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Abstract — Linear prediction is the cornerstone of most
modern speech compression algorithms. This paper proposes
modifying the calculation of the linear predictor coefficients
to incorporate a weighting function based on the simultaneous
masking property of the ear. The resultant prediction filter
better models the perceptual characteristics of the source and
results in the removal of more perceptually important infor-
mation from the input speech signal than a standard LP fil-
ter. When employed in a low rate speech codec the net effect
is an improvement in subjective quality, with no increase in
transmission rate and only a modest increase in computational
complexity.
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1. Introduction

Linear prediction (LP) forms an integral part of almost all
modern day speech coding or speech compression algo-
rithms. The primary reason for this popularity is that lin-
ear prediction provides a relatively simple and well founded
technique for removing the redundancy from a speech sig-
nal, thus aiding in compression or bit rate reduction. Linear
prediction determines and removes redundancy by remov-
ing the short term correlations of the input signal.
Whilst linear prediction is widely used in speech coding it
was not originally developed specifically for speech coding
but rather for the more general field of signal processing.
The result of this is that the linear predictor used for speech
coding does not exploit many of the well known perceptual
properties of human hearing. These perceptual properties
include the nonlinear frequency response of the ear and si-
multaneous masking, amongst others and are well defined
in texts such as [1]. Previous authors [2�4] have incorpo-
rated some perceptual properties into the calculation of the
linear predictive filter. These authors have reported good
results, primarily by warping the frequency axis to simulate
the nonlinear frequency response of the ear prior to calcu-
lating the filter parameters. Hermansky [4] also included
equal loudness perception and the intensity-loudness power
law into the calculation of the filter. Whilst these authors
reported good results none of them attempted to incorporate
simultaneous masking into the filter calculation.
Simultaneous masking occurs in the frequency domain
when a high amplitude sound causes adjacent lower am-

plitude sounds to become inaudible. This property has
been widely used in many audio coding techniques, such
as MPEG4 [5], as a tool to determine the optimal quanti-
zation step size required to code the input and thus allows
perceptually transparent compression of the audio signal.
However, the use of simultaneous masking in speech cod-
ing algorithms has been very limited due to the increased
computational demand required to perform quantization of
the signal in the frequency domain.
This paper proposes a method for modifying the calcula-
tion of the linear prediction coefficients (LPC) to better
model the characteristics of the source. This is achieved
by incorporating a weighting function based on the simul-
taneous masking property of the ear into the calculation of
the LPC. This approach fits the linear predictive spectrum
only to the unmasked samples of the input spectrum. The
motivation for this technique is to ensure no complexity
is wasted modeling the masked regions, thus allowing the
unmasked regions to be better represented. This allows the
filter to remove more perceptually important information
from the signal than the standard technique, with the resul-
tant residual signal consisting of less perceptually important
information. This characteristic allows the subjective qual-
ity of the synthesized speech to be improved for a given
residual quantization scheme. This paper presents results
confirming this characteristic using objective measures and
subjective listening tests.
The paper is organized as follows. In Section 2 an overview
of linear prediction and human auditory perception is de-
tailed. The new linear prediction method is given in detail
in Section 3. Objective and subjective results are provided
in Section 4. Finally, the major points are summarized in
Section 5.

2. Background

2.1. Linear prediction analysis

The use of a linear predictor in speech coding relies upon
the fact that speech can be modeled as the output of a time
varying linear system [6]. The development of this model is
linked to the use of lossless acoustic tubes to represent the
speech production process and is detailed in [6]. Figure 1
represents a simplified representation of this model.
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Fig. 1. Source-system model of speech production.

The transfer function representing the linear system in
Fig. 1 can be described using an all pole (autoregressive
(AR)) system as:

H(z) =
S(z)
E(z)

=
G

1�
p

∑
k=1

akz
�k

; (1)

where p is the order of the filter, G is the gain of the system
and the ak are the predictor coefficients.
The popularity of the AR model stems from the fact that
if a sufficient order is used the filter can accurately model
the speech production system and also the filter parameters
can be calculated in a straightforward and efficient man-
ner [6].
To allow linear prediction the input waveform must be a sta-
tionary random process. However, as speech is a nonsta-
tionary random process some modification is required. It
has been determined that a speech signal is stationary over
a period of approximately 20�30 ms [7]. Thus to utilize
linear prediction in speech coding it is necessary to di-
vide the input speech into frames of approximately 20 ms
length and update the linear prediction coefficients for each
of these frames. A number of methods to solve for the
predictor coefficients to achieve a minimum mean square
error for a given frame have been developed [6]. The most
popular of these is the autocorrelation method and this is
the method used in this paper.
The mean square error (MSE) solution for the stan-
dard LPC’s (ak) can be reduced using the autocorrelation
method [8], to:

R(l) =
p

∑
k=1

akR(l �k) ; l = 1 : : : p (2)

where R() is the autocorrelation function of the input
speech frame. The recursive Levinson-Durbin [9] algo-
rithm is then used to solve for the filter coefficients ak.

2.2. Overview of human auditory perception

The human auditory system is a highly complex sys-
tem. Sounds presented to the ear are not all perceived
equally but are governed by a number of nonlinear oper-
ations. Humans can hear sounds in the range of approxi-
mately 50 Hz � 16 kHz [1], however, these frequencies are
not all perceived with equal sensitivity. This phenomenon
leads to a set of curves called equal loudness curves [1]

which indicate the perceived loudness of a fixed amplitude
tone, as the frequency of the tone is varied. Directly re-
lated to the equal loudness curves is the threshold of hearing
curve. This curve represents the minimum amplitude that
is audible for a given frequency.
The frequency scale of the human ear also acts as a set of
overlapping bandpass filters. These filters are called criti-
cal band filters and the pass band of each individual band
pass filters is termed a critical band. The nature of each
critical band is that all frequencies within a band are per-
ceived equally by the ear [1]. The critical bands are not
of equal width but increase in bandwidth as their center
frequency increases. This results in better frequency reso-
lution at lower frequencies. Scharf [10] proposed that the
critical bands could be adequately represented by a set of
non overlapped rectangular filters. This greatly reduces the
complexity of critical band analysis.
Masking occurs when a loud sound causes other softer
sounds to become inaudible. Two types of masking can oc-
cur, namely simultaneous and temporal masking. Simul-
taneous masking occurs when a low intensity but audi-
ble sound is made inaudible by a higher intensity adja-
cent sound occurring at a simultaneous moment in time.
Temporal masking occurs when a loud tone causes softer
tones occurring before and after the tone to become inaudi-
ble [1].
The masking and equal loudness phenomena have been
researched extensively and have led to the development
of psychoacoustic models that allow the auditory system
to be accurately modeled. Detailed descriptions of these
models can be found in many well recognized texts such
as [1].
Incorporating the perceptual characteristics of the auditory
system into audio and speech coding allows coders to op-
erate more efficiently at reduced bit rates by distributing
the available bits according to the perceptual nature of the
signal. This allows the coder to reproduce a perceptually
unaltered signal at a greatly reduced bit rate when compared
with coders that ignore the perceptual characteristics. An
example of this principle is the MPEG4 [5] audio coding
standard. Perceptual modeling provides the crux of this
coder and allows the coder to produce high quality audio
signals at a relatively low bit rate.

3. Linear prediction incorporating
simultaneously masked spectral

weighting (SMWLPC)

3.1. Motivation

The motivation for this technique was to allow a simple
and computationally efficient means of better exploiting the
perceptual characteristics of human hearing in low rate LP
based speech codecs. Traditionally, perceptual distortion
is only exploited in low rate LP speech coding by using
a noise shaping weighting filter [11] when coding the resid-
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ual signal. This filter is used to weight the error signal
when searching for the optimal excitation signal to repre-
sent the LP residual. This weighting filter de-emphasises
the frequency regions corresponding to the formants of the
input speech. This de-emphasis exploits the masking char-
acteristic of the ear in that larger errors are impercepti-
ble in louder sections of the input speech than in quieter
sections. Whilst the use of this weighting filter has pro-
duced good results [12] and been widely accepted, it uses
only a basic model of the perceptual characteristics of the
ear. Authors such as Sen [13] and Burnett [14] have re-
ported improved performance by employing more sophisti-
cated perceptual models when searching for the excitation
signal that minimizes the perceptually weighted MSE to the
LP residual. The improved results reported by [13] and [14]
have been at the expense of a large increase in computa-
tional complexity. This increase in complexity is due to the
fact that each perspective excitation signal tested must be
transformed to the frequency domain and the error signal
then multiplied with the respective perceptual model.
SMWLPC attempts to exploit more sophisticated percep-
tual models than the filter proposed in [11]. Incorporat-
ing these models into the LP filter allows SMWLPC to
remove more perceptually important information from the
input signal than standard LPC thus resulting in a residual
signal that contains less perceptually important information.
By exploiting the perceptual models upfront in the LP fil-
ter, computational complexity is dramatically reduced when
compared to methods where the complex perceptual mod-
els are used when quantizing the LP residual [13]. This
reduction is due to the fact that only a single transform
and weighting multiplication per frame of input speech is
required. Also by incorporating the complex perceptual
models into the LPC, SMWLPC can be easily adapted to
any existing LP based speech coding algorithm by simply
replacing the standard LP filter.
The method selected limits the increase in computational
complexity over standard LP filtering by maintaining the
use of traditional recursive solutions in calculation of the
LPC’s. This also maintains a stable autoregressive structure
that can be directly employed in any LP based speech codec.
Standard linear prediction minimizes the error equally
across the entire frequency spectrum of the input speech.
This approach fails to exploit many of the well known per-
ceptual properties of hearing. The SMWLPC technique
employs a method of incorporating simultaneous masking
into the calculation of the linear prediction coefficients.
This allows the error to be minimized only in the sections
of the input spectrum that are unmasked. This is achieved
by first determining which frequencies in the input signal
are simultaneously masked and then ignoring them in the
calculation of the LPC.

3.2. Method

A block diagram of the SMWLPC method is shown in
Fig. 2. Initially the power spectrum (frequency domain)

of the input speech is calculated via a fast Fourier trans-
form (FFT). A masking threshold function is then calcu-
lated for each discrete frequency. The calculation of this
function is detailed in Section 3.3. The masked input fre-
quencies are then determined. This is achieved by compar-
ing the power spectrum of each discrete frequency to the
masking threshold for that frequency. If the power spec-
trum is less than the masking threshold or the threshold
of hearing, the frequency is deemed masked. A modified
power spectrum is then produced by taking those frequen-
cies deemed masked and zeroing their value. This method
is equivalent to generating a spectral weighting function
whose values are unity for unmasked frequencies and zero
for masked frequencies or frequencies whose power is be-
low the threshold of hearing and then multiplying the input
spectrum by this weighting function. The result is a power
spectrum that contains only unmasked information. Recog-
nizing that the autocorrelation of a discrete stochastic sig-
nal is the inverse discrete Fourier transform (IDFT) of the
power spectrum, the perceptually altered power spectrum
is transformed to the autocorrelation function of the un-
masked speech. A perceptually altered linear predictor can
then be easily calculated using the well known Levinson-
Durbin recursion [9].

3.3. The masking threshold function

The psychoacoustic model used to calculate the masking
threshold function is based on that proposed in [15] with
the parameters modified to optimize the performance of
the SMWLPC. A block diagram of the method is shown
in Fig. 3.
The input power spectrum is segmented into N non over-
lapped critical bands. Where N represents the number of
critical bands that exist within the bandwidth of the input
signal. For narrowband speech the input bandwidth is ap-
proximately 4 kHz and the number of critical bands is 18.
The critical bands are described in Section 2.2 and are
given in detail in [10]. The power spectrum lines within
each critical band are summed together, this gives an en-
ergy estimate for each critical band. The combination of
the N energy estimates is called the band energy waveform
as referred to in Fig. 3.
To simulate the masking effect between critical bands, the
band energy waveform is provided as the input to an inter-
band masking calculator. The inter-band masking calcula-
tor convolves the band energy waveform with a spreading
function (shown in Fig. 4) to produce a spread band en-
ergy waveform. The spreading function shown in Fig. 4
is identical to that given in [1] and has been derived from
exhaustive psychoacoustic testing.
The spread band energy waveform is then used to determine
an initial masking threshold function (IMTF) according to
the following formula:

IMTF(i) = Energy(i)�O(i) ; (3)
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Fig. 2. Functional block diagram of SMWLPC.

Fig. 3. Block diagram of the masking threshold calculation.

Fig. 4. Inter-band spreading function.

where Energy(i) represents the total energy of the ith band
of the spread band energy waveform measured in decibels;
O(i) is given by:

O(i) = 50; α < 0:2
O(i) = α(β + i)+(1�α)γ ; α � 0:2

(3.1)

where:

α = min

�
SFM

SFMmax
;1

�
; (3.2)

SFM= 10 log
Gm

Am
; (3.3)

SFMmax is an empirically determined value; Gm is the ge-
ometric mean of the power spectrum; Am is the arithmetic
mean of the power spectrum; β and γ are empirically de-
termined constant values that represent the tone masking
noise and noise masking tone thresholds respectively.
The value of SFMmax suggested in [15] was �60 dB how-
ever, upon testing with a pure sine wave at 1 kHz the re-
quired SFMmax to give an alpha value of 1 was determined
to be �40 dB. In Eq. (3.1) β and γ are set to 14.5 and 7
respectively; α is a measure of the flatness of the power
spectrum, a value of 1 indicates a purely tonal signal and 0
represents pure noise. Equation (3.1) utilizes α to ensure
that the correct mix of noise and tone thresholds is se-
lected. The value for O(i) in Eq. (3.1) differs greatly from
that suggest in [15] where the definition is given as:

O(i) = α(β + i)+(1�α)γ for all α : (4)

Setting Eq. (3.1) to a very large constant value for a very
noise like signal (α < 0:2) ensures that for this type of input
the IMTF is made small and designates virtually the entire
spectrum unmasked. This overcomes the situation where
Eq. (4) designates virtually the entire spectrum masked
for such a signal thus leaving too few samples to success-
fully generate the filter coefficients. This characteristic was
reported to cause distortions in the reconstructed speech
in [16] and the modification overcomes this problem. Also
in Eq. (4) γ = 5:5, contrasting with the increased γ = 7 in
Eq. (3.1). This modification enhances the performance of
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SMWLPC and was determined empirically through infor-
mal listening tests.

Fig. 5. Example of the masking threshold function.

The IMTF is then adjusted by the threshold normalizer to
account for misestimation of the Energy(i) values resulting
from the shape of the spreading function. This results in
a masking threshold function an example of which (with
the corresponding power spectrum) is shown in Fig. 5.

3.4. Mathematical analysis of SMWLPC

SMWLPC is now analyzed mathematically to explore and
contrast the differences between this approach and stan-
dard LPC.
The MSE solution for the standard linear predictive coef-
ficients using the autocorrelation method was given in (2).
As the input frame of speech is assumed to be a stationary
random process the autocorrelation values (R(n)) can be
computed via an inverse discrete Fourier transform of the
power spectral density P(k) [17]:

R(n) =
1
N

N�1

∑
k=0

P(k)ejwkn=N n= 0 : : : N�1: (5)

If the calculation of R(n) in (5) is modified to only operate
on the perceptually important (unmasked) values of k then
the autocorrelation becomes:

R(n) =
1
L ∑

unmasked l

P(l)ejw ln=N n= 0 : : : N�1; (6)

where L represents the number of unmasked frequency
bands of N.
Substituting the autocorrelation sequence (6) into (2) gives:

1
L ∑

unmasked l

P(l)ejw ln=N =

=
p

∑
k=1

ak

 
1
L ∑

unmasked l

P(l)ejwl(n�k)=N

!
; n= 1: : : p: (7)

It is clear that the above equations solve the mean square
solution for ap using only the unmasked values of k. Also
as 1

L is a common factor it can be removed from the equa-
tions. This results in each summation term being equal to
only the sum of the unmasked values of P(K) multiplied by
the respective harmonic component, which is identical in
value to the sum over all k with the masked values of P(K)
set to zero.

The above analysis demonstrates that SMWLPC fits only to
unmasked regions and simply ignores the masked regions
in its calculation of the LP coefficients. The fact that only
the unmasked regions are modeled allows SMWLPC to
achieve a better fit to these regions as complexity is not
wasted attempting to model masked regions.

An alternate approach to examining the effect of the
SMWLPC is to view the predictor error in the frequency
domain. This can be expressed as [6]:

E =
G2

2π

πZ

�π

jS(ejw)j2

jH(ejw)j2
dw: (8)

Equation (8) shows that minimizing E is equivalent to min-
imizing the ratio of the input energy spectrum (S(ejw)) to
the squared magnitude of the frequency response (H(ejw))
of the model. It can be seen that zeroing the power spec-
trum (numerator of equation) at any particular frequency,
causes the difference between the model and the spectrum
at that frequency to contribute nothing to the integral of
the ratio over the entire spectrum. The result is that the
zeroed (masked) regions have no effect in calculating the
linear predictive coefficients.

3.5. Computational complexity

The computational complexity of SMWLPC is increased
when compared to the standard LPC. However, this includes
calculation of the psychoacoustic model parameters which
remain available for other coding tasks such as quantization.
In standard LPC, calculation of the autocorrelation requires
(p+1)Nw operations [6], where p is filter order and Nw is
the window size. The SMWLPC uses an FFT and requires
Nf log2 Nf multiplications plus Nf =2 comparisons to cal-
culate the autocorrelation function, where Nf is the FFT
length used. The SMWLPC also requires approximately
2Nf +700 operations in calculation of the psychoacoustic

parameters. Both methods require approximately p2 op-
erations to solve the matrix equations. The configuration
in this paper used Nw = 240, p= 10 and Nf = 512. The
complexities in this case are SMWLPC = 5892 operations
and standard LPC = 2740 operations. The computational
demand of SMWLPC can be made approximately equal to
that of the standard LPC by using an FFT of length 256.
This size transform has little effect on the performance of
SMWLPC for 4 kHz band limited speech.
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3.6. Data windowing requirements

The psychoacoustic model given in [15] was based on audio
signals sampled at 32 kHz or greater. Due to this sampling
rate and also the ability to accept large delays in audio
coding as they seldom operate in real time, the transform
length is set to 2048. Using this length window produces
frequency bins that are separated by less than 16 Hz and as
the lowest frequency in the audio range is > 50 Hz, spectral
leakage between frequency bins [17] has little effect even
if a rectangular window were used. To adapt this model
for use in narrowband speech coding with a sampling rate
of only 8 kHz and a constraint on the maximum delay due
to the need to operate in real time, the number of samples
in the window is greatly reduced. This short transform
length causes the frequency separation between adjacent
frequency bins to become almost equal to the lowest pitch
value for voiced speech of approximately 50 Hz. This char-
acteristic causes spectral leakage across the frequency bins
to have a large effect for low pitch speech. The leakage can
act as an initial spreading function for low pitched speech
and thus causes the masking threshold generated for this
speech to become distorted. The authors have found that
if a Hamming window of length 240 samples is used the
effects of leakage are minimized and results have shown
the masking threshold to be consistent across a range of
pitch values. This window length is towards the upper lim-
its used in speech coding but is common in low rate speech
coders such as the FS1016 [18] 4.8 kbps CELP coder. If
a shorter window length is used the spectral leakage can
cause the masking thresholds to become inconsistent across
the range of possible pitch values.

4. Experimental results

4.1. Objective results

4.1.1. LPC spectral estimate

The spectra of the linear predictive filter provides a good es-
timate of the spectra of the input speech. This relationship
is clearly evident when examining Eq. (8) which shows that
the predictor coefficients are calculated by minimising the
ratio of squared error between the speech and filter spec-
tra. This property of linear predictive filtering is widely
exploited in harmonic coders to provide a bit rate effective
means of transmitting the spectral envelope.
To examine the effect of SMWLPC on the accuracy of the
spectral estimate, 10th order LPC and SMWLPC analy-
ses were performed for a number of voiced and unvoiced
speech segments. The spectra produced by both meth-
ods were then compared to the actual speech spectrum.
A typical example of the spectrum produced is shown in
Fig. 6. The masked frequencies are indicated by shading.
It is clearly evident in Fig. 6 that the SMWLPC spectra is
a more accurate representation of the input speech spectra
in unmasked formant regions. As can be seen at around
800 Hz in Fig. 6 the increased accuracy often results in the

Fig. 6. Comparison of SMWLPC and standard LPC spectral
estimates.

SMWLPC modeling 2 distinct formant peaks of the input
spectrum whilst the standard LPC produces only a single
peak between the two peaks of the input spectrum. This
better modeling of the perceptually important formant re-
gions allows SMWLPC to remove more of this perceptually
important information from the input speech that a standard
LP filter.
To obtain an objective measure for the amount of ex-
tra perceptually important information that is removed by
SMWLPC the average weighted unmasked residual energy
(WURE) was calculated using:

WURE=
1
L ∑

unmasked l

w(l)Pr(l) ; (9)

where Pr() is the PSD of the residual signal, w() is
a weighting function equal to a 40th order LP spectrum
of the input speech normalized to have unity maximum
and L is the total number of unmasked spectral lines. The
use of the weighting function w() in Eq. (9) places greater
emphasis on the perceptually important formant regions of
the input spectrum.
10th order LP analysis using both SMWLPC and standard
LPC was performed on 10 input sentences (5 male/5 fe-
male). Frames of length 200 samples were used in the anal-
ysis with a linear predictive Hamming window of 240 sam-
ples having an overlap of 20 samples between frames. The
WURE of each frame with an α (from Eq. (3.2)) greater
than 0.2 was calculated via Eq. (9) and the values averaged
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across the entire sentence. An α greater than 0.2 was used
as these are the frames for which SMWLPC differs from
standard LPC as explained in Section 3.3. The results of
the analysis are shown in Table 1.

Table 1
Percentage greater WURE removed by SMWLPC

Sentence Speaker SMWLPC %
number gender improvement

1 Male 4.7
2 Male 17.52
3 Male 3.95
4 Male 3.55
5 Male 10.5
6 Female 2.87
7 Female 3.84
8 Female 5.82
9 Female 2.51

10 Female 3.13

The results in Table 1 show the average percentage reduc-
tion in WURE for SMWLPC compared to standard LP for
each input sentence. The results demonstrate that more per-
ceptually important information was removed by SMWLPC
for each of the input files. The average improvement for
all sentences was 5.84%, this represents a significant im-
provement and indicates that SMWLPC removes signifi-
cantly more perceptually important information from the
input signal than standard LPC.
A typical example of the difference between the weighted
residual power spectrums for a standard LP filter and the
SMWLPC filter over a typical speech segment is shown
in Fig. 7. A positive value indicates that the SMWLPC
residual has greater power and a negative signal indicates

Fig. 7. Difference in weighted residual energy.

that the standard LPC residual is of higher power. The
masked frequencies are shaded. Figure 7 shows that in
ranges of frequency that are largely free of masking or
exhibit regular spaced masking (strongly voiced) such as
between 0 Hz and 1500 Hz, the SMWLPC residual has
lower power than the standard LPC residual. Also in re-
gions that are heavily masked such as between 2700 Hz
and 3500 Hz the SMWLPC residual has greater magnitude
than the standard LPC residual. These results reinforce the
claims that the SMWLPC removes more of the perceptu-
ally important unmasked information from the signal than
a standard LPC.

4.1.2. Quantization properties

The direct form LP coefficients shown in the calculations of
Section 2.1 are susceptible to quantization noise [6]. Due
to this characteristic they are rarely used in speech cod-
ing [19]. The most popular representation of the LP coef-
ficients are line spectral frequencies (LSF). The LSF’s are
calculated from the direct form coefficients and their char-
acteristics make them suitable for quantization. These char-
acteristics include monotonically increasing order, strong
intra and inter frame correlation and clustering together at
formant frequencies [7].
To examine the effect that SMWLPC has on the correlation
properties of the LSF’s, the inter and intra frame correla-
tion for both standard and SMWLPC LSF parameters were
compared. This comparison showed no significant differ-
ences in the correlation values between the two methods.
To verify this finding in a practical situation a vector linear
predictor as proposed in [20] was calculated for both the
standard LPC and SMWLPC LSFs respectively. The pre-
dictor produced is a square matrix that uses the LSF vector
from the previous frame to estimate the LSF vector for
the current frame by exploiting both intra and inter frame
correlation. The spectral distortion between the predicted
vector and the actual vector was calculated for each frame
of a test sequence of 1000 frames and was then averaged
across all frames. The spectral distortion was calculated
via Eq. (10) and the results are shown in Table 2.

sd=

vuut 1
N
2

N
2�1

∑
k=0

�
10 log

jS(k)j2

jH(k)j2

�2

; (10)

where N is the FFT length, S(k) is the actual LPC spectrum
and H(k) is the predicted LPC spectrum.

Table 2
Average spectral distortion for the predicted LSF vector

Average spectral distortion [dB]
SMWLPC 2.38
STD LPC 2.31

The results shown in Table 2 indicate that the spectral dis-
tortion was virtually identical for both LP methods. The
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difference of 0.07 dB is statistically insignificant as the
resultant error would then be vector quantized and a fi-
nal spectral distortion of less than 1 dB is known to pro-
duce transparent results for speech coding [21]. Achiev-
ing a virtually identical spectral distortion indicates that in
practical situations SMWLPC maintains the high inter and
intra frame correlation values of standard LPC LSF’s and
thus are suitable for high compression quantization schemes
such as vector linear prediction.

4.2. Subjective listening tests

To test the performance of the SMWLPC in existing speech
codecs, a version of the 4.8 kbps FS 1016 CELP coder [18]
and a WI [22] coder operating at 2 kbps [16] were modified
to use the SMWLPC in place of the standard LPC. The mo-
tivation for selecting the CELP and WI coders was to test
the performance of SMWLPC in structures that code the
LP residual signal in a closed loop and open loop method
respectively. As the WI coder uses vector quantization of
the LSF parameters the coder was set to operate with non
quantized LSF’s. This removed the need to retrain the LSF
codebook for the SMWLPC and also ensured an unbiased
evaluation of SMWLPC’s effect on the perceptual content
of the residual signal, with no effect from quantization er-
rors of the LPC parameters. This modification was not
necessary for the CELP coder as it uses scalar quantization
of the LPC parameters which were found to match both the
standard LPC and SMWLPC. All other parameters includ-
ing codebooks were left unaltered.
Each of the coders was used to generate synthesized speech
for 10 input speech sentences (5 male, 5 female) from
the TIMIT database using both the standard LPC and
SMWLPC. Subjective forced A/B comparison testing com-
prising 20 untrained listeners was conducted. To avoid sta-
tistical bias in the results, each sentence pair was played
twice in each test with the order of the sentences being
reversed. Thus the total test comprized the comparison of
some 800 sentence pairs. The results are shown in Tables 3
and 4.

Table 3
A/B comparison results for the FS1016 CELP coder

Speaker gender SMWLPC [%] STD LPC [%]
Female 59.5 40.5
Male 53.5 46.5
Total 56.5 43.5

An alternative view of the results is to look at the major-
ity listener preference for the particular sentences. These
results are shown in Table 5.
The results clearly indicate a preference for the SMWLPC
coded speech in all instances and for both coders. This
clear preference is despite the fact that the coding struc-
tures for both coders were left unaltered. Modifying the

Table 4
A/B comparison results for the WI coder

Speaker gender SMWLPC [%] STD LPC [%]
Female 54.5 45.5
Male 57.5 42.5
Total 56 44

Table 5
Majority preferred sentences

SMWLPC STD LPC No preference
[%] [%] [%]

CELP 70 30 0
WI 60 20 20
Total 65 25 10

quantization procedures for the residual signal to suit the
SMWLPC characteristics by, for example, retraining code-
books and introducing search weighting functions that suit
the SMWLPC characteristics such as that proposed in [13]
could be expected to show further substantial improvements
in the performance of the coders when using SMWLPC.
It is interesting to note that for the CELP coder the prefer-
ence for female speakers using SMWLPC was higher than
for males and for the WI coder this was reversed. It is
a well known property that CELP coders sound better for
male speakers due to the retention of phase (temporal) in-
formation but poor modeling of the harmonic structure in
the coding process [23]. Conversely harmonic type speech
coders such as WI coders are better suited to female speak-
ers due to the retention of the harmonic structure but loss
of the phase information [23]. It appears that by remov-
ing more of the perceptually important information from
the input speech before the residual is coded, SMWLPC is
able to overcome some of the short comings of a particular
low rate coding algorithm.
The results presented have extended and support those re-
ported in [16] and [24] where a significant preference for
SMWLPC coded sentences was reported. In [16] mean
opinion score (MOS) testing was conducted using a 2 kbps
WI coder and the results showed an improvement in MOS
score from 3.31 to 3.45 when the standard LPC was re-
placed by SMWLPC.

5. Conclusion

A new technique which modifies the calculation of the LPC
to better model the source for low rate speech coding has
been developed. The technique involves the use of a psy-
choacoustic model to determine the simultaneously masked
frequencies and also the frequencies whose power falls be-
low the threshold of hearing. This information is then used
to weight the power spectrum of the input speech, produc-
ing a modified power spectrum that contains only unmasked
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information. A modified autocorrelation function is then
generated via a DFT operation and standard recursive al-
gorithms are used to solve for the LPC. Retaining the use
of the standard recursive algorithms limits any increase in
computational complexity and also ensures that a stable all
pole filter is produced.
Experimental results have shown that the technique better
models the spectrum in the unmasked formant regions and
thus removes more of the perceptually important informa-
tion from the input speech signal than a standard LP filter.
Subjective listening tests using both CELP and WI coders
has confirmed that this property improves the perceptual
quality of the synthesized speech for a given residual cod-
ing method.

Acknowledgements

Jason Lukasiak is in receipt of an Australian Postgraduate
Award (Industry) and a Motorola (Australia) partnerships
in research grant. Whisper Laboratories is funded by Mo-
torola and the Australian Research Council.

References
[1] B. C. J. Moore, An Introduction to the Psychology of Hearing. Syd-

ney: Academic Press, 1997.

[2] H. W. Strube, “Linear prediction on a warped frequency scale”,
J. Acoust. Soc. Am., vol. 68, no. 4, pp. 1071–1076, 1980.

[3] Y. Nakatoh, T. Norimatsu, A. Heng Low, and H. Matsumoto, “Low
bit rate coding for speech and audio using mel linear predictive
coding (MLPC) analysis”, in Proc. ICSLP, 1998.

[4] H. Hermansky, “Perceptual linear predictive analysis of speech”,
J. Acoust. Soc. Am., vol. 87, no. 4, pp. 1738–1753, 1990.

[5] “MPEG4”, ISO/IEC FCD 14496-3.
[6] L. B. Rabiner and R. W. Schafer, Digital Processing of Speech Sig-

nals. New Jersey: Prentice Hall, 1978.

[7] A. M. Kondoz, Digital Speech. New York: Wiley, 1995.
[8] J. Makhoul and J. Wolf, “Linear prediction and the spectral analysis

of speech”, BBN report, no. 2304, August 1972.

[9] J. Makhoul, “Linear prediction: a tutorial review”, Proc. IEEE,
vol. 63, pp. 561–580, 1975.

[10] B. Scharf, “Critical bands”, in Foundations of Modern Auditory The-
ory, J. Tobias, Ed. New York: Academic Press, 1970, pp. 159–202.

[11] M. Schroeder and B. S. Atal, “Predictive coding of speech sig-
nals and subjective error criteria”, in IEEE Trans. ASSP, 1979,
pp. 247–254.

[12] P. Kroon and E. F. Deprettere, “A class of analysis by synthesis pre-
dictive coders for high quality speech coding at rates between 4.8 and
16 kbits/s”, IEEE J. Selec. Areas Commun., vol. 62, pp. 353–363,
1988.

[13] D. Sen, D. H. Irving, and W. H. Holmes, “PERCELP – perceptually
enhanced random codebook excited linear prediction”, in Proc. IEEE
W/shop Speech Cod. Telecommun., 1993, pp. 101–102.

[14] I. S. Burnett, “Hybrid techniques for speech coding”, Ph.D. thesis,
University of Bath, 1992.

[15] J. D. Johnston, “Transform coding of audio signals using perceptual
noise criteria”, IEEE J. Selec. Areas Commun., vol. 6, pp. 314–323,
1988.

[16] J. Lukasiak and I. S. Burnett, “Exploiting simultaneously masked
linear prediction in a WI speech coder”, in Proc. IEEE W/shop
Speech Cod., 2000, pp. 11–13.

[17] J. G. Proakis and D. G. Manolakis, Digital Signal Processing. New
Jersey: Prentice Hall, 1996.

[18] National Communication System, details to assist in implementation
of Federal Standard 1016 CELP, Office of the manager National
Communication System, Arlington.

[19] G. S. Kang and L. J. Fransen, “Low-bit rate speech encoders based
on line spectrum frequencies (LSFs)”, NRL report, no. 8857, Naval
Research Lab., Washington D.C., Jan. 1985.

[20] M. Yong, G. Davidson, and A. Gersho, “Encoding of LPC spectral
parameters using switched adaptive inter frame vector prediction”,
in Proc. ICASSP, 1988, vol. 1, pp. 402–405.

[21] K. K. Paliwal and B. S. Atal, “Efficient vector quantisation of LPC
parameters at 24 bits/frame”, IEEE Trans. Speech Audio Proc., vol. 1,
no. 1, pp. 3–14, 1993.

[22] W. B. Kleijn and J. Haagen, “A speech coder based on decompo-
sition of characteristic waveforms”, in Proc. ICASSP, 1995, vol. 1,
pp. 508–511.

[23] J. Skoglund and W. B. Kleijn, “On time frequency masking in voiced
speed”, IEEE Trans. Speech Audio Proc., vol. 8, no. 4, pp. 361–369,
2000.

[24] J. Lukasiak, I. S. Burnett, J. F. Chicharo, and M. M. Thomson,
“Linear prediction incorporating simultaneous masking”, in Proc.
ICASSP, 2000, vol. 3, pp. 1471–1474.

Jason Lukasiak is currently a Ph.D. student in the Institute
for Telecommunications Research at the University of Wol-
longong, Australia. He received a B.E. (Hons.) from the
University of Wollongong in 1998 and immediately com-
menced studying for a Ph.D. He worked for BHP Slab
and Plate products from 1987 to 1997 where his posi-
tions ranged from computer network technician to Electrical
Project Engineer. During this time he studied part time re-
ceiving an electrical trades certificate, advanced certificate
in computer technology and associate diploma of electrical
engineering. Jason’s Ph.D. research topic is scalable speech
compression over a range of bit rates from 1�8 kbps.
e-mail: j101@ouw.edu.au
Whisper Laboratories, TITR
University of Wollongong
Wollongong NSW 2522, Australia

Ian S. Burnett is Director of the Telecommunications Re-
search Centre and a Senior Lecturer at the University of
Wollongong, Australia. He received B.Sc. and M.Eng. de-
grees from the University of Bath, UK in 1987 and 1988,
respectively. From 1987 he was with GEC Marconi Secure
Radio working on digital communications and speech com-
pression. In 1989 he returned to the University of Bath un-
der a Vodafone scholarship, and completed a Ph.D. in “Hy-
brid Techniques for Speech Coding” in 1992. In 1993 he
worked for Loughborough Sound Images on various real-
time signal processing systems, before taking his present
position. His current research interests lie primarily in
speech/audio compression, audio scene analysis and multi-
media. He is currently active in the ISO MPEG standard-
ization concentrating on MPEG-21 and MPEG-7-Audio.
e-mail: j101@ouw.edu.au
Whisper Laboratories, TITR
University of Wollongong
Wollongong NSW 2522, Australia

23


