1;2g;

Bn�16� SubByte(Bn�7); if (n mod 16) = 3;

Bn�16� Bn�4; otherwise;

where:
SubByte(B) is a function that returns a byte, which is the
result of applying the ByteSub transformation for one byte;
RC[i] – an element over GF(28), which represents round
constants and is defined by:
RC[1] = ’01’;
RC[i] = x � (RC[i�1]) = x(i�1).
Round keys are taken from the expanded key in the fol-
lowing way: the first subkey consists of the first 16 bytes
(K0 = B0 : : : B15), the second one of the following 16 bytes
(K1 = B16 : : : B31), and so on.

3. Field programmable gate array
implementation of the Rijndael cipher

3.1. Encryption and decryption units

The encryption algorithm implementation is designed to
perform the subkey generation and the round calculations
in parallel. Firstly, the initial (Round 0) round (input data

Fig. 8. The encryption unit.

82

Implementation of the block cipher Rijndael using Altera FPGA

Fig. 9. The decryption unit.

EXOR-ed with the main key) is performed and the sub-
key for the round number one is calculated. Then the
round transformations are performed and the subkey for
next round is calculated. The advantage of such design is
that there is no need for storing the subkeys; they are calcu-
lated on the fly and discarded after using. The encryption
unit is presented in Fig. 8.
The decryption algorithm is implemented in the simi-
lar way. Firstly, the tenth subkey (K10) is calculated,
then calculations of the inversion of the final round
(InvRound 10) and the subkey generation for the next de-
cryption round (K9) are performed simultaneously. The
decryption unit is presented in Fig. 9.

3.2. Round transformation implementations

Basic encryption round consists of the following transfor-
mations: ByteSub, ShiftRow, MixColumn, AddRoundKey
(the final encryption round does not contain the MixCol-
umn transformation). The round implementation is de-
signed to work both in basic round mode and in the final
round mode. The encryption round scheme is presented in
Fig. 10.
The basic decryption round (which is the inversion of the
basic encryption round) consists of the following trans-
formations: AddRoundKey, InvMixColumn, InvShiftRow,
InvByteSub. The first decryption round (InvRound 10 –
which is the inversion of the final encryption round) does
not contain the InvMixColumn transformation. The de-
cryption round implementation is designed in similar way
as the encryption round and its scheme is presented in
Fig. 11.
The nonlinear ByteSub (InvByteSub, respectively) trans-
formation contains 16 S-boxes (InvS-boxes, respectively),
working in parallel. The 128-bit input block is divided
into 16 bytes. Each byte forms the input data of the S-box
(InvS-box, respectively). The byte outputs of all S-boxes

Fig. 10. The encryption round.

Fig. 11. The decryption round.

(InvS-boxes, respectively) are then concatenated and form
the output of the ByteSub (InvByteSub, respectively) trans-
formation.

The S-box transforms the input byte to the inverse byte
by performing the arithmetic operation defined over the fi-
nite field GF(28) (the value ‘00’ is mapped in ‘00’) and
then forms the input for the affine transformation. For in-
verse transformation, the process runs in the opposite di-
rection. The S-box (InvS-box, respectively) was imple-
mented by using the build-in EAB memory which emulate
the ROM memory with the configuration of 256�8 bits.
The implementation of the S-box needs one EAB block, i.e.
2048 bits. The access memory time in this implementation
is approx. 18 ns.

83

Piotr Mroczkowski

In the ShiftRow (InvShiftRow, respectively) transformation,
the 128-bit input block is divided into 16 bytes denoted as
Aij[7..0], where i,j 2 f0;1;2;3g. The bytes Aij[7..0] are the
elements of the table representing the intermediate state of
encrypted (or decrypted) block. The output of the Shift-
Row (InvShiftRow) transformation is composed of the bytes
Bij[7..0], where i,j 2 f0;1;2;3g. The implementations of
these transformations perform the byte shift, as shown in
Figs. 12 and 13.

Fig. 12. The ShiftRow transformation.

Fig. 13. The InvShiftRow transformation.

In the MixColumn (InvMixColumn, respectively) transfor-
mation, the 128-bit input block is divided into 16 bytes
denoted as Aij[7..0], where i,j 2 f0;1;2;3g, and the output
bytes are denoted as Bij[7..0]. The bytes Aij[7..0], while the
index j is fixed and i 2 f0;1;2;3g, correspond to the col-
umn of the table representing the intermediate state of the
transformed block and they are viewed as the coefficients
of polynomial over the field GF(28) of degree smaller then
four. This polynomial is multiplied by the fixed polynomial
c(x) = ’03’x3 + ’01’x2 + ’01’x + ’02’ modulo (x4+1). In
the case of decryption the inverse polynomial d(x) is used:
d(x) = ’0B’x3 + ’0D’x2 + ’09’x + ’0E’. The results of this
modular multiplication form the column Bij[7..0] (index j
is fixed and i 2 f0;1;2;3g) of the transformed state. These
transformations were implemented as bit-oriented EXOR
operations.
The AddRoundKey transformations have the block text as
the input value and EXOR-ed it with the value of the subkey
of the given round.
The logical unit denoted as KeyRound (InvKeyRound, re-
spectively) calculates the subkeys of subsequent rounds of
the encryption (decryption, respectively) algorithm. It is

controlled by signals from the logic unit EncryptionControl
(DecryptionControl, respectively) and input values of the
subkey. The functional description of the logical units Key-
Round and InvKeyRound are depicted in Figs. 14 and 15,
respectively.

Fig. 14. The logical unit KeyRound.

Fig. 15. The logical unit InvKeyRound.

The round constants D[31..0] (see Figs. 14 and 15) have
values depending on the round number, as presented in
Table 1.

Table 1
The values of the constants D[31::0]

The encryption The decryption D[31..0](hex)

round number round number

1 10 01000000

2 9 02000000

3 8 04000000

4 7 08000000

5 6 10000000

6 5 20000000

7 4 40000000

8 3 80000000

9 2 1B000000

10 1 36000000

84

Implementation of the block cipher Rijndael using Altera FPGA

The logical unit SubRotByte has 32 inputs and 32 outputs.
It performs two operations: RotByte and SubByte. The
RotByte transformation is a cyclic bytes rotation in 32-bit
word by one byte position to the left. The SubByte trans-
formation consists of four parallel S-boxes applied to the
32-bit input word.

3.3. Implementation results

The encryption and decryption algorithms have been
implemented in two separable chips denoted as
EPF10K250AGC599-1 (this type of Altera chip has
20 blocks of the EAB memory which can be used to
implement 256�8 bit ROM configuration). The results of
logic circuit synthesis are given in Table 2.

Table 2
The logic circuit synthesis results for encryption

and decryption process

The logical Input Output Bidir Memory LCs

unit pins pins pins [bit]

Encryption � � � 32768 388

round

KeyRound � � � 8192 138

The other logic � � � 0 506

blocks

Encryption 258 129 0 40960 1032

Decryption � � � 32768 798

round

InvKeyRound � � � 8192 139

RoundKey � � � 0 1475

The other logic � � � 0 473

blocks

Decryption 258 129 0 40960 2885

It appears from the table that the decryption algorithm is
more complicated than the encryption one (see also Figs. 8
and 9). In result, the logic circuit synthesis for the de-
cryption unit requires over twice as many macrocells the
encryption unit. It is worth to observe that before the main
part of decryption process the tenth subkey should be calcu-
lated. The RoundKey unit performed this operation requires
ca 1475 macrocells. Moreover, the decryption round needs
twice as many macrocells as the encryption round because
the polynomial d(x) used in InvMixColumn transformation
is more complicated then the polynomial c(x) used in Mix-
Column transformation.
The speed of encryption and/or decryption implementation
depends mainly on the frequency of the external clock ap-
plied to the chip. According to the characteristics the min-
imal clock cycle is 22 ns (45.45 MHz) for the encryption
chip and 24 ns (41.66 MHz) for the decryption chip. The

encryption or decryption operation is performed in 21 clock
cycles. In the implementation of the Rijndael algorithm
with 128-bit encrypted blocks and 128-bit key presented
here, the speed of 268 Mbps for encryption and 248 Mbps
for decryption has been achieved (Table 3).

Table 3
The speed of encryption and decryption process

Hardware implementation The encryption The decryption

(Altera) unit [Mbps] unit [Mbps]

The process speed 268 248

Hardware implementations of the Rijndael, based on Al-
tera FLEX FPGA devices were also developed by two other
groups working independently: Microsonic [2] and GMU
(George Mason University) [3]. The results of implement-
ing Rijndael using FLEX 10K130E and FLEX 10K250A
devices are summarized in Fig. 16.

Fig. 16. Comparison of chosen hardware implementations of the
Rijndael cipher.

The Figure shows similar performance achieved by GMU
group and the Author. However, this is not the case when
comparing performance of implementations using FLEX
10K130E devices achieved by Microsonic and GMU group.

4. Conclusions

The Rijndael cipher seems to be very suitable for hard-
ware implementations using Altera FLEX 10K devices. Es-
pecially, the EABs fit very well for implementing large
S-boxes, such as 8� 8 S-boxes used in Rijndael. The
achieved speed is about four times greater than for soft-
ware implementations reported. The further progress can
be possibly made with the pipeline architecture.

References
[1] J. Daemen and V. Rijmen, „AES proposal: Rijndael”. Sept. 1999.

[Online]. Available WWW:
http://www.esat.kuleuven.ac.be/�rijmen/rijndael/

[2] V. Fischer, „Realization of the round 2 AES candidates using Altera
FPGA”. March 2000. [Online]. Available WWW:
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html

85

Piotr Mroczkowski

[3] K. Gaj and P. Chodowiec, Implementations of the AES Candidate
Algorithms using FPGA Devices. Technical Report. George Mason
University, April 2000.

[4] J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and
E. Roback, Status Report on the First Round of the Development
of the Advanced Encryption Standard. NIST Report, August 1999.

[5] V. Rijmen, the private communications,
e-mail: vincent.rijmen@esat.kuleuven.ac.be.

Piotr Mroczkowski was born on May 20, 1975. He re-
ceived the M.Sc. degree in computer systems and cryp-
tology from Military Academy of Technology, Warsaw,
Poland, in 2000. He is currently working in Military Com-
munication Institute.
e-mail: mroczkow@wil.waw.pl pmrocz@wp.pl
Military Communication Institute
05-130 Zegrze Płd., Poland

86

