
Paper Component-Based Architecture

for Systems, Services and Data Integration

in Support for Criminal Analysis
Jacek Dajda, Roman Dębski, Aleksander Byrski, and Marek Kisiel-Dorohinicki

Department of Computer Science, AGH University of Science and Technology, Kraków, Poland

Abstract—Criminal analysis processes is based on heteroge-

neous data processing. To support it, analysts utilize a large

set of specialized tools, however they are usually designed to

solve a particular problem are often incompatible with other

existing tools and systems. Therefore, to fully leverage the

existing supporting tools, their technological integration is re-

quired. In this paper we present original approach for in-

tegrating systems based on the component-driven paradigm.

Firstly, a problem of supporting criminal analysis is described

with a strong emphasis on the heterogeneity issues. Secondly,

some theoretical information about integration is depicted fol-

lowed by the details of the proposed architecture. Finally,

the technological assumptions are discussed and prototype in-

tegration based on proposed concept is overviewed. om the

experiments are discussed in the final part of the paper.

Keywords—criminal analysis, component-based systems, soft-

ware integration.

1. Introduction

The continuous technological development affects various
domains and aspects of life resulting in progressing in-
formatization of organizations, procedures but also daily
routines and habits. Interestingly, this process can be also
observed in such area as police operation activities and
criminal analysis. On the other hand, contemporary crim-
inals use more and more sophisticated methods based on
modern information technologies, which again, cause po-
lice analysts to develop new techniques. While these tech-
niques often prove useful, every new information source or
analyzing scheme requires additional time to be processed
or executed.
Therefore, to support analyst in this process, various soft-
ware tools are developed. They operate on different data
and data formats as well as provide different set of features.
These tools are developed by different software teams and
often in different technologies and architectures. As result
while specific activities are supported, there are still signifi-
cant support gaps related to data handling and colligation as
well as operation flows arrangement and execution. These
gaps are also caused by the problem of new data sources
and operations that are introduced continuously into the
whole process. These sources and operations often remain
unhandled by the existing tools that were designed for other
purposes and are not generic enough.

Taking all of these under consideration, it must be assumed
that the proper solution should be based on the concept
of integration. The proper designed integration-driven ar-
chitecture should be opened for adding new information
sources and analytical operations provided by existing li-
braries and systems. On the other hand, it should remain
lightweight and scalable so that can applied both to single
desktop applications as well to larger systems.
The goal of this article is to present the concept of such
architecture. To make the architecture flexible, it is pro-
posed to take advantage of the component paradigm [1].
This paradigm assumes assembling applications from a set
of independent components through well-defined functional
contracts. By adding new components to the system, it can
be extended to cover new requirements. What is more, the
proposed architecture assumes the reuse of the component-
based approach on all the architectonic levels from the data
layer to the graphical user interface layer.
The structure of the paper is as follows. In the next sec-
tion, the basics of the criminal analysis process are pre-
sented. Next section depicts current state of art. Section 4
is dedicated to the overview of the proposed architecture.
In Section 5, the key mechanism behind the architecture
are explained. Section 6 discusses the technological as-
sumptions for architecture realisation. Section 7 presents
an example implementation and preliminary evaluation of
the proposed architecture. Finally, Section 8 contains the
summary and plan for future work.

2. Supporting Criminal Analysis

The process of criminal analysis can be briefly described as
a loop of the following intertwined activities: data-retrieval,
processing, visualisation and interpretation. The rule of
operation depends on a given scenario. The general concept
is presented in Fig. 1.
It assumes that the analyst operates on various informa-
tion sources such as police databases and Internet services
and also on such operational data as phone billings. The
data retrieval from a specific source requires a dedicated
tool or parser. After the data is retrieved it can be fil-
tered, searched, and analyzed with the use of available op-
erations and algorithms such as pattern recognition algo-
rithms [2] or hypothesis testing based on social networks

67



Jacek Dajda, Roman Dębski, Aleksander Byrski, and Marek Kisiel-Dorohinicki

Fig. 1. Criminal analysis.

approach [3], [4]. Typically, there is a specific range of
operations which can be executed on a data coming from
a given source.
The result of the data processing stage is usually a subset
of the initial data, which can be visualized using some pre-
defined visualization type. The visualization stage assumes
a considerable amount of human interaction in order to ex-
tract additional information based on such prerequisites as
specific layout of data.
As stated in the beginning, the whole process is not a one-
time sequence of operations but a continuous loop in which
the analyst, based on his/her findings inspired by the spe-
cific visualization, can go back to specific stage and re-
peat the whole process by performing new visualizations
or other operations on the actual data as well as adding
new data or even new data sources to the analysis.
No doubt, the whole process can be time-consuming and
error-prone. Thus, a proper software support is needed.
While the results interpretation must be still carried out by
the analyst (although in near future it can be also supported
by artificial intelligence reasoning), the rest three activities
can be greatly optimized by the proper software tool sup-
port. However, these tasks pose certain challenges.
First of all, the range of data sources is unlimited and
can vary from Internet pages, through data-bases to simple
text files containing data in structure or unstructured form.
What is more, each data source may produce a unique set of
data types which require specific processing. Once the data
is obtained and the processing results are ready, they need
to be visualized in order to be interpreted by the analyst.
Again, each data type may require a dedicated visualiza-
tion type, which, to make it more complex, may be linked
with other visualization to form an efficient graphical user
interface for the analyst.
What the data sources have in common is that they usually
produce large quantities of information which is practically
impossible to process manually. This constitute another
challenge for the designers of supporting solutions.
Currently, there is a variety of tools and systems available
that offer a different amount of support for certain data
domains or operations. These solutions can be classified

into two groups: specific and general-purpose ones. An
example of the specific solution is the LINK platform [5]
which allows for data analysis and visualization using ob-
ject graphs. As for the general-purpose tool, Excel can
be given as an example. During the process of analysis,
these solutions are often utilized together. However, their
integration is often limited or none. As result, while the
individual solutions are of great help for the analyst, he/she
spends a considerable amount of time on data transforma-
tions and moving the results from one solution to the other
in order to continue the investigation plot.
Theoretically, the problem could be solved by constructing
a large, scalable all-purpose analytical environment which
will allow for handling all possible data sources and will
provide all the necessary services and visualizations. How-
ever, from the practical and economical point of view this
is impossible and cannot be accepted as a solution to the
problem. Another utilized approach is the integration of the
available legacy solutions and databases. In most cases, this
assumes integration of specific products such as database
and analytical system. However, in the discussed case, this
is not a fully satisfactory solution due to the number of
possible sources and utilized systems. What is more, new
sources or systems can be added in future which emerges
from the organizational and other aspects that are beyond
the decisions of software architects.
All of this makes the problem even more challenging. It
seems that the core of the problem lies in the heterogeneity.
The heterogeneity can be observed onto 3 following levels:

– data sources,

– service providers (operations),

– technologies.

Data sources can vary in the data containers, formats and
standards of the data. Service providers can differ in the
rule of operation, semantics of the input arguments and
produced results. As for heterogeneous technologies, this
aspect must be considered on every stage of the analytical
process which means data sources, service providers and
visualization libraries.
No doubt, the heterogeneity should be approached and han-
dled on the general architectural level. In the next section
the current state of art in terms of software integration is
overviewed.

3. Software Integration Styles

Application integration is nowadays a mature engineering
discipline – good practices are cataloged in the form of
patterns [6]. All the patterns can be generalized and divided
into four main categories: file transfer, shared database,

remote procedure invocation and messaging. The following
sections describe briefly each of them.

68



Component-Based Architecture for Systems, Services and Data Integration in Support for Criminal Analysis

3.1. File Transfer

This approach to integration utilizes files – universal stor-
age mechanism available in all operating systems. One ap-
plication (producer) creates a file that contains the infor-
mation needed by the other applications. Next, the other

Fig. 2. File transfer.

applications (consumers) can read the content of the file
(Fig. 2). Choosing this approach has the following con-
sequences [6]:

– it is data sharing oriented (not functionality sharing

oriented),

– files are (effectively) the public interface of each ap-
plication,

– choosing the right file (data) format is very important
(nowadays it is often XML),

– applications are decoupled from each other,

– applications are responsible for managing the files
(creation, deletion, following file-naming conven-
tions etc.),

– updates usually occur infrequently and, as a conse-
quence, the communicating applications can get out
of synchronization,

– integrators need no knowledge of the internals of ap-
plications.

3.2. Shared Database

In this pattern the integrated applications store their data in
a single (shared) database. The stored data can be imme-

Fig. 3. Shared database.

diately used by the other applications (Fig. 3). Choosing
this approach has the following consequences [6]:

– it is data sharing oriented (not functionality sharing

oriented),

– data in the database are always consistent,

– defining a unified database schema that can meet the
needs of many applications can be a really difficult
task,

– any change of the shared database schema may have
impact on all integrated applications (applications are
strongly coupled),

– since every application uses the same database, there
is no problem with semantic dissonance [6],

– shared database can become a performance bottle-
neck and can cause deadlocks.

3.3. Remote Procedure Invocation

In this approach each part of the integrated system (a set of
cooperating applications) can be seen as a large-scale object
(or component) with encapsulated data. Shared function-

Fig. 4. Remote procedure invocation.

ality of each application is accessible via its public inter-
face1 (Fig. 4). Choosing this approach has the following
consequences [6]:

– it is functionality sharing oriented (not data sharing

oriented),

– applications can provide multiple interfaces to the
same data,

– applications are still fairly tightly coupled together
(often each application of the integrated system per-
form a single step in many-step algorithms: in such
a case one application’s failure may bring down all
of the other applications),

– communication is (usually) synchronous,

– developers often forget that there is a big difference in
performance and reliability between remote and local
procedure calls – it can lead to slow and unreliable
systems.

1A number of technologies such as CORBA, COM, .NET Remoting,
Java RMI and Web Services implement Remote Procedure Invocation
(also referred to as Remote Procedure Call or RPC).

69



Jacek Dajda, Roman Dębski, Aleksander Byrski, and Marek Kisiel-Dorohinicki

3.4. Messaging

This approach combines all the benefits of the previ-
ous three and is often considered [6] as the best one.
Messages transfer packets of data frequently, immediately,

Fig. 5. Messaging.

reliably and asynchronously using customizable formats
(Fig. 5). Choosing this approach has the following con-
sequences [6]:

– sending small messages frequently allows applica-
tions to collaborate behaviorally as well as share data,

– applications are decoupled (it has many consequences
e.g., integration decisions can be separated form the
development of the applications),

– the integrated applications (usually) depend on
a messaging middleware.

4. Component-Driven Integration
Architecture

Each of the presented integration styles has its advantages
and disadvantages. Also, each one of them imposes spe-
cific requirements on the integrated systems. While ful-
filling these requirements is possible for developers of the
integrated systems, the same cannot be assumed when deal-
ing with legacy, or worse, external systems. In this case,
the choice of the proper integration style may vary on the
specifics of given systems.
It seems that in the discussed problem a greater level of
flexibility is needed. One that will allow to embed all
the styles and utilize the one that suits best the integrated
systems. To achieve this flexibility, it is proposed here to
take advantage of the component paradigm.
Using the paradigm, it is possible to build an extensible
architecture in which various integration styles can be re-
alized by adding new dedicated components. In such ap-
proach, the integration can be view from the following two
perspectives: low-level and high-level.
The high-level perspective is the one already discussed in
the previous section. It means integration of data sources
and systems by establishing data and service links. In
the low-level perspective, integration refers to the individ-
ual components and their contracts. By providing proper
components in the low-level, it is possible to achieve

the high-level integration of desired style. For example,
the shared database approach can be achieved by provid-
ing proper components dealing with the aspects of data
retrieval (e.g., communication with the database) and con-
version (e.g. object-relationship mapping of specific tables
to a specific object model).

Fig. 6. Component-driven integration architecture.

In Fig. 6 the proposed architecture is presented. The ar-
chitecture is driven by the component paradigm. The ar-
chitecture consists of the following types of elements:

Externals. They include all the external entities that oper-
ate within the architecture such as available data sources,
services and systems.

Drivers. They are specific elements of the architecture that
enable the low-level integration of the externals in the
whole architecture. Drivers are responsible for handling
communication with the externals and providing a model
(data or service based) for other architectural elements that
need to communicate with the externals. A JDBC driver
or specific web service proxy are the examples of drivers.

Services. These elements are responsible for data process-
ing and publishing to other elements. Processing includes
data conversion, filtering (transformers) and execution of
domain specific operations and algorithms (functional ser-
vices). Also, there is a group of publishing services for

70



Component-Based Architecture for Systems, Services and Data Integration in Support for Criminal Analysis

both external systems (such as web services) and the visu-
alization elements which can be utilized to prepare data for
visualization purposes, in this way, improving the visual-
ization performance.

Visualization elements. They are responsible for visual-
ization of the data and processing results. An example of
a visualization element, a graph-based view of the data can
be given.

The layout of the elements and scheme of their dependen-
cies presented in Fig. 6 are illustrative only.
There are two significant aspects of the presented archi-
tecture to be emphasized. First, all of the architectural
elements (except externals of course) are software compo-
nents, and thus are represented by identical symbols. Be-
ing components, they can be attributed with some contracts
based on which they can be assembled and communicate
with each other. This is represented by arrows showing
how the communication and data can flow between these
components. This shows how the whole integrated system
can be extended with the support of new data source or
service. In that case, a specific component or components
(driver at least, maybe some transformer) need to be pro-
vided and linked with other existing components to provide
new features.
The second aspect is how linking the components can pro-
vide new features. Obviously, a feature (in terms of user
functionality) is usually built around several cooperating
components. Let’s take a closer look on the selected com-
ponents which are distinguished in Fig. 6 by the dark colour.
There are 6 interlinked components: starting from a data
source, through its driver, data transformer, functional ser-
vices with a visualisation component at the top. These
components clearly form a kind of processing sequence.
This sequence is a flow of certain operations performed on
a given data. Therefore, it can be treated as a dataflow.
One can notice that the operation of the whole architecture
is based on various dataflows. The concept of dataflow is
the core mechanism of the architecture and reflects the an-
alytical process presented in Fig. 1. Next section describes
the concept in more details.

5. Realization Assumptions

Having overviewed the architecture concept, the initial tech-
nological assumptions can be made.
When the technological assumptions are made there are
always several aspects and levels on which the choice of
proper technologies must be concerned. Here, the follow-
ing aspects are taken under consideration: modularity, data
persistence, communication, graphical user interface, se-
mantic integrity.

5.1. Modularity

The presented concept emphasizes the system modularity
which can be realized by a component-based approach.

There are several available component frameworks avail-
able from simple and efficient PicoContainer [7], Guice [8]
to complex and advanced ones such as Spring framework
[9] and Eclipse RCP [10], which provide also a number of
other advanced features.

5.2. Data Persistence

While the proposed architecture assumes data retrieval from
external data sources, the integration infrastructure also
requires internal persistence mechanism, for example for
caching and versioning purposes. This makes the persis-
tence a crucial aspect in which the performance is very im-
portant for efficient processing of massive quantities of data.
Also, an important aspect is the flexibility which would al-
low for handling completely new data models without cor-
rupting the existing data. For this reason, it is assumed that
the persistence mechanism can be realized through ORM
paradigm [11].

5.3. Communication

There are several methods of communication that might
be required in the discussed architecture. In the simplest
case, a component-based framework can be sufficient plat-
form for plugin-based communication. However, in more
distributed approach, in particular when services integra-
tion is considered, network-oriented technologies are re-
quired. Here the Java RMI [12] or SOA [13] concept and
its implementations can be utilized such as Apache Geron-
imo [14] or Microsoft’s Windows Communication Founda-
tion WCF [15].

5.4. Graphical User Interface

The choice of proper GUI technology is always a diffi-
cult task as it strongly depends on the user requirements
and preferences, which are often very individualistic. The
situation is also aggravated by the fact that currently at
the market there is a number of libraries and technologies
available.
Another aspect refers to the architecture type of the system:
whether is it web-based application, server-client applica-
tion (with heavy client) or desktop application for off-line
work. Another issue is the target platform whether this is
Windows, Linux or Mac.
With a high level of uncertainty concerning above aspects,
it seems that the following assumptions need to be taken:

• It is preferable to use a technology which is portable.
With a use of web-based architecture this requirement
is of course easier to fulfill than for desktop appli-
cation. As for example, solution J2EE technologies
with Ajax support (such as RichFaces [16] library)
might be pointed out.

• It is preferable to use a technology which is flexible
with respect to the way of execution (web application
or desktop). Currently, this assumption is the latest

71



Jacek Dajda, Roman Dębski, Aleksander Byrski, and Marek Kisiel-Dorohinicki

trend realized by such technologies as Windows Pre-
sentation Foundation WPF [17] and Silverlight [18],
Adobe AIR [19] or JavaFx [20].

A careful look should be given to WPF library as it is
aimed at clear presentation of the data transformations that
may be performed in the system.

5.5. Semantic Integrity

To achieve the semantic integrity between various models
emerging from different data sources the ontology paradigm
might be used. As for technological choices, one of the op-
tion can be Web Ontology Language (OWL) and Resource
Description Framework (RDF) graphs [21].

6. Selected Implementation Aspects

To validate the proposed architecture, a prototype imple-
mentation is realized. For experimental purposes, a simple
integration scenario is proposed. The goal of the scenario
is to integrate two analytical applications. The first one is
LINK tool [5] which allows for importing, preprocessing
and visualising data coming from file-based sources. The
second application is Mammoth [22] which offers special-
ized pattern recognition and discovery functionalities.
Both applications have their strong an weak points, however
when utilized together they can form an advanced analyti-
cal platform. The integration scenario assumes that LINK
application can be used as data import, preprocessing and
visualization tool, while Mammoth can provide routines
for finding the patterns in the imported data, which can
be visualized in a form of graph. To make the integra-
tion more difficult, the applications are realized in different
technologies: LINK is realized in Java technologies while
Mammoth is developed in .NET technologies.

Fig. 7. Architecture overview of the prototype integration.

Figure 7 illustrates how the proposed component-drive ar-
chitecture is applied to the discussed scenario. First thing
to be noticed is that the chosen integration style is the
shared database approach. There is also another data source
which is a CSV file. The idea is that LINK provides dedi-
cated components for reading data coming from CSV files
and preprocessing the data. Once the data is ready, it is
put into the shared database and can be visualized in form
of tables or visual graphs.
In order to perform an advanced analysis, user can take
advantage of the features of Mammoth which connects
to the shared database using dedicated components. After
the data is converted to a proper format for the available
algorithms, it is processed and the results (found patterns)
are written back to the database, from which, the found
patterns can be read, converted and visualized in a form of
graph.
One can notice that the rule of operation which is described
in the above paragraph is a plain data-flow. This flow is
illustrated in greater detailed in Fig. 8.
As for the technological choices, the shared database was
realized using SQLite. As for LINK application it utilizes
Eclipse RCP component platform and dedicated ORM layer
based on JDBC. The visualization was realized with SWT
and GEF libraries [5]. As for Mammoth application, it
utilizes MEF as component platform and ADO.NET for
database integration. The logic services were realized using
various algorithm models for pattern recognition [22].
This prototype implementation shows that by utilization
a component-driven approached, it is possible to integrate
existing systems and applications and provide analyst with
the more advanced environment that consists of multi-data
sources and applications, as presented in the conceptual
architectural scheme in Fig. 6.

7. Conclusions and Further Work

In this paper, a component-driven architecture is presented.
This architecture is designed as a solution to the integration
problem which occurs during development of maintainable
software support for criminal analyst. To show how this
architecture can be realized, the paper discusses the tech-
nological assumptions and provides selected details from
the prototype implementation, which follows one of the
discussed integration styles.
Further work should proceed into two following directions.
The first one will be examining other integration styles.
The second one is experimenting with larger integration
examples that include more heterogeneous technologies and
data models.

Acknowledgements

The work described in this paper was partially supported by
The European Union by means of European Social Fund,
PO KL Priority IV: Higher Education and Research, Activ-

72



Component-Based Architecture for Systems, Services and Data Integration in Support for Criminal Analysis

Fig. 8. Dataflow in the prototype integration.

ity 4.1: Improvement and Development of Didactic Poten-
tial of the University and Increasing Number of Students of
the Faculties Crucial for the National Economy Based on
Knowledge, Subactivity 4.1.1: Improvement of the Didactic
Potential of the AGH University of Science and Technology
“Human Assets”, no. UDA-POKL.04.01.01-00-367/08-00.

The research leading to these results has received partial
funding from the European Community’s Seventh Frame-
work Program – Project INDECT (FP7/2007-2013, grant
agreement no. 218086).

References
[1] C. Szyperski, Component Software: Beyond Object-Oriented Pro-

gramming. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[2] Pei J. Han J. and Yin Yiwen, Mining Frequent Patterns without

Candidate Generation. ACM, USA, 2000.
[3] R. A. Hanneman and M. Riddle, Introduction to Social Network

Methods. University of California Press, 2005.
[4] A. Kirschner, “Overview of common social network analysis soft-

ware platforms”, Tech. Rep., Monitor Group, San Francisco, 2008.
[5] R. Dębski, M. Kisiel-Dorohinicki, T. Milos, and K. Pietak, “Link

– a decision-support system for criminal analysis”, in Proc. IEEE

Int. Conf. Multim. Commun. Serv. Secur. MCSS 2010, J. Danda, J.
Derkacz, and A. Głowacz, Eds., Kraków, Poland, 2010, pp. 110–116.

[6] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Design-

ing, Building, and Deploying Messaging Solutions. Addison-Wesley
Professional, 2003.

[7] P. Hammant, K. Pribluda, and J. Schaible, “Picocontainer: a highly
embeddable, full-service, inversion of control (ioc) container for
components honor the dependency injection pattern” [Online]. Avail-
able: http://www.picocontainer.org/

[8] R. Vanbrabant, Google Guice: Agile Lightweight Dependency Injec-

tion Framework. Apress, 2008.
[9] C. Walls, Modular Java: Creating Flexible Applications with Osgi

and Spring. Pragmatic Bookshelf, 2009.
[10] C. Aniszczyk J. McAffer, J. M. Lemieux, Eclipse Rich Client Plat-

form. Addison-Wesley Professional, 2010.
[11] T. Halpin and T. Morgan, Information Modeling and Relational

Databases. Morgan Kaufmann, 2008.
[12] W. Grosso, Java RMI. O’Reilly Media, 2001.

[13] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology,

and Design. Prentice Hall, 2005.

[14] K. Kumar, Pro Apache Geronimo. Apress, 2006.

[15] J. Lowy, Programming WCF Services. O’Reilly Media, 2007.

[16] M. Katz, Practical RichFaces. Apress, 2008.

[17] A. Nathan, Windows Presentation Foundation Unleashed. Sams,
2006.

[18] M. MacDonald, Pro Silverlight 3 in C#. Apress, 2009.

[19] B. Gorton, R. Taylor, and J. Yamada, Adobe AIR Bible. Wiley, 2008.

[20] S. Morris, JavaFX in Action. Manning Publications, 2009.

[21] D. Allemang and J. Hendler, Semantic Web for the Working Ontol-

ogist: Effective Modeling in RDFS and OWL. Morgan Kaufmann,
2008.

[22] P. Włodek, A. Świerczek, and B. Śnieżyński, “Pattern searching and
visualization supporting criminal analysis”, in Proc. IEEE Int. Conf.

Multim. Commun. Serv. Secur. MCSS 2010, J. Danda, J. Derkacz,
and A. Głowacz, Eds., Kraków, Poland, 2010, pp. 212–218.

Jacek Dajda received his Ph.D.
degree in Computer Science
from AGH University of Sci-
ence and Technology in 2008.
At present, he works as Assis-
tant Professor at the Department
of Computer Science of AGH-
UST. His research interests in-
volve software engineering with
an emphasis on software archi-
tectures and frameworks.

E-mail: dajda@agh.edu.pl
Deptartment of Computer Science
AGH University of Science and Technology
Mickiewicza Av. 30
30-059 Kraków, Poland

Roman Dębski, Aleksander Byrski, and Marek Kisiel-

Dorohinicki – for biographies, see this issue, p. 22.

73


