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Abstract — This paper is concerned with the issue of op-
timum detection of known signal in nonwhite noise and/or
narrow-band interference. The detection is carried out in
three steps. First, some function related to the power spectrum
of interfering process I(z) is estimated via adaptation. Second,
the signal + interference is whitened due to I(z). Third, the
replica of signal is filtered via I(z) to match it to the deformed
signal in the previous step. The simulation of SS reception in
presence of NB interference shows a high gain in comparison
to classical single-matched detection.

Keywords — optimum detection, spread spectrum multiple ac-
cess systems, NB interference, adaptation.

1. Introduction

The issue of optimum detection is nearly as old as the
telecommunication itself [1]. There is a lot of methods and
criteria of optimality, e.g. integration or storage, autocor-
relation, coherent or synchronous detection, optimum lin-
ear or matched filter detection, statistical detection via risk
strategies (Bayes, Neyman-Pearson and mini-max) [2�4].
Of course, there are some common roots in all methods.
We will confine ourselves to the matched-filter and
maximum-likelihood (ML) strategies. In contemporary ra-
dio receivers the matched-filter philosophy is widely used
but is confined to the useful signal only. It is a reasonable
solution for some kind of communications corrupted by
AWG noise. In wireless communication, especially spread
spectrum (SS) the dominant factor is an outside noise and it
diverges considerably from the thermal white model. The
resulting miss-adjustment between “white” receiver filter
and nonwhite noise/interference causes losses that reach
even several tens of dB [5, 6].
This problem has been considered in [7�10]. In the first
paper [7] an optimum structure of SS receiver is analyzed.
Channel distortion and multi-point reception are studied
here in detail, whilst colored interference is merely touched
on (a simple low-pass case is analyzed). A substantial,
but extremely concise approach to nonwhite detection is
given in [8]. It contains, however, no functioning structures,
no algorithms, and nor comparative results. This gap is
partially fulfilled by the author’s studies [9] and [10], which
the present contribution is based upon.
The organization of the paper is as follows. In Section 2,
the statement of the problem in modern digital form is
given. Thereafter a new general detection structure is intro-

duced. In Section 3 and in Appendix A, the adaptive theory,
relevant to the matter is provided and the general scheme is
complemented and simplified. In Section 4, the simulation
of spread spectrum reception in narrow-band interference
is carried out and the results obtained are compared with
conventional reception.

2. Statement of the problem

As it was shown by many authors [3, 8, 10], the optimum
filter for detection of a given signal S(ω) in presence of
arbitrary noise is

H(ω) =
S�(ω)

P(ω)
; (1)

where S�(ω) is a conjugate spectrum of useful signal and
P(ω) – power spectrum of interfering process.
The denominator of the desired transfer function, P(ω) is
usually factorized as P(ω) = H(ω)H�(ω) = jH(ω)j2 or –
within the z variable – as [8]

P(z) = A2G(z)G�(1=z�) ; (2)

where AG(z) corresponds to H(ω); AG�(1=z�) – to H�(ω);
A is a constant; z= rejΩ;�π � Ω � π ; r > 0 (observe the
difference between H(ω) and H(ω)).
G(z) is said to be a minimum-phase function, while
G�(1=z�) – maximum-phase function. As G(z) is mini-
mum-phase, all its zeros are inside the unit circle and –
after inversion – they do not reach the unstable region out-
side this circle. Hence, the reciprocal of AG(z) can be eas-
ily specified as I(z) = 1=AG(z) and put in series with the
signal matched-filter S�l (1=z�), see Fig. 1 (l is an alphabet
index).

Fig. 1. A general idea of double-matched detection [7].
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The G�(1=z�) is – by definition – maximum-phase and has
no reciprocal. However, its inverse Fourier transform h�

�k
(said anti-causal response) can be shifted some N steps
forward without affecting the transform (k is a discrete time
index). This way a causal response h�

�k+N is obtained,
which – after reversion – can play a role of replica in cross-
correlation mode (Fig. 2). Consequently, the co-whitening
filter in matched-filter mode stands for a whitening filter
in cross-correlation mode, Icowhite(z)! Iwhite(z) = I(z) and
h�
�k+N ! hk (Fig. 2).

Fig. 2. A cross-correlation mode of scheme Fig. 1 for binary
signal and unknown interference [8].

An example. Let P(z) = 1=j1+ 0:5 z�1j2. Hence,
the whitening and co-whitening functions are:
I(z) = 1+0:5 z�1 and I�(1=z�) = 1+ 0:5 z+1(A = 1) [8].
Let an input signal be s(n) = [1 1 1 : : : 1] for time
sequence n= [�5; 5] otherwise s(n) = 0. In this case the
output signal of S�l (1=z�) will be the same as its input,
since we assume hk = 1. The transition of s(n) through
I(z) yields s0(n) = [1 1:5 1:5 : : : 0:5] for k = [�5; 6].
The I�(1=z�) is maximum-phase, so we factorize it in
two functions, I1(z) = z+1 and I2(z) = 0:5+ z�1. Of
course, I(z) = I1(z)I2(z). The first function I1(z) shifts
s0(n) one step ahead, i.e. s00(n) = [1 1:5 1:5 : : : 0:5] for
n = [�6;5]. The second function transforms s00(n) into
s000(n) = [0:5 1:75 2:25 : : : 2:252:252:25 : : : 2:25 1:75 0:5]
for n= [�6;6]. The decision is taken at n = 0, hence the
result is S= 2:25.
Similar operations in cross-correlation mode (Fig. 2),
yield Sτ = ∑s0(n)s�

0

(n)∆τ , where s�
0

(n) = s0(n) and ∆τ
is a time interval between steps. Putting ∆τ = 1=10
we obtain Sτ = 2:15. For a more dense digitalization
(N >> 10) Sτ � S. We will not further deal with the errors
appearing in this process, as the signals feeding the modern
detectors are digital in nature at the very origin. The same
decrements refer to the useful signal as refer to the noise
and SNR is held constant.
The scheme Fig. 2 works as follows. An l th useful sig-
nal Sl ;k and the interference Jk enter the whitening filter
I(z). It decorrelates Jk and changes Sl ;k. The first action
is desirable, as it enables the application of ML principle.
The second – is undesirable, so the replica S�l ;k is passed
through the same filter I(z) to match it to the deformed
signal Sl ;k. The output products of filters, yk and y�k are

multiplied one by one and summed up within the range
of k= 1; 2; : : : ; N. This process is repeated for the full al-
phabet of signals, l = 1; 2; 3; : : : . The real values of sums
are then compared each other and this l is taken as true
one, which assigned sum is maximal. At the scheme Fig. 2
we have shown only the simplest binary case for l = �1.
Now, let us consider the constraints that have been implic-
itly imposed upon the considered processes.

� First, the power spectrum of interference P(z) has
to be determined and/or the whitening stable func-
tion I(z) has to exist (even, in approximated form).

� Second, the input signal Sl ;k and the replica S�l ;k have
to be strictly synchronized one to another and not
correlated to the interference Jk.

� Third, the interference Jk has to be wide sense sta-
tionary (WSS) or at least cycle-stationary (within the
adaptive period) and not necessarily Gaussian, whilst
possibly nonwhite. The Gaussianity is unnecessary
as the interference goes through filter I(z), which
normalizes it.

All the above requirements are usually satisfied, except for
the first. The power spectrum of interference P(z) and the
whitening function I(z) are often unknown, so we will try
to get them in a course of adaptation.

3. Blind adaptation

The classical adaptive procedure consists in a comparison
of a received signal with some standard, e.g. a training se-
quence. This comparison produces an error, which controls
the weights in adaptive filter. In our position, no standard
signal exists, so only the blind adaptive algorithms can be
considered.
The simple blind algorithm, belonging to the large mini-
mum mean square error group (MMSE) is as follow [10].
At the begining, an estimate of the interference sam-
ple ŷ(n) is formed upon its previous states (observations)
y(n�N); y(n�N+1); : : : , up to y(n�1), Eq. (3). In the
next step, this estimate is subtracted from the actual value
of y(n) (both are accessible), Eq. (4). The difference ε(n)
is used for the step by step matching of filter weights hhh
to observed process, Eq. (5). The algorithm is sometimes
called least squares (LS) [7, 12]

ŷ(n) =
N
∑

k=1
hky(n�k) = hTyhTyhTy ;

yyy=

2
4 y(n�1)
� � � � � � � � �
y(n�N)

3
5 ; hhh= [h

1
h
2
: : : h

k
: : : h

N
]T ; (3)

ε2(n) = Ex
n�

y(n)� ŷ(n)
�2
o
; (4)

hhh(n+1) = hhh(n)�µ ε yyy : (5)
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The step size µ , as well as an initialize sequence hhh(0)
are important data, which affects the convergence and
the speed of adaptative process. We experienced to use
hhh(0) = [1 0 1 0 : : : ]T and µ = 0:01� 0:001. The higher
values of µ correspond to the higher speeds of adaptation
and the smaller – to smaller errors of estimation. In any
case µmax< 2=λmax, where λ is an eigenvalue of the auto-
correlation process.
The estimation time of MMSE algorithms is usually large
and the orders of filter – very high. We used the sequences
of size N= 103� 3�103 and L = 6� 46. The higher values
of L and N correspond to narrow pulses of interference.
For the transmission rates of 10� 30 kbit/s it stands for an
estimation time τ = 0:1 s. More effective algorithms are
nonlinear ones, e.g. gradient descent, super exponential and
turbo [15]. They use – instead of square error – a notion of
cost function. An example of such function is a normalized
moment of fourth order:

u(4) =
m4(y)

m2
2(y)

= (N�L)
∑
�
y(n)�Y

�4n
∑
�
y(n)�Y

�2
o2 ; (6)

where y(n) is time series of estimated signal; N – series
size; L – order of whitening filter.

Y =
1

N�L

N

∑
n=L+1

y(n) ; (7)

m2(y) =
1

N�L

N

∑
n=L+1

�
y(n)�Y

�2
; (8)

m4(y) =
1

N�L

N

∑
n=L+1

�
y(n)�Y

�4
: (9)

The moment u(4) for commonly used bipolar signal,
y2 [1;�1] takes the lowest value equal 1. In a physi-
cal channel, the signal samples interact with one another,
which causes cross-correlation (ISI) and gives an increase
of u(4). So, if we want to decorrelate (white) the signal,
a gradient of u(4) has to be used as an indicator pointing
the direction, to which the vector hhh has to be changed.
A weak point of some nonlinear algorithms is their false
convergence. If “the spectral channel” of interference is
non minimum-phase and reveals several local minima, one
of them (not global minimum) can cause a false conver-
gence. In Appendix A, we present the very effective lattice
filter and the gradient descent algorithm (GDA) that do not
reveal a false convergence.

4. Simulation experiments

We are carrying out several experiments to have a deeper
insight into the filtration and detection processes and to

estimate a gain of the method. We used the spread spectrum
signal of the form

Sl ;k = l �
�
s1; s2; : : : ; sN

�
1; : : : ; l �

�
�
sk; sk+1; : : : ; sk+N�1

�
(kmodN+1); : : : ; l �

�
�
sMN�N+1; : : : ; sMN

�
M ; (10)

where l is a binary random number, l 2 [1; �1], its se-
quence flg contains the information carried on; N is
a spreading factor; [sk; sk+1; : : : ]kmodN+1 represents mth bit
of signal, m= 1; 2; 3; : : : ; M; sk is kth sample of signal,
k= 1; 2; : : : ; MN; sk 2 [1; �1]=γ; γ – real constant; the se-
quence [sk] is chosen according to Gold code and is known
to the sender and recipient of information.
The appropriate interference sequence is Jk =
= fJ1; : : : ; JMNg, where MN is a sequence size in
chips. The replica S�l ;k follows the useful signal except for
the attributes of power (γ), information carried on (l), and
conjugation index (�); js�1;kj= jγsl ;kj.
We have carried out four experiments. The first one is
concern with the white noise case. The symbol of sum in
Fig. 2 denotes

∑
N

=
N+ jN

∑
k=1+ jN

yky
�

k; j = 0; 1; 2; : : : ; M�1; (11)

where yk and y�k are the outputs of whitening filters in the
signal and replica leads, respectively.
The obtained BER curve is shown in Fig. 3 as the base
curve (0). We found that interference other than white,
e.g. low-pass of H(z) = 1=(1� 1:4 z�1 + 0:5 z�2) causes
a degradation of reception, expressed by curve (1). This
is contrary to Shannon’s theory, which states that white
noise causes the highest degradation of reception. So, we
insert a proper whitening filter into both paths of detector,
I(z) = 1=H(z) = 1�1:4 z�1+0:5 z�2 (experiment II). The
symbol of sum denotes now

∑
N

=
N+L+ jN

∑
k=1+L+ jN

yky
�

k ; (12)

where L – order of filter (= 2).
The obtained BER curve is shown as curve (2), see Fig. 3.
We observe that it has been shifted about 7 dB down the
base curve (0). This is a striking difference and it means
that the single-matched (white) detector does not recognize
the color of interference.
Then, further experiments were carried out. In the third
one, III, an interference pulse of natural signal was used.
Let its autocorrelation function and power spectrum be
(e.g. BPSK signal)

R(τ) = 1�jτj=T for jτj=T < 1;otherwiseR(τ) =0; (13a)

P(ω) = T
�
sin(ω T=2)=(ω T=2)

�2
: (13b)

Having P(ω) we can determine its corresponding transfer
function H(z) and the unit impulse response hhh via Yule-
Walker method [18]

[aaa; bbb] = yulewalk(L; FFF;MMM); hhh= impz(aaa;bbb) ; (14)
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Fig. 3. A family of BER curves for single-matched and double-
matched detection at different interference.

where L is a chosen order of filter; FFF – frequency scale
vector, e.g. FFF= [0 0:01 : : : 1]T ; MMM – interference magnitude
vector, MMM = jH(FFF)jT ; aaa; bbb – transfer function coefficients
vectors.
The formulae for H(z) and its coefficients are

H(z) =
a0+a1z

�1+ : : :+a16z
�16

1+b1z
�1+ : : :+b16z

�16 ; (15)

aaa = [0:32 �0:01 1:35 �0:04 2:7 0:07 3:36 �0:07 2:7
�0:05 1:48 �0:02 0:5 �0:005 0:1 � 0 � 0]T ;
bbb= [1 �0:037 5:5 �0:18 13:8 �0:39 20:4 �0:49 19:5
�0:38 12:3 �0:18 5:03 �0:05 1:2 �0:006 0:13]T .

To obtain I(z) we simply put bbb instead of aaa and vice versa
into a filter (�) function [18]. The result we obtained in
experiment III is expressed by curve (3), see Fig. 3. This
curve has been shifted about 20 dB down the base (0).
Although hard to imagine, it is true. The gain obtained can
be expressed by an approximated formula

g� 20 log10B=Bi ; (16)

where B is useful signal equivalent bandwidth and Bi –
interference equivalent bandwidth.
In the next experiment (IV) we assumed that interfer-
ence spectrum is not known, so, the adaptive loop was
activated (dotted line block, Fig. 2). In a course of MMSE
adaptation we obtained ĥ̂ĥh very similar to hhh of the previ-
ous experiment (a difference in Eb=N0 was less than 1 dB).
This happened because we used the same interference pulse
both in experiments III and IV, simply to check the adaptive
process.
Many other interference pulses (QPSK, QAM) with differ-
ent bandwidths and locations on signal spectrum (includ-
ing double pulses) were examined (Table 1). All results
were very good [8]. Several experiments have been carried
out using the lattice filters and the gradient descent algo-
rithm (Appendix A, Fig. 4). We found that in this case
the order of filter, and the time of adaptation diametrically

reduce, and the problem of instability disappears. How-
ever, the program is more complicated, and the physical
implementation of lattice filters would possibly be more
complex.

Table 1
Chosen SNR-s for presence and absence of whitening
filters and the different locations of interference on the

signal spectrum (B=Bi = 10)

Eb=J [dB] at BER = 10�5

Interference pulse
relative location 0.0 0.25 0.5 0.75 1
No whitening
filters 10 10 10 10 10
Filters present �7:5 �8:5 �9:5 �8:5 �7:5

It should be also noted that a described process is strictly
optimal only for known interference spectrum. Otherwise,
when using adaptation, the algorithm “learns” the spectrum
and if its “equivalent channel” is non minimum-phase and
the whitening filter is FIR, then the detector can only be
referred to as asymptotically optimum (for L ! ∞) [12].
In spite of so rigorous theoretical limit, the practical re-
quirements are not so excessive, e.g. L = 46 is enough for
a relative signal-to-interference bandwidth B=Bi = 10.

Fig. 4. A structure of whitening lattice filter (see Appendix A).

The problem of optimum adaptive algorithm and adaptive
filter is still an open issue. But, even for slow MMSE
algorithm we can obtain quite satisfactory results under
typical communication conditions.

5. Conclusion

This paper presents a new method of spread spectrum de-
tection in presence of nonwhite noise and/or narrow-band
interference. It uses a double-matched detector, fitted both
to the useful signal and interference. It is formed by adding
a pair of whitening filters and a blind adaptive loop to
the conventional single-matched ML structure. Simula-
tion of base-band SS reception under typical NB interfer-
ence yields the gain approaching 20 dB for the signal-to-
interference bandwidth ratio B=Bi � 10. Unfortunately, the
gain reduces to zero for flat interference.
The obtained results are comparable to the findings of
other authors [5, 6]. The method is intended for systems
with interference dominating inner thermal noise and be-
ing ruggedly nonwhite. It can be treat as a compliment to
RAKE and other upgrading techniques.
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Appendix A
Gradient descent algorithm

and the lattice filter

The normalized moment u(4) and its derivatives are

u(4) =
m4(y)

m2
2(y)

;
du
dKKK

=
du
dy

dy
dKKK

; KKK= [K1K2 : : :KL]
T ; (1A)

were KKK is so-called reflection coefficient in lattice filter, see
Fig. 4 (it corresponds to the weight vector hhh in transversal
FIR filter); y is an output signal of filter.
Taking into account Eqs. (12) and (13) in main text, we
obtain (2A)

du
dy

=
m0

4m2
2�2m2m

0

2m4

m4
2

=

=
4

(N�L+1)m2
2
∑
�
y(n)�Y

�3
+

�
4m4

(N�L+1)m3
2
∑
�
y(n)�Y

�	
=U�V : (2A)

As it comes from Fig. 4 (derivation in [11])

dy
dK1

= s(n�1)(1+K2)+

+ s(n�2)(0+K3)+s(n�3)(0+ : : : ; (3A)

dy
dK2

= s(n�1)(K1+K3)+

+ s(n�2)(1+K4)+s(n�3)(0+ : : : ; (4A)

du
dKp

=
�
U�V

	�
s(n�1)

�
Kp�1+Kp+1

�
+

+ s(n�2)
�
Kp�2+Kp+2

�
+ : : :

	
=

=
�
U�V

	 L
∑

i=1
s(n� i)

�
Kp�i +Kp+i

�
;

where s(�) is input signal of the filter, and

K0 = 1; Kp�i = 0 for p� i < 0 or p� i > L : (5A)

The quantities U , V are given in (2A). The fundamental
gradient equation is

KKK(n+1) =KKK(n)�µ∇Ku(4) ; (6A)

∇Ku(4) =

"
du(4)
dK1

du(4)
dK2

: : :

#T

; (7A)

where µ is a step size and n – iteration number. The
convergence criteria, initialize parameters and a step size
µ are considered in [12, 15].

Acknowledgment
The author is grateful to the unanimous Reviewer for his in-
sightful comments and helpful critiques of the manuscript.
This work was partially supported by a grant of State Com-
mittee on Science Research, no. 0T00A-037-16/98.

References
[1] R. Courant and D. Hilbert, Methoden der Mathematischen Physik.

Berlin: Springer, 1931.

[2] W. Davenport and W. Root, An Introduction to the Theory of Random
Signals and Noise. McGraw-Hill, 1958.

[3] C. Helstrom, Statistical Theory of Signal Detection. Pergamon Press,
1960.

[4] P. Beckman, Probability in Communication Engineering. Harcourt,
1967.

[5] V. Comley, “CW interference excision in DSSS communication sys-
tem using spectrally defined spreading/despreading functions”, in
IEEE Milit. Commun. Conf. MILCOM’98, Bedford, Oct. 1998, vol. I,
pp. 160–164.

[6] R. Derryberry, T. Wong, and J. Lehnert, “An iterative blind adaptive
receiver for DS-SSMA systems”, in IEEE Milit. Commun. Conf.
MILCOM’98, Bedford, Oct. 1998, vol. II, p. 499–503.

[7] A. Reichman and R. Scholtz, “Adaptive spread-spectrum systems
using least-squares lattice algorithm”, IEEE J. SAC, vol. 3, no. 5,
pp. 653–662, 1985.

[8] E. Lee and D. Messerschmitt, Digital Communication. Boston:
Kluwer, 1997.

[9] J. Pawelec, “Optimum adaptive detection of SS signals in nonwhite
noise/interference”, in Int. Conf. Comput. Electromagn. Its Appl.,
Beijing, Nov. 1999, pp. 522–524.

[10] J. Pawelec, “Optimum adaptive detection of SS signals in NB in-
terference”, Bull. Defen. Acad. Technol., no. 3, 2000 (also in ISSSE
Symp., Tokyo, July 2001).

[11] J. Pawelec and A. Janulewicz, “Non-Gaussian signals separation via
HOS”, in Int. Symp. EMC, Zurich, Feb. 1999.

[12] S. Haykin, Ed., Adaptive Filter Theory. Prentice Hall, 1996.

[13] O. Shalvi and E. Weinstein, “New criteria for deconvolution of non-
minimum phase systems”, IEEE Trans. Inform. Theory, vol. 36,
no. 2, pp. 312–321, 1990.

[14] J. Cadzow, “Blind deconvolution via cumulant extrema”, IEEE Sig.
Proc. Mag., May 1996.

[15] C. Jonson et al. Special issue on blind systems. Proc. IEEE, vol. 86,
no. 10, 1998.

[16] J. Holmes, Coherent Spread Spectrum Systems. Wiley, 1982.

[17] B. Sklar, Digital Communications. Prentice Hall, 1988.

[18] Matlab 5.1/0421,Toolbox: Signal Proc. The Mathematical Works
Inc. 1997.

Józef Jacek Pawelec received
the M.Sc. degree in 1958 in
radio engineering from Mili-
tary Academy of Technology,
Warsaw. The Ph.D. and D.Sc.
degrees received in 1975 and
1982, respectively from the
Academy, Faculty of Electron-
ics. In 1982–90 he was a deputy
director of Defence Communi-
cation Institute and in 1990–94

84



Optimum double-matched detection and its application to SSMA systems

the chair of electronic section at Academy. Now he is a Pro-
fessor at University of Technology Radom. Research inter-
ests: electromagnetic compatibility, radio communication
systems, signal processing (detection, blind adaptation).
A book: “Control and communication in space”, WKŁ.

More than 100 scientific papers (a part published abroad).
A member of National Committee of URSI.
e-mail: pawelec@wil.waw.pl
Defence Communication Institute
05-130 Zegrze, Poland

85


