
Paper Optimization of the Multi-Threaded

Interval Algorithm for the Pareto-Set

Computation
Bartłomiej J. Kubica and Adam Woźniak

Abstract—Previous investigations of the authors surveyed the

possibility of applying interval methods to seek the Pareto-

front of a multicriterial nonlinear problem. An efficient algo-

rithm has been proposed and its implementation in a multi-

core environment has been done and tested. This paper has

two goals. First one is to tune the developed algorithm to in-

crease the speedup of the multi-threaded variant. The second

one is to extend the algorithm to compute not only the Pareto-

front (in the criteria space), but also the Pareto-set (in the

decision space). Numerical results for suitable test problems

are presented.

Keywords—interval computations, multicriterial analysis, multi-

threaded programming, Pareto set, POSIX threads, shared-

memory parallelization.

1. Introduction

It is well known that interval methods can be used as a pre-

cise and robust tool to solve nonlinear problems of various

types (see, e.g., [1]), in particular multicriterial optimiza-

tion problems (see, e.g., [2]–[4]). A multicriterial optimiza-

tion problem is commonly encountered in practical appli-

cations (e.g., [5]–[7]). It is a problem of the following

form:

min
x

qk(x) k = 1, . . . ,N , (1)

s.t.

g j(x) ≤ 0 j = 1, . . . ,m ,

xi ∈ [xi,xi] i = 1, . . . ,n ,

where decision variable x = (x1, . . . ,xn)
T ∈ R

n. In the se-

quel we shall denote the set of points satisfying the above

conditions as X (the set of feasible points). Precisely, we

seek the Pareto-set and Pareto-front of the above problem,

i.e., the set of all non-dominated points x∈X and the image

of such set.

In this paper we recall a previously developed algorithm [4]

and its parallelization using the Pthreads library [8]. Than,

we try to optimize the parallel version to obtain high per-

formance.

2. Basics of Interval Computations

Now, we shall define some basic notions of intervals and

their arithmetic. We follow a widely acknowledged stan-

dards (cf., e.g., [1], [9], [10]).

We define the (closed) interval [x,x] as a set {x ∈ R | x ≤
x ≤ x}. We denote all intervals by brackets; open ones will

be denoted as]x,x[and partially open as: [x,x[,]x,x]. (We

prefer this notation to using the parenthesis that are used

also to denote sequences, vectors, etc.)

Following [11], we use boldface lowercase letters to denote

interval variables, e.g., x, y, z, and IR denotes the set of

all real intervals.

We design arithmetic operations on intervals so that the fol-

lowing condition was fulfilled: if we have ⊙∈ {+,−, ·,/},

a ∈ a, b ∈ b, then a⊙ b ∈ a⊙b. The actual formulae for

arithmetic operations (see, e.g., [1], [9], [10]) are as fol-

lows:

[a,a]+ [b,b] = [a+ b,a + b] ,

[a,a]− [b,b] = [a−b,a−b] ,

[a,a] · [b,b] = [min(ab,ab,ab,ab),max(ab,ab,ab,ab)] ,

[a,a] / [b,b] = [a,a] ·
[

1/b,1/b
]

, 0 /∈ [b,b] .

Links between real and interval functions are set by the

notion of an inclusion function (see, e.g., [1]); also called

an interval extension (e.g., [10]).

Definition 1: A function f : IR → IR is an inclusion func-

tion of f : R→ R, if for every interval x within the domain

of f the following condition is satisfied:

{ f (x) | x ∈ x} ⊆ f(x) . (2)

The definition is analogous for functions f : R
n → R

m.

When computing interval operations, we can round the

lower bound downward and the upper bound upward. This

will result in an interval that will be a bit overestimated,

but will be guaranteed to contain the true result of the

real-number operation.

The quality of an interval approximation is often measured

by the width of an interval, widx = x− x.

3. The Algorithm to Approximate

the Pareto-Set

In [4] an algorithm to seek the Pareto-front has been pro-

posed. It subdivides the criteria space in a branch-and-

bound (b&b) manner and inverts each of the obtained sets

using a variant of the SIVIA procedure (i.e., set inver-

sion via interval analysis, see [12]). Some additional tools

70

Optimization of the Multi-Threaded Interval Algorithm for the Pareto-Set Computation

(like the componentwise Newton operator) are applied to

speedup the computations.

The algorithm is expressed by the following pseudocode.

Algorithm 1: Pseudocode of the algorithm

compute_Pareto-front (q(·), x(0), εy, εx)

// q(·) is the interval extension of the function

// q(·) = (q1, . . . ,qN)(·)
// L is the list of quadruples (y,Lin,Lbound,Lunchecked)

y(0) = q(x(0));

L =
{

(

y(0), {}, {}, {x(0)}
)

}

;

while (there is a quadruple in L, for which widy ≥ εy)

take this quadruple (y,Lin,Lbound,Lunchecked)
from L;

bisect y to y(1) and y(2);

for i = 1,2
apply SIVIA with accuracy εx

to quadruple (y(i),Lin,Lbound,Lunchecked);
if (the resulting quadruple has a nonempty

interior, i.e., Lin 6= /0)

delete quadruples that are dominated by y(i);

end if

insert the quadruple to the end of L;

end for

end while

end compute_Pareto-front

Please note that it is sufficient to break the SIVIA procedure

after finding an interior subbox. This leads to two variants

of our algorithm, as described in [4]: “breaking SIVIA”

and “non-breaking SIVIA”.

Also, It should be noted that, while the “non-breaking

SIVIA” variant computes both the Pareto-front and Pareto-

set, the “breaking” one leaves several boxes (from the deci-

sion space) unchecked. To compute the Pareto-set we have

to add a “finishing” procedure, described later in the paper.

4. A Multi-Threaded Variant

Threads are a most commonly used tool to parallelize com-

putations in a shared-memory environment. In opposite

to “heavy” processes threads run in a common address

space – they can share some of the variables and data struc-

tures (and obviously have private ones, too).

In our implementation the list L from the algorithm is

shared and each thread has an instance of the main while

loop.

Obviously, operations of fetching a quadruple from L, in-

serting a quadruple to L and deleting dominated quadruples

have to be synchronized. A single mutex (mutual exclusion

lock) associated with the list is proper here.

A bit more complicated issues are related to checking if all

boxes have already been investigated or not – each thread

has to check not only if the list is empty, but also if other

threads have finished computations or not. A conditional

variable is used there.

We define a table finish_thread[] of booleans – each

thread has a corresponding element, but the array is shared

by all threads. Obviously there is a mutex (as always with

the conditional variable) to synchronize operations on the

array. Initially each element of the array is set to zero

(i.e., “do not finish”).

When a thread realizes that the queue of quadruples

is empty, it sets its flag to true and checks if other

threads did. If so, it resumes all the threads, using

pthread_cond_broadcast() (so that they could termi-

nate) and finishes the work. Otherwise it suspends the

execution, using pthread_cond_wait().

On the other hand when a thread adds a new quadruple to

the queue, its pthread_cond_signal()signals it to one

of the waiting threads.

And when a thread wakes up, it checks all flags in

finish_thread[] once more and either terminates or re-

sets its own flag and continues work.

5. Changes to the Algorithm

5.1. How to Increase the Efficiency of the Parallel

Algorithm?

There are two major problems that decrease performance

of the parallel algorithm:

– threads have to wait for each other when manipulat-

ing shared resources (in our case – the list of quadru-

ples);

– the parallelism causes that quadruples that in the se-

rial variant would be deleted in initial iterations are

unnecessarily processed by other threads.

To minimize the influence of the first problem we have to

make all operations that have to be synchronized as quick as

possible. In our case the list of quadruples is implemented

as a unidirectional linked list with a shortcut to the last

element. Consequently, insertion of an element at the end

is quick. On the other hand retrieving the box for which

widy ≥ εy requires a linear search of the list.

A simple improvement (similar to the one used in interval

unicriterial global optimization algorithms; see, e.g., [10])

is to use two separate lists: the list L of boxes that are still

processed and a new list S of small boxes that are not going

to be bisected anymore.

Now the operation of obtaining the first box from L is as

efficient as inserting a box to its end. The only costly op-

eration that remains is the procedure of deleting dominated

boxes, but as the list is now divided in two parts, this pro-

cedure improves, too.

Obviously, the list S must have its own mutex to synchro-

nize operations on it (“insert” and “delete dominated”).

71

Bartłomiej J. Kubica and Adam Woźniak

Still the second of previously mentioned problems remains

an important drawback of the method. Boxes that are cur-

rently processed by one of the threads are not removed

by the “delete dominated” procedure and are going to be

uselessly processed for several iterations.

To deal with this problem we add a third shared resource –

a queue (implemented by a table of length roughly equal

to the number of threads) of criteria vectors used lately

to delete boxes that they dominate. New quadruples to

be processed are compared with the values in the list –

dominated ones are rejected.

Obviously, operations on this queue have to be synchro-

nized, but – as these operations often require reading

only – a readers-writer lock is more sufficient than a mutex

there. As each thread reads and writes from it alternat-

ingly (precisely: two reads than one write), no starvation

is possible.

5.2. What to Do with the Lists of Unchecked Boxes?

The procedure to finish the computation for remaining

quadruples is simple. The ordinary SIVIA procedure can

be used on them; only with the “breaking SIVIA” flag

unset.

What is more interesting is the parallelization of this part

of the program. Two models were used to create threads

for this computation:

– “many finishing threads” – the main thread iterates

through the list L and creates a specific thread to

finish the computations for each of the elements;

– “N finishing threads” – a given number of threads are

created; they iterate through the list simultaneously

and finish computations for different elements.

Obviously, both variants require proper extensions to the

structure of elements, stored in L:

– in the first case we have to add a field to store tid of

the finishing thread;

– in the second case we add to each element a flag

finished and a mutex to protect it.

6. Numerical Experiments

Results for two test problems are going to be presented.

The first one is constrained, but seems to be simple:

min
x1,x2

(

q1(x1,x2) = −(5x1 + 12x2− x2
1 − x2

2) ,

q2(x1,x2) = −(x1 + x2)
)

, (3)

s.t.

−2x1 − x2 + 12 ≤ 0

−x1 + x2 −2 ≤ 0

4x1 −2x2−47 ≤ 0

x1,x2 ∈ [0,50] .

The second one is taken form [13]. It is a good bench-

mark for multicriterial optimization problems, because min-

imized functions are complicated and its Pareto-front and

Pareto-set are both nonconnected (suitable figures are pre-

sented in [4]):

min
x1,x2

(

q1(x1,x2) = −
(

3(1− x1)
2 exp(−x2

1 − (x2 + 1)2)

−10
(x1

5
− x3

1 − x5
2

)

exp(−x2
1 − x2

2)

−3exp(−(x1 + 2)2 − x2
2)

+0.5(2x1 + x2)
)

, (4)

q2(x1,x2) = −
(

3(1 + x2)
2 exp(−x2

2 − (1− x1)
2)

−10
(

−
x2

5
+ x3

2 + x5
1

)

exp(−x2
2 − x2

1)

−3exp(−(2− x2)
2 − x2

1)
)

)

,

x1,x2 ∈ [−3,3] .

Due to the nondeterministic nature of parallel computa-

tions, results for four runs are presented for each of the

multi-threaded variants.

Table 1

Problem (3), N = 1, εy = 10−3, εx = 10−4

Alg. variant Non-breaking Breaking

old T (1) 182 23

new T (1) 181 24

f 18319573 3274377

∇ f 15517892 921836

g 405435 209820

∇g 559212 414915

bis y 159127 47625

bis x 279605 155730

L 91309 27434

Lin 1 486

Lbound 433627 202645

Table 2

Problem (3), N = 2, old, breaking SIVIA, εy = 10−3,

εx = 10−4

No. 1 2 3 4

T (2) 44 48 56 33

f 3274377 3313486 3274502 3274397

∇ f 921838 932688 921960 921842

g 209820 211848 209833 209820

∇g 414915 419485 414972 414915

bis y 47625 48588 47627 47626

bis x 155730 157169 155739 155730

L 27440 27986 27443 27443

Lin 487 488 488 489

Lbound 202689 205345 202718 202714

72

Optimization of the Multi-Threaded Interval Algorithm for the Pareto-Set Computation

The program was implemented in C++, using C-XSC 2.2.1

library [14] for interval computations. The parallelization

was done using POSIX threads [15].

Computations were performed on a machine with Intel

S775 Core 2 Quad Q6600 2.4 GHz processor and 2 GB

RAM, under control of Linux Slackware 12.0 operating

system (with the 2.6.21.5-smp kernel). The GCC compiler

was used in version 4.1.2.

Table 3

Problem (3), N = 4, old, breaking SIVIA, εy = 10−3,

εx = 10−4

No. 1 2 3 4

T (4) 46 68 86 96

f 3706197 3706826 3274545 3275720

∇ f 1037810 1038116 921864 922546

g 231104 231214 209820 209960

∇g 463436 463596 414915 415246

bis y 58882 58880 47629 47636

bis x 170578 170665 155730 155836

L 33728 33722 27447 27444

Lin 491 488 494 487

Lbound 231764 231732 202752 202716

Table 4

Problem (3), N = 2, new, breaking SIVIA, εy = 10−3,

εx = 10−4

No. 1 2 3 4

T (2) 20 21 16 18

T (1)/T (2) 1.20 1.14 1.5 1.33

f 3644854 3624613 3246557 3222754

∇ f 1022666 1021852 917838 912122

g 229376 229735 209855 209144

∇g 456835 456669 412969 410852

bis y 58306 58026 47919 47119

bis x 169214 169555 155630 155270

L 32958 32741 27173 26777

Lin 483 489 477 486

Lbound 225999 223533 199139 197038

Tables 1–11 present a few variants of the algorithm:

– a single-threaded program, using breaking or non-

breaking SIVIA algorithm variants;

– “old” multi-threaded implementations of breaking or

non-breaking SIVIA algorithm variants; they do not

use modifications presented in this paper;

– “new” multi-threaded implementations of breaking or

non-breaking SIVIA algorithm variants; they use the

modifications presented in this paper.

The “new” implementations have “finishing threads” as de-

scribed above; their number may be equal to the number

of threads that execute the b&b method (2 or 4) or there

might be an “indefinite number of finishing threads”, which

is explicitly marked then.

Table 5

Problem (3), N = 4, new, breaking SIVIA, εy = 10−3,

εx = 10−4

No. 1 2 3 4

T (4) 12 14 12 15

T (1)/T (4) 2.00 1.71 2.00 1.60

f 3222390 3637486 3247590 3616950

∇ f 912900 1022034 919978 1022494

g 209513 229731 210574 230025

∇g 411207 456761 414036 457160

bis y 47053 58121 47830 57734

bis x 155442 169501 156188 169853

L 26544 32640 26943 32428

Lin 490 475 488 484

Lbound 195903 224062 197702 222481

Table 6

Problem (3), N = 4, new, non-breaking SIVIA, εy = 10−3,

εx = 10−4

No. 1 2 3 4

T (4) 273 200 213 202

f 18539981 18445743 18408647 18451755

∇ f 15924704 15814380 15763692 15848002

g 405435 405435 405435 405435

∇g 559212 559212 559212 559212

bis y 157672 157538 157668 157481

bis x 279605 279605 279605 279605

l 89164 89018 89102 88866

Lin 1 1 1 1

Lbound 420030 420318 420451 417555

Please note that differences between the “old” and “new”

variant of the algorithm rely on synchronization primitives

and data structures management only, so they do not af-

fect the number of criterion functions evaluations, gradients

evaluations, etc. Only times of computation differ as it can

be seen in Tables 1 and 7.

Notation for Tables 1–11 is as follows:

• T (N) – computation time in seconds (for N threads),

• f – number of criterion evaluations,

• ∇ f – number of criterion gradient evaluations,

• g – number of constraints evaluations,

• ∇g – number of constraints gradients evaluations,

• bis y – number of bisections in the criteria space,

• bis x – number of bisections in the decision space,

• L – number of resulting quadruples,

• Lin – number of resulting interior boxes,

• Lbound – number of resulting boundary boxes.

73

Bartłomiej J. Kubica and Adam Woźniak

In captions of the tables we write:

• test problem number;

• “old” – for the algorithm described in [8] or “new”

– for the modified method, presented here;

• “N = . . .” for the number of threads, adding “indefi-

nite” if the number of finishing threads was such;

• “breaking SIVIA” or “non-breaking SIVIA”;

• accuracies: εy and εx.

For Tables 2, 3 and 6 a slowdown was obtained instead of

a speedup, so we do not compute any speedup T (1)/T (N)
for them.

Table 7

Problem (4), N = 1, old, εy = 0.2, εx = 10−3

Alg. variant Non-breaking Breaking

old T (1) 941 254

new T (1) 942 251

f 18591128 5786259

∇ f 15089688 3358486

bis y 441 440

bis x 1689116 819561

L 174 173

Lin 284989 301741

Lbound 424703 398416

Table 8

Problem (4), N = 4, indefinite, new, breaking SIVIA,

εy = 0.2, εx = 10−3

No. 1 2 3 4

T (4) 129 125 126 146

T (1)/T (4) 1.95 2.01 1.99 1.92

f 6070586 5914523 5912838 6834256

∇ f 3527204 3434490 3431324 3957086

bis y 451 462 448 480

bis x 860940 837719 837227 966762

L 181 178 178 203

Lin 315906 308057 307955 352962

Lbound 418477 406901 407869 476708

Table 9

Problem (4), N = 2, new, breaking SIVIA, εy = 0.2,

εx = 10−3

No. 1 2 3 4

T (2) 130 129 130 131

T (1)/T (2) 1.93 1.95 1.93 1.92

f 5896384 5786532 5834466 5929859

∇ f 3422286 3359012 3386998 3441636

bis y 441 442 441 441

bis x 835183 819592 826520 839983

L 177 173 175 178

Lin 307555 301741 304292 309399

Lbound 406781 398416 402308 409390

Table 10

Problem (4), N = 4, new, non-breaking SIVIA, εy = 0.2,

εx = 10−3

No. 1 2 3 4

T (4) 299 293 275 291

T (1)/T (4) 3.15 3.21 3.42 3.23

f 20239650 20132048 18648308 19925301

∇ f 16244024 16147668 15089772 15997082

bis y 488 494 451 484

bis x 1819498 1807109 1701210 1793874

L 200 201 182 200

Lin 337125 339912 298077 334196

Lbound 500867 507761 446478 498749

Table 11

Problem (4), N = 4, new, breaking SIVIA, εy = 0.2,

εx = 10−3

No. 1 2 3 4

T (4) 68 67 67 66

T (1)/T (4) 3.69 3.75 3.75 3.80

f 6169467 5967139 6055588 5851089

∇ f 3579196 3463062 3510842 3396582

bis y 454 441 452 445

bis x 874123 845219 856911 828741

L 185 180 183 175

Lin 319963 311211 314298 304949

Lbound 427422 411917 418824 403354

7. Results Analysis

As it was stated in [4], our algorithm can compute the

approximation of the whole Pareto-front in nonconnected

case, compared to pointwise approximation with only

15 points, obtained by classical methods (see [13], [16]). It

means that potentialities of the proposed algorithm are in-

teresting and we hope that it can be used to solve practical

problems.

As we can see in Tables 1–3, the old variant of the parallel

algorithm, presented in [4] achieved no speedup for test

problem (3). It is surprising, but apparently, the penalty for

synchronization is too large. Fortunately, due to changes

made to the program a speedup is obtained (Tables 4 and 5).

The “indefinite number of finishing threads” variant seems

inefficient – on 4 processors its performance was compara-

ble to “N finishing threads” on 2 processors for problem (4).

Although the operating system managed to schedule the

large number of threads properly, it clearly consumed too

much resources. Clearly, as thread creation and joining is

relatively expensive on today architectures, it seems opti-

mal to have the number of threads (approximately) equal

to the number of processors/cores.

For problem (3) it did not work at all – it required too

much memory for a single process. Please note, also, that

as this variant was easy to implement in Pthreads, it would

be very difficult to implement, e.g., in classical OpenMP

(older than version 3.0) that does not use tasks.

74

Optimization of the Multi-Threaded Interval Algorithm for the Pareto-Set Computation

Changes made to previously created algorithm resulted in

speedup of the parallel implementation. While the older

version achieved no speedup for problem (3), the modified

did. Anyway, the speedup was not as great as for prob-

lem (4).

It is also worth noting that the “breaking SIVIA” variant of

the algorithm occurred to parallelize better than traditional,

“non-breaking SIVIA” one. If SIVIA is broken after finding

an interior box, much work is moved from the branch-and-

bound method (which requires relatively much synchroniza-

tion between concurrent threads) to the “finishing” part of

the algorithm which requires no synchronization and can

even be classified as “embarrassingly parallel”.

8. Conclusions

Interval methods seem to be well suited to approximate the

Pareto-set of a multicriterial optimization problem. Effi-

cient parallelization, based on POSIX threads, targeted for

a mutli-core environment has been proposed by authors.

Thanks to proper use of several synchronization primitives

and suitable algorithm tuning, the program parallelizes well

on 4 cores, allowing speedup over 3.82 for test problem (4).

Testing the algorithm on higher number of cores will be

subject to our future research.

Acknowledgment

The research has been supported by the Polish Ministry of

Science and Higher Education under grant N N514 416934.

References

[1] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval

Analysis. London: Springer, 2001.

[2] V. Barichard and J. K. Hao, “Population and Interval Constraint

Propagation Algorithm”, in Second International Conference on

Evolutionary Multi-Criterion Optimization (EMO 2003), Faro, Por-

tugal, April 8–11, 2003, LNCS, vol. 2632. Berlin-Heidelberg:

Springer, 2003, pp. 81–101.

[3] G. R. Ruetsch, “An interval algorithm for multi-objective optimiza-

tion”, Struct. Multidiscip. Opt., vol. 30, no. 1, pp. 27–37, 2005.

[4] B. J. Kubica and A. Woźniak, “Interval methods for computing the

Pareto-front of a multicriterial problem”, in The Seventh Interna-

tional Conference on Parallel Processing and Applied Mathematics

PPAM 2007, Gdańsk, Poland, September 2007, LNCS, vol. 4967.

Berlin-Heidelberg: Springer, 2008, pp. 1382–1391.

[5] M. Marks and E. Niewiadomska-Szynkiewicz, “Multiobjective ap-

proach to localization in wireless sensor networks”, J. Telecommun.

Inform. Technol., no. 3, pp. 59–67, 2009.

[6] W. Ogryczak, “Reference point method with importance weighted

partial achievements”, J. Telecommun. Inform. Technol., no. 4,

pp. 17–25, 2008.

[7] C. Gomes da Silva and J. C. N. Clímaco, “A note on the computa-

tion of ordered supported non-dominated solutions in the bi-criteria

minimum spanning tree problems”, J. Telecommun. Inform. Technol.,

no. 4, pp. 11–15, 2007.

[8] B. J. Kubica and A. Woźniak, “A multi-threaded interval algorithm

for the Pareto-front computation in a multi-core environment”, in

PARA 2008 Conf., Trondheim, Norway, 2008.

[9] E. Hansen, Global Optimization Using Interval Analysis. New York:

Marcel Dekker, 1992.

[10] R. B. Kearfott, Rigorous Global Search: Continuous Problems. Dor-

drecht: Kluwer, 1996.

[11] R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary,

and P. van Hentenryck, “Standardized notation in interval analysis”,

http://www.mat.univie.ac.at/ neum/software/int/notation.ps.gz

[12] L. Jaulin and E. Walter, “Set inversion via interval analysis for

nonlinear bounded-error estimation”, Automatica, vol. 29, no. 4,

pp. 1053–1064, 1993.

[13] I. Y. Kim and O. L. de Weck, “Adaptive weighted-sum method for bi-

objective optimization: Pareto front generation”, Struct. Multidiscip.

Opt., vol. 29, no. 2, pp. 149–158, 2005.

[14] “C-XSC library”, http://www.xsc.de

[15] “POSIX threads programming”,

https://computing.llnl.gov/tutorials/pthreads

[16] E. Zitzler, M. Laumanns, and M. Thiele, “SPEA2: improving the

strength Pareto evolutionary algorithm for multiobjective optimiza-

tion”, in Evolutionary Methods for Design Optimization and Con-

trol, K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailiou, and

T. Fogarty, Eds. Barcelona: CIMNE, 2002.

Bartłomiej Jacek Kubica re-

ceived his Ph.D. in computer

science in 2006 from the War-

saw University of Technology

(WUT), Poland. Since 2005

he is employed at WUT. Cur-

rently he works as an Assistant

Professor in Complex Systems

Group. He coorganizes interval

sessions at PPAM conferences

and organizes at PARA. He co-

authored a book on parallel programming and wrote several

papers and presentations. His research interests focus on

interval methods, parallel computations and optimization

algorithms.

e-mail: bkubica@elka.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

Adam Woźniak received Ph.D.

in control science in 1975 from

the Warsaw University of Tech-

nology (WUT), Poland. He is

employed at the Institute of

Control and Computation En-

gineering of WUT since 1970.

Now he is a reader in Systems

Control Division, Complex Sys-

tems Group. His research inter-

ests include control of complex

systems, robot control, decision support systems, multi-

criteria optimization, game theory, multiagent systems in-

cluding mechanism design and auctions, interval methods

applications.

e-mail: A.Wozniak@ia.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

75

