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Abstract — A set of useful formulae has been presented allow-
ing for computation of the equipower curves on the Poincare
sphere of the co-polarized radar returns for both mono- and
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1. Introduction

In the English language literature there is a lack of publica-
tions treating that very useful “geometrical” presentation of
scattering. Basic concepts can be found in technical reports
of Kennaugh [1], in Russian book on “Polarization of Radar
Signals” written by D. B. Kanareykin [2], and also in the
Polish paper presented by this author [3]. But still attempts
can be met of researchers trying to find the most conve-
nient ways to draw on the Poincare sphere the curves of
constant co-polarized received power scattered backwards
from nondepolarizing targets. It is believed that formulae
presented beneath will be of some help also for those in-
tending to solve similar problems, i.e., for cross-polarized
returns or bistatic scattering.
The method here applied for solution of the problem is
based on studies of equation for co-polarized returned
power in a most simple form, that means in the so-called
“characteristic coordinate system” (CCS) in which Sinclair
and Kennaugh matrices depend on minimum number of
parameters: two and three real parameters for Sinclair and
Kennaugh matrices, respectively. Such approach does not
limit the generality of considerations.

2. The co-polarized
radar transmission equation

The Jones unit column matrix of monochromatic plane
wave of “polarization and phase” P (indicated by the upper
index) may be expressed as a function of three the so-called
“analytical” angular parameters: γ , δ , ε:
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Elements of the matrix depend on the orthogonal null-phase
(ONP) polarization basis denoted here by the subscript Y
(the lower index). That basis may correspond to the XYZ
Cartesian coordinate system, with the propagation axis “Z”,

or may denote any other ONP basis obtained by applying
to the original one a unitary unimodular transformation.
Both P and Y can be treated as three parameter tangential
phasors (see [4]) on the Poincare sphere. Kronecker square
of the Jones matrices eliminates the “phase” parameter:
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So, the resulting unit Stokes four-vector of the wave:
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depends on two, though doubled, parameters 2δ and 2γ
which can be interpreted as angular coordinates of the po-
larization point P on the Poincare sphere. The q, u, v
coordinates are the three “normed” Stokes parameters of
the point P on the sphere.
Consider, e.g., a simplified model of a rain-drop of the
shape of an oblate spheroid with vertical axis of symmetry.
Its Sinclair matrix for backscattering can be presented as
follows:

[A]Y =

��
A2 0
0 A1

�
ejµ
�

Y
; A2� A1 (4)

with real positive A2, A1, and µ . Diagonal elements may
denote, e.g., horizontal and vertical polarizabilities with
space attenuation factor included. Incidentally, the form of
the above matrix is exactly like in the characteristic ONP
polarization basis, corresponding to the CCS in the Stokes
parameters space. Any symmetrical Sinclair matrix can be
transformed to that form by proper change of the basis.
Using the Kronecker square of that matrix
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the corresponding Kennaugh matrix can be found as fol-
lows:
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with
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(To simplify formulae, in what follows, indices of matrices
will be omitted).
For transmit/receive “effective” Stokes four-vectors of com-
plete polarization, corresponding to the unit total intensity,
the co-polarized received power is

Pc(P) = Pc(q; u; v) =
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with

q2+u2+v2 = 1: (8)

The last equation presents the Poincare sphere of unit radius
in the q, u, v coordinates. For Pc(P) = const., Eq. (7) deter-
mines another surface. Its cross-section with the sphere (8)
traces curves of constant Pc powers on that sphere.

3. The Poincare sphere model
of the backscattering matrix

The Poincare sphere model of a Sinclair and/or Kennaugh
scattering matrix will be constructed with the following
parameters:
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Here r means the radius of the sphere in coordinates

x= rq; y= ru; z= rv (10)

what results in the equation of the sphere model:

x2+y2+z2 = r2 : (11)

The Poincare sphere model can show the mechanism of
scattering geometrically as follows. Any point P of incident

polarization, after inversion through the point I defined by
coordinates: x = �e, y = z= 0, and after rotation about
the z axis by 180Æ, determines the scattered polarization
point S. The scattered power is equal to the square of the
IP distance. However, to obtain the power received by the
same transmit/receive antenna, the scattered power should
be multiplied by the square of cosine of one half of an
angle between the S and P points:
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�
6 SP
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4. Construction of constant
received power curves

by the use of Cassini ovals

Another useful equality has been first derived by Kennaugh.
It allows for expressing the co-polarization received power
by a product of squares of two distances between P point
and the so-called CO-POL NULL points O1 and O2 of
coordinates: x=�e, y= 0, z=�d:

Pc(P) =
(O1P)2� (O2P)2

(2r)2 =
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2 : (13)

with
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p

Pc(P) : (14)

Considering P points not necessarily located on the
Poincare sphere surface, we obtain for c2 = const. a surface
of rotational symmetry, with the axial cross-section being
a Cassini oval with focuses in points O1 and O2. That
surface is given by the known equation of the Cassini oval:h
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+2d2
h
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= c4�d4
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9=
; (15)

for which the following coordinates of its axis and focuses
have been determined:

yaxis= 0; xaxis=�e; z(xaxis; yaxisjPc = 0) =�d : (16)

Comparing the last expressions with Eq. (15) we see that
for Pc = 0, resulting in c = 0, the surface reduces to two
points only, the focuses of the Cassini oval.

5. Cross-section of the Poincare
sphere model with parabolic

and hyperbolic cylinders

Simpler presentation of the constant received power curves
can be found eliminating one of Stokes parameters, v or u,
from Eq. (7). That way projections of the Pc(P) = const.
curves from the Poincare sphere of unit radius on to the qu
and qv planes can be found.
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By substituting v2 = 1�q2�u2 in Eq. (7) we obtain a set
of ellipses:

Pc(P) = (e+ rq)2+d2u2 =
c4

4r2 = const: (17)

or, for the model of the radius r , in the xyz coordinate
system:
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The semi-axes of the new larger ellipses can be found as
follows:
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Similarly, by substituting u2 = 1� q2� v2 in Eq. (7) we
obtain a set of hyperbolae:
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and, for the model of the radius r , in the xyz coordinate
system:

c4

4
= r2

�
(r +eq)2�d2v2

�
=
�

ex+ r2
�2
�d2z2 : (21)

Parameters a and b of the new larger hyperbolae can be
found also similarly:
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It is worth noting that asymptotes of hyperbolae are tangent
to the sphere in O1 and O2 points. They are crossing at
point I’ with coordinate x=�(r2=e) what means that I and
I’ points are mutual reflections in the sphere surface.
It can be checked easily (by substituting Eqs. (21) or (18)
to (15) and eliminating in Eq. (15) y or z, respectively) that
projections of constant received power curves obtained by
the two methods agree precisely.

6. Other useful formulae

The parameter of constant level of the received signal ver-
sus (Pc)max= A2

2 can be computed from the formulae

L = Pc [dB] = 10log
(Pc)max

Pc
= 20log

c2
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c2 > 0; (23)

where

c2 = (A2+A1)
p

Pc; c2
max= 2r(r+e) = (A2+A1)A2 : (24)

Hyperbolae and ellipses for given L are the following func-
tions of x:
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Ellipses can be also presented in cylindrical coordinates by
a formula

ρ =
c2

2
q

r2�e2sin2 ϕ
; (27)

where the ϕ angle is being taken from the xz plane.

7. Conclusions

The problem has been solved for symmetrical Sinclair and
Kennaugh matrices. In cases of the bistatic scattering, or
matrices corresponding to cross-polarized received pow-
ers, we deal with nonsymmetrical matrices. The form of
Sinclair matrices in their characteristic ONP polarization
bases is antisymmetrical. However, when using the same
transmit/receive polarization vectors, the problem remains
exactly the same like for the symmetrical matrices. What
should be done is to take as the Sinclair scattering ma-
trix its symmetrical part only because the antisymmetrical
elements are being eliminated in the transmission equation.
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