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Abstract — Motivated by the analogy between a phase-
conjugating mirror (PCM) and a superconductor, we search
for optical counterparts of the well-known DC and AC Joseph-
son effects. We show that in a system consisting of two PCM’s
separated by vacuum an „optical supercurrent” arises as a
function of an applied phase difference between the PCM’s,
which is the optical analogue of the DC supercurrent flowing
in a superconducting weak link. The corresponding AC effect
occurs when the two PCM’s are pumped by light of a differ-
ent frequency, causing the phase difference to oscillate in time
with the frequency difference.

Keywords — Josephson effects, phase-conjugation mirrors, su-
perconductors, four-wave mixing.

Introduction

A phase-conjugating mirror (PCM) is a nonlinear optical
device capable of reversing both the direction of propaga-
tion and the overall phase factor of an incident beam of
light [1]. It consists of an optical medium with a large
third-order susceptibility χ(3) and can be realized through
a four-wave mixing process, see Fig. 1. The medium is
pumped by two intense counterpropagating laser beams of
frequency ω0. When a probe beam of frequency ω0 + δ
is incident on the material, a fourth beam will be gener-
ated due to the nonlinear polarization of the medium. The
latter propagates with frequency ω0− δ in the opposite
direction as the probe beam and is referred to as the con-
jugate beam [1]. The probe-to-conjugate reflection process
at a PCM is the optical analogue of Andreev reflection,
the electron-to-hole reflection which occurs at the interface
between a normal metal (N) and a superconductor (S) [2]:
just as the hole is sometimes called a „time-reversed” elec-
tron, the conjugate can be seen as the „time-reversed” of
the probe wave. The role of the chemical potential µ in
a superconductor is played by the pump frequency ω0 in
a PCM, and the energy gap ∆ of the bulk superconduc-
tor corresponds to the coupling strength γ between probe
and conjugate waves in the nonlinear optical medium, to
be defined later (see below Eq. (1)).
This by now well-established analogy between a PCM
and a superconductor [3, 4] can be extended to a sys-
tem consisting of two PCM’s separated by vacuum, which
is then the analogue of a superconductor–normal-metal–
superconductor (SNS) structure or weak link [5]. In these
weak links the famous DC and AC Josephson effects oc-

Fig. 1. A phase-conjugating mirror realized through a four-wave
mixing process

cur, which were originally predicted for tunnel junctions
[6]. The DC effect in a tunnel junction is the sinusoidal
dependence of the supercurrent IS on the phase difference
∆φ between the pair potentials in the two superconductors,
IS∼ sin(∆φ). In a point contact, i.e. a weak link con-
sisting of a constriction in between two superconductors, it
also occurs, but the current-phase dependence is then found
to be IS∼ sin(∆φ/2) for |∆φ | < π [7, 8, 9]. The nonsta-
tionary (AC) Josephson effect arises when a voltage V is
applied across a tunnel junction or weak link, causing the
phase difference to change with time as ∆̇φ = 2eV/h̄.
The carriers of the supercurrent flow in weak links are the
quasiparticle bound states [10], or „Andreev levels”. These
quasiparticle bound states are formed when an electron (or
hole) with energy E above (below) the Fermi energy, but
with E smaller than the gap energy ∆ of the superconductor
is present in the normal layer. The electron cannot enter
the superconductor without pairing with another electron,
which leaves a hole behind in the normal metal: the well-
known process of Andreev reflection [2]. Conversely, a
hole can break up a Cooper pair and produce an electron
in the normal metal. The bound-state spectrum is found
by calculating the condition for constructive interference of
electron/hole waves in the middle layer after one roundtrip
(corresponding to two Andreev reflections, electron-to-hole
at one superconductor and hole-to-electron at the other su-
perconductor). Here, we assume clean NS interfaces with-
out any potential barriers, so that normal reflections can
be neglected. Since each Andreev reflection is accompa-
nied by a phase-shift which depends on the phase of the
superconducting pair potential, these bound states produce
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a coupling between the phases of the order parameters of
the two superconductors and are the carriers of the super-
current.
Returning to the optical configuration of two PCM’s sepa-
rated by a layer of vacuum, it is known that just as bound
states are formed in a SNS structure due to Andreev re-
flections at the NS interfaces, so-called axial modes1 are
formed in the vacuum region due to phase-conjugate re-
flections at the PCM’s [4]. We will show here that like
the Andreev bound-state levels are the „channels” for the
supercurrent flow, the axial modes form the „channels” for
an „optical supercurrent” flow: when the vacuum region is
short and the two PCM’s are pumped by light of the same
frequency, but with a small phase difference ∆φ , a pho-
tonpair(„super”)current arises as a function of this phase
difference, similar to the supercurrent in a short supercon-
ducting weak link. The calculation and analysis of this DC
optical Josephson effect forms the topic of section , after
a discussion of the axial modes in section . In section
the corresponding AC effect is discussed and we conclude
in section with a suggestion for a possible experimental
realization of these optical Josephson effects.

Axial modes

Consider the double PCM configuration depicted in Fig. 2.
Just as the equilibrium state of a superconductor is de-
scribed by the eigenfunctions of the Bogoliubov-de Gennes
equations [11], each PCM-medium is described by the
eigenfunctions of the matrix equation [3]−
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Here (Ep(x),E ∗c (x)), with Ep and E ∗c the electric field am-
plitude of the probe and conjugate waves respectively, rep-
resents an excitation in the pumped medium with a mixed
probe/conjugate character: an „optical quasiparticle”, in
analogy with the mixed electronlike/holelike quasiparti-
cles in a superconductor [11]. The off-diagonal parameter
γ = γ0eiφ = 3ω0

ε0
χ(3)E1E2 is the pumping induced coupling

strength between the probe and conjugate wave in the PCM-
medium, and φ denotes the phase of χ(3)E1E2, with E1, E2
the electric field amplitudes of the two pump beams. The
PCM’s in Fig. 2 are both pumped by two counterpropa-
gating laser beams with the same frequency ω0 but with a
different phase, say φ1 on the left and φ2 on the right.

1By „axial” modes we mean longitudinal modes, to distinguish them
from transverse modes. The latter are formed due to finite dimensions of
the whole system in the transverse direction(s), e.g., when it is embedded
in a waveguide. Here we consider a quasi-1D configuration, in which only
one transverse mode is present.

Fig. 2. Two PCM’s of equal length Lc separated by a layer of
vacuum of length L. The PCM’s are each pumped with two laser
beams of the same frequency ω0, but such that the phases on the
left and right are different, which leads to different phases of their
coupling constants γ .

In the region between the PCM’s, a probe beam incident on
either mirror will be reflected as a conjugate beam, which
again emerges as a probe beam after reflection at the other
PCM. The condition for the formation of an axial mode is
that the acquired phase shift on one round trip equals an
integer multiple of 2π , and is given by [4]

2
δ
c

L+2arctan

 δ√
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0

tan(βLc)

±∆φ = 2πn. (2)

Here ∆φ = φ1−φ2, β = 1
c

√
δ 2 + γ2

0 and the ±-sign corre-

sponds to a probe wave travelling with frequency ω0±δ to
the right and being reflected as a conjugate wave with fre-
quency ω0∓δ . Eq. (2) is the analogue of the bound-state
spectrum (Andreev levels) of a SNS junction2 [10]

kF
E
EF

L−2 arccos(E/∆0)±∆φ = 2πn, (3)

where kF and EF are the Fermi wavevector and energy
respectively and ∆0 = |∆|. For a short weak link, in which
the distance between the superconductors is much less than
the superconducting coherence length ξS = h̄vF

π∆0
, the first

term in (3) may be neglected, so that the mode spectrum
simplifies to E = ∆0cos(∆φ/2) [8, 9]. By analogy, we
restrict ourselves here to the situation in which the vacuum
region that separates the two PCM’s is short compared to
the „optical coherence length”3 ξ0 = c/γ0. The axial mode
spectrum (2) then reduces to

δ√
δ 2 + γ2

0

tan(βLc) =− tan

(
∆φ
2

)
, (4)

2The first term on the left-hand side of Eq. (3) does not have a factor „2”
as Eq. (2) has; this is due to the different (parabolic) dispersion relation of
an electron in a normal metal compared with the linear dispersion relation
of light in vacuum.

3ξ0 is a a measure of the minimum spatial extent of the transition layer
between a PCM and vacuum, just as the superconducting coherence length
ξS is a measure of the minimum spatial extent of the transition layer
between a normal metal and a superconductor, see e.g. [12].
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independent of the mode-index n. For frequencies δ � γ0,
Eq. (4) takes the simple form
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for

Now there is a single axial mode. This axial mode spec-
trum can support a stationary photon-current, which we
now proceed to derive.

The stationary (DC) optical
Josephson effect

The starting point of our search for a phase-dependent
Josephsonlike photon-current in the double-PCM config-
uration is the fact that due to spontaneous emission and
quantum fluctuations, photons with a range of frequencies
are generated in each PCM, part of which are emitted into
the region between the PCM’s. Out of these, only the
frequencies that satisfy the condition (4) will lead to the
formation of axial modes, which can be the carriers of a
phase-dependent current. Before analyzing this any further,
we now first mention an important difference between An-
dreev reflection at a superconductor and phase-conjugate
reflections at a PCM. Whereas the former always occurs
with probability 1 at an ideal NS interface [13], i.e. one
electron is reflected as one hole and particle conservation
applies, the reflected conjugate beam at a PCM can be
stronger than the incoming probe beam. Because the two
pump beams continuously add energy to the medium, the
PCM can act as a phase-conjugate amplifier. In fact, the
probability for phase-conjugate reflection is given by [1]

Rc =
sin2(βLc)

cos2(βLc)+
(

δ
γ0

)2 , (6)

Rc ≈ tan2
(

γ0Lc

c

)
for δ � γ0. (7)

It can easily be seen from Eq. (6) that for frequencies
δ � γ0 the phase-conjugate reflectance Rc < 1, so that the
reflected beam is weaker than the incoming beam. In the
opposite limit of δ � γ0, Eq. (7) applies, and then Rc ≥ 1
for |γ0Lc/c| ≥ π/4, in which case the reflected beam is
stronger than the incoming one. According to (7) it may
even become infinitely strong, for when γ0Lc/c → π/2,
tan(γ0Lc/c)→∞. However, in reality the intensity of the re-
flected beam is limited by the intensity of the pump beams:
if the former approaches the latter, pump depletion will set
in and the expression (6) for Rc is no longer valid, since
it was derived under the condition of undepleted pump
beams [1].

The magnitude of Rc plays an important role in the forma-
tion of an equilibrium current in our double-PCM config-
uration. For if the phase-conjugate reflection is less than
100%, any current will decrease in time and eventually
die. If, on the other hand, the phase-conjugate reflection is
more than 100%, the wave is amplified at the expense of
the pump beams upon each reflection at the PCM’s. Then
after a while pump depletion will set in, causing the re-
flected intensity and the current to decrease again, until a
stable situation is reached in which there is neither gain
nor loss. If the probability of phase-conjugate reflection is
exactly 100%, the current in the region between the PCM’s
is „automatically” stable. This situation forms the closest
analogy with the superconducting case.
Before calculating anything explicitly, we now thus already
know that an equilibrium photon-current in the region be-
tween the PCM’s can only form for frequencies which:
(a) satisfy the axial-mode condition (4) and (b) are neither
weakened nor amplified upon phase-conjugate reflection,
i.e. for which a steady state exists or is established in the
region between the PCM’s. The important question is thus
for which frequencies satisfying (4) a steady state is formed.
The answer to this question requires a nonlinear analysis of
the phase-conjugate reflection process which takes pump
depletion into account. This is the topic of a separate pa-
per M. Blaauboer (to be published), and the main result is
that a steady state is established for all frequencies δ that
satisfy the condition Rc ≥ 1, provided the PCM operates
such that | tan(γ0Lc/c)| ≥ 1.
Here, we restrict ourselves to the case of | tan(γ0Lc/c)|= 1,
corresponding to Rc = 1 for δ � γ0, which most closely
brings out the analogy with the superconductor (see for the
general case M. Blaauboer, submitted to Phys. Rev. Lett.).
The equilibrium current density in the region between the
PCM’s is obtained from the (normalized) eigenfunctions of
Eq. (1) and given by

j =
c2

ω0
∑
δ

Re
(
Ē ∗p i∇Ēp + Ē ∗c i∇Ēc

)
, (8)

where the sum is over all frequencies δ satisfying the
axial-mode condition and (Ēp, Ē ∗c ) is the eigenfunction
corresponding to δ . The latter has been calculated (M.
Blaauboer) for a short (L� ξ0) PCM-vacuum-PCM junc-
tion, by adopting a WKB model for the propagation of each
mode in the PCM-vacuum-PCM junction4. In essence, the
WKB model requires that the length of the vacuum region
L� λ0 [with λ0 the wavelength of the pump beams] and
that the width of this region varies smoothly over L, leading
to an x-dependent coupling constant γ0(x), phase φ(x) and
wavevector k0(x) between x= 0 and x= L. The axial-mode
eigenfunction is then given by(

Ēp(x)
Ē ∗c (x)

)
=
√
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2c

(
eiφ̄/2
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(9)

4This model has also been used in Ref. [9] for a superconducting weak
link.
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Fig. 3. Two PCM’s separated by a distance L

for

with

φ̄ = φ(x)+ i arcsinh(tan(∆φ/2) (10)

k(x) = k0

(
1+

γ0(x)
ω0

cos(φ(x)− φ̄)
)

. (11)

Here, we have used the axial-mode condition (5); the ap-
proximation δ � γ0 is justified because in our case of
Rc = 1 only for these frequencies a steady state is estab-
lished (M. Blaauboer)5. Substituting (9) into (8) yields

I = γ0 tan

(
∆φ
2

)
for tan(∆φ/2)� 1. (12)

This is the optical analogue of the DC supercurrent IS =
e∆0
h̄ sin

(
∆φ
2

)
for |∆φ | < π flowing through a quasi-1D su-

perconducting weak link. Note, however, that Eq. (12) is
only valid for small angles ∆φ , in order to be consistent
with the condition δ � γ0. For larger phase-differences no
steady-state, and hence no equilibrium current exists. If
there were N propagating modes in the intermirror region,
Eq. (12) would be multiplied by N and so for a given ∆φ
each mode would contribute γ0 to the resulting current (M.
Blaauboer).

The nonstationary (AC) optical
Josephson effect

When a voltage V is applied across a superconducting tun-
nel junction, or weak link, the phase difference between the
pair potentials changes in time as d(∆φ)/dt = 2eV/h̄. The
Josephson current is then an oscillating function in time,
IS(t)∼ sin(∆φ) = sin(2eV

h̄ t +(∆φ)t=0), and this is called the
nonstationary (AC) Josephson effect.
The optical analogue of the Fermi energy in a supercon-
ductor is the pump frequency of a PCM. The analogue
of a voltage difference V across the two superconductors,

5Strictly speaking, in the case of Rc = 1 a steady state is established only
for δ = 0. As |δ |> 0, we have Rc < 1 and the resulting current wil slowly
decay. For frequencies δ � γ0, however, this occurs on a timescale of
≥ µs (corresponding to a decay to a value 1/e of the original amplitude),
long enough to be observable.

which is in fact a difference in Fermi energies, is then a
frequency difference between the two pump beams on the
left and right. In view of this analogy one might wonder
whether such a frequency difference gives rise to an optical
AC Josephson effect. It is straightforward to show that this
is indeed the case.
First we examine the axial modes for the situation depicted
in Fig. 3. The only difference with the PCM-system consid-
ered before (Fig. 2) is that the nonlinear media on the left
and right are now pumped with different frequencies, ω1
and ω2 respectively. As a result of this frequency difference
a probe (or conjugate) wave propagating in the region be-
tween the two PCM’s will have a different frequency after
each round-trip. Consider e.g. a probe beam of frequency
ω1 +δ travelling to the right (see Fig. 3). The detuning of
this beam with respect to ω2 is ω1−ω2+δ , so after phase-
conjugate reflection at the PCM on the right a conjugate
beam will travel to the left with frequency 2ω2−ω1− δ .
Reflection at PCM 1 leads to a probe beam with frequency
3ω1−2ω2 + δ . The frequency change is thus 2(ω1−ω2)
per round-trip, or, equivalently, ω1−ω2 per unit of time
L/c. In the same time, during propagation from 0 to L, the
phase φ of the coupling constant γ changes from φ1 to φ2.
Stable axial modes then only occur if the frequency change
causes a change in time of the phase difference

d(∆φ)
dt

=±(ω2−ω1). (13)

This is the optical analogue of the AC Josephson effect. If
the frequency difference ω2−ω1 is much smaller than the
inverse response time of the PCM’s (for Kerr-type materials
typically GHz to THz) the system will adiabatically follow
and produce an alternating optical current with the pump-
frequency difference as its fundamental frequency.

Summary and experimental outlook

In conclusion, we predict a new analogy between optics and
micro-electronics [14], which exploits the known analogy
between quasiparticle excitations in a superconductor and
optical phase conjugation by four-wave mixing in a nonlin-
ear optical Kerr-type material, and consists of the optical
analogue of the DC and AC Josephson effects that occur
in superconducting weak links.
A PCM is typically pumped with frequency ω0≈ 1015 rad
s−1, has length Lc usually several millimeters and coupling
strength γ0 ≈ 109÷1010 s−1 [15]. One can thus arrange
γ0Lc/c≈ π/4, so phase-conjugate reflection at the PCM
occurs with probablity 1. Since λ0 = c/ω0(≈ 10−7 m) and
the coherence length ξ0 ≈ 10−2÷10−1 m, an intermirror
distance L ≈ 10−3 m satisfies the condition λ0 � L� ξ0,
corresponding to a short PCM-vacuum-PCM junction. The
optical Josephson current which can then be observed by
varying the phase of the coupling constants in the two
PCM’s with the respective pump beams, through e.g. let-
ting the path lengths of the pump beams differ on the left
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and right, and has frequency γ0≈ GHz-THz. The AC opti-
cal Josephson effect would be observable for a frequency-
difference between the pump waves on the left and right
of 109÷ 1012 rad s−1. The alternating current will then
oscillate on a nano- to picosecond time scale.
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