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Abstract — This paper deals with a new method to design
polyphase spreading sequences for DS CDMA wireless appli-
cations. The method is based on weighting symbols of the or-
thogonal Walsh sequences by the complex factors being sym-
bols of baseband chirp sequences. The resulting sequences
possess good aperiodic correlation properties, while maintain-
ing the orthogonality. Because of the parametric design, the
sequences can be optimized to achieve desired characteristics.
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1. Introduction

Several families of complex spreading sequences have been
proposed in literature, with some of them, e.g. [1] allowing
for a good compromise between autocorrelation (AC) and
cross correlation (CC) properties or even achieving orthog-
onality in the case of perfect synchronization [2]. Because
for the downlink (base station to mobile transmission) the
conditions for synchronous operation can be met, orthog-
onality would allow for cancellation of multi-access inter-
ference (MAI) for the down-link, and for simpler receivers
in mobile terminals. This is not the case for an uplink
transmission, where synchronization at the base station of
arrival times of signals from different mobile terminals is
very difficult, if possible to achieve.
An MAI impact on the system performance has been stud-
ied in [3], and theoretical formulae for an equivalent signal-
to-noise ratio (SNR) approximation are given there. How-
ever, for short spreading sequences, these formulae can be
regarded as very rough estimates, only. A reasonable ap-
proach to compare different sequence sets in such a case
is to obtain error performance simulating the DS CDMA
system under the same assumptions as those used in [3] for
derivation of the SNR formulae.
In the paper, we propose a method to design sets of or-
thogonal polyphase sequences obtained by modification of
orthogonal Walsh sequence. It is achieved by weight-
ing symbols of the Walsh sequences by the complex fac-
tors obtained from the superposition of baseband chirp se-
quences [4]. Because of the parametric design, the Walsh-
chirp sequences can be optimized to achieve the desired
characteristics. In the numerical example, we show that
the designed sequences can possess good aperiodic cross
correlation and autocorrelation properties, enabling an in-
crease in the number of simultaneous users compare to the
number of users achievable, if Gold or Gold-like [5] se-
quences of the similar length are employed.

We also compare the performance of Walsh-chirp se-
quences with the sequences designed using the method de-
scribed in [2]. For the same sequence length of 16, there
are only 8 such sequences and up to 16 sequences using
our method. In addition, the simulated bit-error-rate (BER)
performance, once again indicate superiority of the Walsh-
chirp sequences compared to the sequences designed using
the method described in [2].

2. Poly-chirp sequences

For chirp modulation, an elementary phase pulse is given
by [6]:

qp(t) =

(
t2

2T2 �
t

2T ; 0< t � T

0; otherwise
; (1)

where T is the duration of the pulse. Thus, a baseband
chirp pulse b(t) is of the form:

b(t) =

(
exp[ j 2π hqp(t)] ; 0< t � T

0; otherwise
: (2)

Discretizing the pulse b(t) by substituting n for t, and N
for T , we can write a formula defining a complex polyphase
chirp sequence

�
b̂n(h)

	
=
�
b̂n(h); n= 1; 2; : : : ; N

�
; (3)

where:

b̂n(h) = exp[ j 2π hbn] ; n= 1; 2; : : : ; N (4)

bn =
n2�nN

2N2 ; (5)

with h being an arbitrary nonzero real constant.
The latest result can be generalized to obtain poly-chirp
sequences. In order to do so, let us define a pulse referred
to as a chirp pulse of the order s, if and only if the first
time derivative of its instantaneous frequency (the angular
acceleration) is a step function with the number of time
intervals where it is constant being equal to s. Based on
the above definition, we can derive the formulae for the
elementary phase pulses for baseband chirps of any order.
Again, substituting n for t, and N for T , we can get then
formula defining a complex poly-chirp sequence of order s.
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For example, a double-chirp sequence fdng is given by [4]:

dn =

8><
>:

2n2

N2 �
n
N ; 0< n� N

�2n2

N2 + 3n
N �1; N

2 < n� N
0; otherwise

(6)

and the complex double chirp sequence elements d̂n are
therefore given by:

d̂n = exp[ j 2π hdn] ; n= 1; 2; : : : ; N : (7)

Another class of sequences can be obtained if a superposi-
tion of chirp sequences of different orders is used to create
complex polyphase sequences.

3. Walsh-chirp sequences

Let us consider here the sequences, fô(i)
n g , i = 1; 2; : : : ; M

having their elements ô(i)
n given by:

ô(i)
n = wnĥ(i)

n ; n= 1; 2; : : : ; N; (8)

where

wn = exp
�
j 2π (c1bn+c2dn)

�
; (9)

bn and dn are defined by Eqs. (5) and (6), respectively,
c1, c2 are two real constants, and ĥ(i)

n are the elements of
orthogonal sequences fĥ(i)

n g, i = 1; : : : ; M.
Because of Eq. (9), we have

wn w�

n = 1; n= 1; : : : ; N ; (10)

where w�

n denotes the complex conjugate of wn. Hence,
it is easy to show that the sequences fô(i)

n g are also or-
thogonal, as long as the factors wn are kept constant for
i = 1; 2; : : : ; M.
Therefore, choosing the sequences fĥ(i)

n g as the sequences
obtained from the orthogonal Walsh functions, we can
produce a set of the orthogonal complex Walsh-chirp se-
quences. The cross- and autocorrelation performance of
the set depends not only on the Walsh functions chosen in
the first place, but also on the values of the parameters c1
and c2. In the next Section, we show that these parameters
can be optimized to achieve the desired characteristics.

4. Numerical example

In order to design a set of Walsh-chirp sequences of
length 16, let us consider a set of 13 Walsh sequences
given in Table 1. Then, we find the values of the coeffi-
cients c1 and c2 which minimize the mean square value of
the aperiodic CC (MSACC) [1] for the whole set.
For that purpose, we calculated the MSACC for 0� c1� 30
and 0� c2 � 30, with the grid of 0.2. In the investigated
region, it reaches the minimum of 0.8532 for c1 = 15:8 and
c2 = 24:4. For those values of c1 and c2 the mean square

Table 1
Set of 13 Walsh sequences

No. Binary spreading sequence
1 - - - - + + + + - - - - + + + +
2 - - + + + + - - - - + + + + - -
3 + + - - - - + + - - + + + + - -
4 + + - - + + - - - - + + - - + +
5 - - + + - - + + - - + + - - + +
6 - + + - - + + - - + + - - + + -
7 + - - + + - - + - + + - - + + -
8 + - - + - + + - - + + - + - - +
9 - + + - + - - + - + + - + - - +
10 - + - + + - + - - + - + + - + -
11 + - + - - + - + - + - + + - + -
12 + - + - + - + - - + - + - + - +
13 - + - + - + - + - + - + - + - +

value of the aperiodic AC (MSAAC) [1] is equal to 1.5962.
The orthogonality of the designed sequence set is clearly
visible in Fig. 1, where we plotted two example aperiodic
CC functions (ACCFs).
To assess the usefulness of the designed sequence set,
we simulated operation of the DS CDMA system utiliz-
ing these sequences. We have assumed that data transmit-
ted in any of the active channels is random, grouped into
1000 packets of 524 bits. The system has been considered
as an asynchronous one, with only the examined channel
kept synchronized to the corresponding reference sequence
generated in the receiver, while the interfering m channels
have been randomly delayed with respect to the examined
channel.

Fig. 1. Magnitudes of the ACCFs between the sequences:
(1,10) – solid line, and (4,11) – dashed line.

Those random delays, τi , i = 1; : : : ; m, have been chosen as
integer multiplies of 0.5, and satisfying the condition:

0� τi < N : (11)
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Since in a real system phases of the generators used in all
of the transmitting terminals can be different, we multiplied
each of the interferers’ signals by a coefficient:

ρi = exp( jφi); (12)

where φi is a constant chosen randomly from the inter-
val [0; 2π ].
In order to simplify the simulations, we have kept those
randomly chosen coefficients, τi , φi , i = 1; : : : ; m, constant
throughout the transmission of a single packet in the exam-
ined channel, with drawing of them repeated before simu-
lation of every new transmission of a single packet.
For each of the simulated packet transmissions in the ex-
amined channel, the sequences used by the interferers has
been chosen randomly from the set of all possible spread-
ing sequences utilized in the system, disregarding the one
used by the channel under examination.
Apart from the presence of MAI, we have assumed the pres-
ence of white Gaussian noise in the channel. We performed
the simulations for Eb=N0 = 20 dB, and Eb=N0 = 8 dB,
where N0 is single sided power spectral density of white
nose, and Eb is energy per information bit. To avoid being
drawn into considering the problems associated with the
“near-far-effect”, we have assumed powers of all signals
arriving at the receiver kept at the same level.
The achieved BER is plotted in Fig. 2 versus the number
of interfering channels. For the comparison, we present
there also BER characteristic obtained in the case when
the designed sequence set is replaced by the set of 15-chip
Gold-like sequences [5].
From the results presented in Fig. 2, it is clearly visi-
ble that the system utilizing Walsh-chirp sequences signif-
icantly outperforms the one utilizing Gold-like sequences,
allowing for considerably more simultaneous users in the
system at the same level of BER.
Then, we have compared performance of the Walsh-chirp
sequence with the orthogonal polyphase spreading se-
quences proposed in [2] for the length N = 16. The set of

Fig. 2. BER as a function of the number of interfering channels;
16-chip Walsh-chirp sequences – solid lines, 15-chip Gold-like
sequences – dashed lines.

sequences in [2] is defined by Um;n(N) = fum : 1�M <Ng,
while the ith element of a given sequence uM is defined by

uM(i) = (�1)Mi exp

�
j π (iMm+ in)

N

�
; 1� i < N ; (13)

where m is any positive nonzero integer, n is a real number,
while M and N are relatively prime numbers.
In our case, N = 16, the parameter M can take only the val-
ues M 2 f1; 3; 5; 7; 9; 11; 13; 15g, so the maximum num-
ber of sequences is equal to 8. There is no general method
given in [2] for finding the values of the parameters m,
and n. Following [2], we chose the value of m= 1:0, and
calculated MSACC and the MSAAC as functions of the
parameter n. The obtained plots are given in Fig. 3.

Fig. 3. Plots of MSAAC and MSACC as a function of the
parameter n for the sequence set defined using formula (13).

For simulating BER performance we took n = 2:5 where
there is a reasonable compromise between the values of
MSACC and MSACC equal to 0.8968 and 0.4394, respec-
tively. The achieved BER is plotted in Fig. 4 versus the
number of interfering channels. Once again, it is visible

Fig. 4. BER as a function of the number of interfering channels;
16-chip Walsh-chirp sequences – solid lines, 16-chip sequences
designed according to [2] – dashed lines.
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that the Walsh-chirp sequences outperform sequences pro-
posed in [2] for N = 16.

5. Conclusions

In the paper, we introduced a new method to design sets
of orthogonal polyphase sequences. The method is based
on utilizing a binary orthogonal sequence set and weight-
ing the symbols of binary sequences with the complex
coefficients obtained from the superposition of baseband
chirp sequences. The resultant polyphase sequences can be
optimized to achieve desired correlation properties of the
set. As indicated by the simulations, error performance of
a DS CDMA system utilizing the sequence set developed
in the numerical example is significantly better than in the
case of a system employing Gold-like sequences of a simi-
lar length, or orthogonal polyphase sequences of the same
length, N = 16. Further on, one can apply the method pro-
posed in this letter together with the sequences proposed
in [2], i.e. instead of Walsh sequences, the sequences pro-
posed in [2] can be modified using chirp pulses.
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