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Abstract—The paper begins by reviewing a two-level hierar-

chical multicriteria routing model for MPLS networks with

two service classes (QoS and BE services) and alternative

routing, as well as the foundations of a heuristic resolution ap-

proach, previously proposed by the authors. Afterwards a new

approach, of meta-heuristic nature, based on the introduc-

tion of simulated annealing and tabu search techniques, in the

structure of the dedicated heuristic, is described. The applica-

tion of the developed procedures to a benchmarking case study

will show that, in certain initial conditions, this approach pro-

vides improvements in the final results especially in more “dif-

ficult” situations detected through sensitivity analysis.

Keywords— MPLS-Internet, multiobjective optimization, routing

models, simulated annealing, tabu search.

1. Introduction and Motivation

Modern multiservice network routing functionalities have

to deal with multiple and heterogeneous quality of service

(QoS) requirements. This led to routing models designed

to calculate and select one (or more) sequences of network

resources (routes), satisfying certain QoS constraints and

seeking the optimization of route related objectives. There

are potential advantages in formulating important routing

problems in these types of networks as multiple objective

optimization problems, as these multiple objective formu-

lations enable the trade-offs among distinct performance

metrics and other network cost function(s) to be pursued in

a consistent manner.

The interest in the application of multicriteria approaches

to routing models in communication networks has been

fostered mainly by the increasing relevance of QoS issues in

the new technological platforms of multiservice networks.

An in-depth methodological analysis of issues raised by the

use of multicriteria analysis in telecommunication network

design and their relation with knowledge theory models is

given in [1]. A review on multicriteria models in telecom-

munication network design problems including a section on

routing models is in [2]. A recent overview on multicriteria

routing models in telecommunication networks with a case

study is presented in [3].

In particular, a significant number of routing models of

multicriteria nature has been proposed in the context of

the emergent multiprotocol label switching (MPLS) Inter-

net networks – see [3]. This has to do mainly with the ca-

pability of implementing multiple connection-oriented ser-

vices with QoS requirements. This technology is based

on the introduction of label switching routers (LSRs) in

the MPLS network that forward the packets (grouped in

forward equivalence classes – FECs), through the so-called

label switched paths (LSPs) by using a specific packet label

switching technique. As a result of this and other technical

capabilities of MPLS, advanced QoS-based routing mecha-

nisms can be implemented, in particular involving “explicit

routes” (i.e., routes completely determined at the originat-

ing node) for each traffic flow of a given service type.

A discussion on key methodological and modeling issues

associated with route calculation and selection in MPLS

networks and the proposal of a meta-model for hierar-

chical multiobjective network-wide routing in MPLS net-

works, were presented in [4]. This meta-model is associ-

ated with a network-wide multiobjective routing optimiza-

tion approach of a new type. Two types of traffic flows

are considered: firstly QoS type flows (first priority flows)

such that, when accepted by the network, have a guaranteed

QoS level, related to the required bandwidth; secondly best

effort (BE) flows, that are considered in the model as sec-

ond priority flows, and are carried by the network in order

to obtain the best possible QoS level. The routing model

incorporates an alternative routing principle: when a first

choice route (corresponding to a loopless path) assigned to

a given micro-flow1, in a specific traffic flow (correspond-

ing to a MPLS “traffic trunk”) is blocked a second choice

route may be attempted.

In the present model, described in detail in [5], the first

priority objective functions concern network level objec-

tives of QoS type flows, namely the total expected revenue

and the maximal value of the mean blocking of all types

of QoS traffic flows; the second priority objective functions

are related to performance metrics for the different types

of QoS services and the total expected revenue for the BE

traffic flows. The traffic flows in the network are repre-

sented in an approximate stochastic form, based on the use

of the concept of effective bandwidth for macro-flows and

on a generalized Erlang model for estimating the blocking

probabilities in the arcs, as in the model used in [6], [7].

The theoretical foundations of a specialized heuristic strat-

egy for finding “good” compromise solutions to the very

complex bi-level routing optimization problem, were also

presented in [5]. In [8], a heuristic approach (HMOR-S2 –

hierarchical multiobjective routing with two service classes)

1A micro-flow corresponds in our model to a “call”, that is, a connection

request with certain features.
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devised to find “better” solutions to this hierarchical multi-

objective routing optimization problem, was proposed and

applied to a test network used in a benchmarking case study,

for various traffic matrices.

This work presents a new approach, of meta-heuristic na-

ture, that aims at finding even “better” solutions to the above

hierarchical multiobjective routing optimization problem

namely in very specific situations where sensitivity anal-

ysis showed that there was the potential for some improve-

ment(s) in the first level objective functions. The basis of

the approach is the following: beginning with the analytic

results obtained after one run of the HMOR-S2 heuristic,

a further run is executed, this time by using a new algo-

rithm that includes a meta-heuristic strategy, namely, a sim-

ulated annealing (SA) or a tabu search (TS) strategy (see,

e.g., [9], [10]).

The developed meta-heuristic procedures seek to make the

most of the knowledge acquired with the problem by previ-

ous experimentation with the specialized heuristic HMOR-

S2 and aim to overcome possible limitations of this heuris-

tic detected through sensitivity analysis. We can say that

the essence of the motivation underlying this work was to

make the most of the previously developed substantive or

core model (in the sense defined in the theory on model-

based decision support [11]) on hierarchical multicriteria

network-wide routing optimization, described in [4], [5],

by incorporating new OR tools (namely SA and TS) in the

previously developed heuristic resolution approach. That

is, we tried to make the most of a synthesis of knowledge

about a given automated routing decision model, acquired

through theoretical analysis and extensive experimentation.

The paper is organized as follows. The two-level hierar-

chical multiobjective alternative routing model with two

service classes is reviewed in Section 2, together with the

basis of the dedicated heuristic. In Section 3, the features of

the application of the two meta-heuristic techniques SA and

TS, in the context of the heuristic approach, are presented.

The formal description of the proposed specialized meta-

heuristics applied to the routing problem are also described

in Section 3. The results obtained with these procedures,

by using analytic and discrete-event simulation experiments

for a test network used in a benchmarking study, are re-

vealed in Section 4. Finally, conclusions are drawn and

future work is outlined in Section 5.

2. Review of the Multiobjective

Routing Model

2.1. The Multiobjective Routing Model

As previously mentioned the considered model is an ap-

plication of the multiobjective modeling framework for

MPLS networks proposed in [4]. This framework (or “meta-

model”) in [4] considers hierarchical optimization with up

to three optimization levels. In the first priority objective

functions, global network performance metrics are consid-

ered; the second priority objective functions are concerned

with performance metrics for the different types of services

in the network; the third priority functions refer to perfor-

mance metrics for packet streams micro-flows of the carried

traffic flows and are related to average delays. Traffic flows

in the network are represented in a stochastic form, consid-

ering two levels of representation: “macro” level or traf-

fic flow level, and “micro” level (corresponding to packet

streams in a traffic flow). Two classes of services are con-

sidered: QoS, that is services with guaranteed QoS levels

(when accepted by the network), and BE, corresponding to

traffic flows that are routed having in mind to obtain the

best possible quality of service but not at the cost of de-

teriorating the QoS of the QoS traffic flows. This implies

that QoS flows are treated as first priority traffic flows. The

different service types of each class are represented through

the sets SQ (for QoS service types) and SB (for BE ser-

vice types). Note that the traffic flows of each service type

s ∈ SQ or s ∈ SB may differ in important attributes, in

particular the required bandwidth.

The model now reviewed is a simplification of the general

model for QoS and BE service classes outlined in [4, Sub-

section 3.3], where only the macro level traffic stochastic

representation was considered. In this simplification, the

additional complexity which would result from the inclu-

sion of a third optimization level in the routing model, as

well as the corresponding additional computational burden

associated with the stochastic model for calculating average

delays, can be avoided. Therefore, the hierarchical multiob-

jective routing optimization model has two levels with sev-

eral objective functions in each level. The first level (first

priority) includes objective functions formulated at the net-

work level for the QoS traffic, namely the expected revenue

and the worst average performance among QoS services.

In the second level the objective functions are concerned

with average performance metrics of the QoS traffic flows

associated with the different types of QoS services as well

as the expected revenue of the BE traffic.

This is a network-wide2 routing optimization approach,

which takes into account the nature of the formulated objec-

tives, enabling a full representation of the relations between

the objective functions, taking into account the interactions

between the multiple traffic flows associated with different

services.

Also note that in this model, “fairness” objectives are ex-

plicitly considered at the two levels of optimization, in the

form of min-max objectives. These objective functions seek

to make the most of the proposed multiobjective formula-

tion.

In the model the network is represented through a capac-

itated directed graph, where a capacity Ck is assigned to

every arc (or “link”) lk, and the traffic flows are repre-

sented in a stochastic form, as shown in [4]. A traffic flow

is specified by fs = (vi,v j,γ s,ηs) for s ∈ S = SQ ∪SB

and a stochastic process is assigned to it, that is in general,

2This means in this context that the main objective functions of a given

service class depend explicitly on all traffic flows in the network.
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a marked point process. The process describes the arrivals

and basic requirements of micro-flows, originated at the

MPLS ingress node vi and destinated to the MPLS egress

node v j, using some LSP. The other features of the traf-

fic flow are characterized by the vectors of “attributes” γs

and ηs, for service type s. The vector γs represents the

traffic engineering attributes of flows of service type s and

the vector ηs enables the description of mechanism(s) of

admission control to all arcs lk in the network by calls of

flow fs. In particular these attributes include information

on the required effective bandwidth ds and the mean dura-

tion h( fs) of each micro-flow in fs. The use of the concept

of effective bandwidth (a concept developed in [12]) in the

present context (MPLS networks with explicit routes) was

earlier considered by [6] and in [7], [13]. The effective

bandwidth can be viewed as a stochastic measure of the

utilization of network resources allowing for an approxi-

mate, although effective, representation of the effects of

the variability of the rates of traffic sources of different

types, as well as the effects of statistical multiplexing of

different traffic flows in a network.

A teletraffic model, that underlies the routing model, en-

ables the calculation of node to node blocking probabilities

B( fs) for all flows fs of all service types, from which the

average blocking probability Bms, for all traffic flows of

type s, can be estimated for a given set of routes for all

offered traffic flows. The maximal average blocking prob-

ability among all QoS service types, BMm|Q, is

BMm|Q = max
s∈SQ

{Bms} . (1)

This will represent the fairness objective at the network

level, as a first priority objective function.

The total expected network revenues, WQ and WB asso-

ciated with QoS and BE traffic flows, respectively, are ex-

pressed in terms of the expected revenues w( fs) per call3 of

flow fs, and of the values of carried traffic Ac
s , for all service

types:
WQ(B) = ∑

s∈SQ(B)

Ws = ∑
s∈SQ(B)

Ac
sws.

The usual simplification, w( fs) = ws, ∀ fs ∈ Fs, where

Fs is the set of traffic flows of type s, will be consid-

ered. The total expected revenue for the traffic flows of

QoS type WQ is a first priority objective function together

with the maximal blocking probability for all QoS service

types, BMm|Q, given in Eq. (1), while the total expected

revenue for the BE traffic flows, WB, will be a second level

objective function. Therefore, the routing of BE traffic, in

a quasi-stationary situation, will not be made at the cost

of the decrease in revenue or at the expense of an increase

in the maximal blocking probability of QoS traffic flows.

Nevertheless, it is important to note that while QoS and

BE traffic flows are treated separately in terms of objective

functions so as to take into account their different priority

in the routing optimization, the interactions among all traf-

3The term ‘call’ means a node to node connection request with certain

traffic engineering features.

fic flows are fully represented in the model. This is guar-

anteed by the used traffic modeling approach, underlying

the optimization model, because the traffic model used to

obtain the blocking probabilities B( fs) integrates the con-

tributions of all traffic flows which may use every link of

the network. This feature is a major difference in com-

parison with more common routing models that have been

proposed for networks with two service classes, based on

some form of decomposition of the network representation,

corresponding to “virtual networks”, one for each service

class.

The second level of optimization includes the BE expected

revenue, and 2|SQ| objective functions related to all QoS

service types, the mean blocking probabilities for flows of

type s ∈SQ,

Bms|Q =
1

Ao
s

∑
fs∈Fs

A( fs)B( fs),

where Ao
s is the total traffic offered by flows of type s and

A( fs) is the mean traffic offered associated with fs (in Er-

lang), and the maximal blocking probability BMs|Q, defined

over all flows of type s ∈SQ,

BMs|Q = max
fs∈Fs

{B( fs)}.

This function constitutes the fairness objective defined for

every service type s ∈SQ.

Therefore the considered two-level hierarchical optimiza-

tion problem for two service classes is depicted in Fig. 1.

1st level

{

QoS: network objectives: minR{−WQ}

minR{BMm|Q}

2nd level























QoS: service objectives: minR{Bms|Q}

minR{BMs|Q}

∀s ∈SQ

BE: network objective: minR{−WB}

subject to equations of the underlying traffic model.

Fig. 1. Problem P-M2-S2.

The decision variables R represent the network routing

plans, that is, the set of all the feasible routes (i.e., node

to node loopless paths) for all traffic flows. The acronym

P-M2-S2 stands for “Problem – Multiobjective with 2 op-

timization hierarchical levels – with 2 Service classes”.

The basic teletraffic sub-model allows for the blocking

probabilities Bks, for micro-flows of service type s in

link lk, to be given in the form Bks = Ls

(

dk,ρk,Ck

)

. Here

Ls represents the basic function (implicit in the teletraf-

fic analytical model) that expresses the marginal blocking

probabilities, Bks, in terms of dk = (dk1, · · · ,dk|S |) (vector

of equivalent effective bandwidths for all service types),

ρk = (ρk1, · · · ,ρk|S |

)

(vector of reduced traffic loads ρks

offered by flows of type s to lk) and the link capacity Ck.

This type of approximation was suggested in [6] for off-line

single-objective multiservice routing optimization models
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and was also used in the multiobjective dynamic alternative

routing model proposed in [7]. It enables the calculation of

{Bks} through efficient numerical algorithms. We should

stress that very efficient and robust approximations have to

be used in a network-wide routing optimization model of

the type associated with P-M2-S2, for tractability reasons.

2.2. Basis of the Heuristic Approach

The dedicated heuristic resolution approach that is the start-

ing point for the meta-heuristics analyzed in this paper uses

the theoretical foundations described by the authors in [5],

which will now be reviewed.

In the hierarchical multiobjective routing problem P-M2-

S2 an alternative routing principle is used. This means that

the network routing plans R =∪
|S |
s=1R(s) (decision variables)

for all the network services, where R(s) = ∪ fs∈Fs
R( fs),s ∈

SQ∪SB are such that R( fs) = (rp( fs)), p = 1, · · · ,M with

M = 2 in our model. It is assumed that for each flow fs the

first choice route r1( fs) will be used unless it is blocked

because one of its links lk does not have the required avail-

able bandwidth ds (or a call is not accepted according to the

probabilistic availability function ψks). If r1( fs) is blocked

the routing method makes the current connection request

attempt the second choice route r2( fs). This request will

be blocked only if r2( fs) is also blocked. If M > 2, routes

r3( fs), · · · ,r
M( fs) would be attempted in this order.

The high “complexity” of the routing problem P-M2-S2

stems from two major factors: all objective functions are

strongly interdependent (via the {B( fs)}), and all the objec-

tive function parameters and (discrete) decision variables R

(network route plans) are also interdependent. Note that all

these interdependencies are defined explicitly or implicitly

through the underlying traffic model. Regarding computa-

tional complexity, it must be remarked that the simplest,

“degenerated” single objective version of the problem, that

is, concerning a model with a single objective function WQ,

one single service and no alternative routing (M = 1) is

NP-complete in the strong sense, as shown in [14]. The

addressed problem may be viewed as a bi-level, multiob-

jective extension of this type of problem.

Concerning the possible conflict between the objective

functions in P-M2-S2, it should be observed that in many

routing situations, the maximization of WQ leads to a deteri-

oration on some B( fs),s∈SQ, for certain traffic flows A( fs)
with low intensity, and this tends to increase BMs|Q and,

consequently, BMm|Q. In single-objective routing models

this aspect is usually addressed by imposing upper bounds

on the values B( fs). This is a major factor to justify the

interest and potential advantage in using multiobjective ap-

proaches when dealing with this type of routing methods.

The resolution (in a multicriteria analysis sense) of the rout-

ing problem P-M2-S2 was earlier performed by a heuris-

tic procedure in [8], which is briefly reviewed in this sec-

tion. This heuristic is an improved version of the heuristic

approach described in [5] and it is based on the recur-

rent calculation of solutions to a constrained bi-objective

shortest path problem, formulated for every end-to-end

flow fs:

problem P
(2)
s2 : min

r( fs)∈D( fs)

{

mn(r( fs)) = ∑
lk∈r( fs)

mn
ks

}

n=1;2

.

(2)

The path metrics mn to be minimized are the marginal im-

plied costs m1
ks = c

Q(B)
ks (the definition of which is reviewed

in the following analysis) and the marginal blocking proba-

bilities m2
ks =− log(1−Bks); D( fs) is the set of all feasible

loopless paths for flow fs, which satisfy specific traffic engi-

neering constraints (other than the effective bandwidth) for

flows of type s. A typical constraint is a maximal number

of arcs per path depending on the class and type of ser-

vice s. The logarithmic function is just used to transform

the blocking probability into an additive metric. The link

cost coefficients m1
ks = c

Q(B)
ks are then used in problems of

form Eq. (2), when candidate solutions have to be obtained

to seek the improvement of the revenue of the QoS (BE)

traffic, in different steps of the heuristic procedure. Ac-

cording to this approach, the comparison of the efficiency

of different candidate routes in the context of a multicrite-

ria routing framework of this type should take into account

both the loss probabilities experienced along the candidate

routes and the knock-on effects upon the other routes in the

network, effects associated with the acceptance of a call

on that given route. Such effects can be measured exactly

through the implied costs.

It is important to note that this auxiliary constrained bi-

objective shortest path problem was used as a basis of the

heuristic approach having in mind that the consideration of

the metric blocking probability tends, at a network level,

to minimize the maximal node-to-node blocking probabili-

ties B( fs), while the metric implied cost tends to maximize

the total average revenue WT in a single class multiservice

loss network (see [15], [16]).

Concerning the implied cost cku (resulting from the ac-

ceptance of a call of flow fu in link lk) this is an impor-

tant mathematical concept in routing optimization in loss

networks which was originally proposed by Kelly [17] for

single-rate traffic networks. The definition was later ex-

tended to single route multirate traffic networks in [6], [18].

The implied cost can be viewed as the expected value

of the loss of revenue in all traffic flows which may use

link lk, resulting from the acceptance of a connection re-

quest from fu stemming from the decrease in the capacity

of this link. Therefore we can say that the implied cost

measures in a probabilistic manner the knock-on effects on

all network routes (of all traffic flows) associated with the

acceptance of a call from fu in a link lk. In [19], the defini-

tion of cku was adapted to multirate loss networks with al-

ternative routing by extending the model for single-service

networks given in [17]. The extension of this definition

to a multi-rate network with alternative routing and two

service classes was proposed in [5]. For this purpose the

following definition of marginal implied costs associated

with QoS (BE) traffic was put forward [5]. The marginal
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implied cost for QoS (BE) traffic, c
Q(B)
ku

, associated with the

acceptance of a connection (or “call”) of traffic fu of any

service type u ∈S on a link lk is defined as the expected

value of the traffic loss induced on all QoS (BE) traffic

flows resulting from the capacity decrease in link lk.

In [5], a conjecture was presented, implying the marginal

implied costs for QoS (BE) traffic can be obtained by solv-

ing a system of equations:

c
Q(B)
ku = ∑

s∈SQ(B)

ζkus

1−Bks

[

∑
fs∈Fs:lk∈r1( fs)

λr1( fs)

(

s
Q(B)

r1( fs)
+

+c
Q(B)
ks

)

+ ∑
fs∈Fs:lk∈r2( fs)

λr2( fs)

(

s
Q(B)

r2( fs)
+ c

Q(B)
ks

)

]

,

(3)

with
s

Q(B)

r2( fs)
= wQ(B)( fs)− ∑

l j∈r2( fs)

c
Q(B)
js ,

s
Q(B)

r1( fs)
= wQ(B)( fs)− ∑

l j∈r1( fs)

c
Q(B)
js − (1−Lr2( fs)

)s
Q(B)

r2( fs)
,

ζkus = Ls

(

dk,ρk,Ck−dku

)

−Ls

(

dk,ρk,Ck

)

,

where s
Q(B)
rp( fs)

denotes the surplus value of a call on route

rp( fs), λrp( fs) is the marginal traffic carried on rp( fs) by

flow fs, Lrp( fs) represents the blocking probability for calls

of fs on route rp( fs) (p = 1;2) (considering that r1( fs) and

r2( fs) are arc-disjoint paths) and ζkus is the increase in call

blocking probability for type s calls on link lk resulting

from a decrease in the capacity of lk associated with the

acceptance of a type u call. The coefficients wQ(B)( fs) are

the marginal expected revenues per call of fs, such that

wQ( fs)+wB( fs) = w( fs) and can be written as wQ(B)( fs) =
αQ(B)w( fs), in terms of the coefficients αQ(B) ∈]0.0;1.0[
which satisfy the normalization condition αQ + αB = 1.0.

A system of implicit non-linear equations can be defined

in order to calculate the Bks in terms of link capacities

(matrix C = [Ck]), the offered traffic matrix A = [A( fs)],
and the current network routing solution R,

Bks = βks(B,C,A,R) , (4)

with k = 1, · · · , |L |;s = 1, · · · , |S | and B = [Bks]. Concern-

ing the calculation of c
Q(B)
ks through Eq. (3), it implies the

resolution of a system of equations of the general form:

c
Q(B)
ks = κ

Q(B)
ks (c,B,C,A,R) , (5)

where c = [c
Q(B)
ks ]. The numerical resolution of these two

systems of equations in Bks and c
Q(B)
ks is performed by fixed

point iterators, given the matrices C,A and R.

In the heuristic, the auxiliary constrained shortest path

problem P
(2)
s2 Eq. (2) is solved by the algorithm MMRA-

S2 [5], an adaptation of a previously developed algorithmic

approach, MMRA-S (modified multiobjective routing al-

gorithm for multiservice networks), described in [7], [19].

Generally, there is no feasible solution which minimizes

the two objective functions simultaneously. Hence, the res-

olution of this routing problem aims at finding a “best”

compromise path from the set of non-dominated solutions,

according to some system of preferences. In this con-

text, path computation and selection have to be fully au-

tomated. Therefore the system of preferences is embed-

ded in the working of the algorithm MMRA-S2. This is

implemented by defining preference regions in the objec-

tive function space obtained from aspiration and reservation

levels (preference thresholds) defined for the two objective

functions [15], [16]. Further details on this algorithmic

approach can be seen in [7].

Another important part of the addressed routing model is

the underlying traffic model. This stochastic traffic model

involves all the sub-models and associated numerical pro-

cedures, that are needed for obtaining all traffic related pa-

rameters, namely implied costs and blocking probabilities

Bks and B( fs), under certain simplifying assumptions.

A description of the traffic modeling approach used in the

routing model can be seen in [4].

Now let us review the basic features of the dedicated heuris-

tic HMOR-S2, taken as the starting point and reference

procedure in the present work.

In the heuristic, a basic searching strategy is to seek

for routing solutions R(s) for each service s ∈ S , in

order to achieve a better performance in terms of WB,

Bms|Q and BMs|Q, s ∈ SQ while respecting the hierarchy

of objective functions. This also means that network re-

sources are left available for traffic flows of other services

so that the solutions selected at each step of the proce-

dure may improve the first priority objective functions WQ

and BMm|Q. The heuristic was designed in order to seek,

firstly for each QoS service and starting from the services

with higher effective bandwidth (considering the number-

ing of s, s = 1, · · · , |SQ|) and, secondly, for each BE ser-

vice (also beginning by the higher bandwidth services,

s = |SQ|+ 1, · · · , |S |), solutions which dominate the cur-

rent one, in terms of Bms|Q and BMs|Q for QoS services and

in terms of WB for BE services. These solutions will only

be accepted if they do not lead to the worsening of any of

the network functions WQ and BMm|Q.

Another basic idea of the heuristic is the generation of

candidate solutions (r1( fs), r2( fs)) for each fs, using the

mentioned algorithm MMRA-S2, and their possible selec-

tion through specific criteria, to be “tuned” throughout the

execution of the heuristic. A maximal number of arcs Ds

per route for each service type s is previously defined and

a feasible route set D( fs) is obtained for each fs. For exam-

ple, for real time QoS services, Ds is equal to the network

diameter; for the non-real time QoS services, Ds is the net-

work diameter plus 1, while for the BE services, no limits

are imposed on Ds.

Note that special rules had to be constructed for the se-

lection of candidate first choice routes r1( fs) taking into

account the network topology and the need to make a dis-

tinction between real time QoS services (typically video
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and voice services) and non-real time QoS services (for ex-

ample “premium data” service). These rules are described

in [5].

Concerning the calculation of candidate second choice

routes r2( fs) for QoS or BE traffic, the MMRA-S2 pro-

cedure is used. Having in mind to prevent performance

degradation in overload conditions, these alternative routes

should be eliminated in certain conditions. This is achieved

through a mechanism designated as alternative path re-

moval (APR), an adaptation of the mechanism originally

proposed in [7], [20].

The theoretical analysis of the model, confirmed by exper-

imentation, showed that successive application of MMRA-

S2 to every traffic flow does not lead to an effective reso-

lution approach to the network routing problem P-M2-S2.

This results from an instability phenomenon that arises in

such path selection procedure, expressed by the fact that

the route sets R often tend to oscillate between certain so-

lutions some of which may lead to poor global network

performance under the prescribed metrics.

Therefore, another core idea of the heuristic approach (sim-

ilarly to multiobjective dynamic routing method for multi-

service – MODR-S) [7] is the search for the subset of the

path set R
a
=∪

|S |
s=1R

a
(s) : R

a
(s) = {(r1( fs),r

2( fs)), fs ∈Fs}
the elements of which should be possibly changed in the

next route improvement cycle. Detailed analysis and exten-

sive experimentation with the heuristic led to the proposal

of a criterion for choosing candidate paths for possible rout-

ing improvement by increasing order of a function ξ ( fs) of

the current (r1( fs),r
2( fs)), given in [8]. The use of this cri-

terion considers two search cycles, where ξ ( fs) = FL( fs) in

the first cycle and ξ ( fs) = F
Q(B)

C ( fs) in the second cycle, if

the effect over QoS (BE) traffic is being considered, with

F
Q(B)

C ( fs) = (n2−n1)c
′Q(B)
1 + c

Q(B)

r1( fs)
− c

Q(B)

r2( fs)
,

c
Q(B)
r( fs)

= ∑
lk∈r( fs)

c
Q(B)
ks ,

c
′Q(B)
1 =

1

n1
∑

lk∈r1( fs)

c
Q(B)
ks =

1

n1

c
Q(B)

r1( fs)
,

FL( fs) = 1−Lr1( fs)
Lr2( fs)

.

The aim of F
Q(B)

C ( fs) is to give preference (concerning the

potential value in changing the second choice route when

seeking to improve WQ or WB) to the flows for which the

route r1( fs) has a low implied cost and the route r2( fs) has

a high implied cost. The factor (n2−n1) was introduced for

normalization purposes, considering that r1( fs) has n1 arcs

and r2( fs) has n2 arcs. The aim of FL( fs) is to give prefer-

ence to the choice of the flows which currently have worse

end-to-end blocking probability given by Lr1( fs)
Lr2( fs)

.

Another key point tackled by the heuristic is the specifica-

tion of a variable nPaths, which represents the number of

routes with smaller values of ξ ( fs) that should possibly be

changed by running MMRA-S2 once again. In order to do

so, the effect of each candidate route on the relevant objec-

tive functions is anticipated by solving the corresponding

analytical model.

The full description and formalization of this heuristic as

well as an application study are given in [8].

3. Developed Meta-Heuristics

The study of the heuristic approach HMOR-S2, the basis of

which was reviewed in the previous section, was completed

with a sensitivity analysis, which led to the consideration

of variants of this heuristic. In the report [21], two vari-

ants to the HMOR-S2 were described, firstly the HMOR-

S2R where a floating relaxation was imposed on one of

the first level objective function values, and secondly the

HMOR-S2B where a floating barrier was imposed on one

of the first level objective function values. Extensive ex-

perimental analysis was carried out for those variants and

a simulation study was also conducted. The main results of

the sensitivity analysis and the SA and TS-based variants

of the heuristic are now described.

3.1. Sensitivity Analysis

The purpose of the sensitivity tests applied to the HMOR-

S2 heuristic was to check whether the heuristic was treating

the lower level objective functions in a balanced way (that

is, to check whether better values of the second level ob-

jective functions could be obtained without worsening the

values of the first level objective functions) and to check

whether the value of an upper level objective function could

be improved at the cost of worsening the value of the other

upper level objective function.

In the first set of tests, either an upper bound was imposed

on one of the blocking probability functions Bms or BMs,

s ∈ SQ, or a lower bound was imposed on the BE traf-

fic revenue WB, s ∈SB. These bounds constitute barriers,

in the sense that they are more demanding than the cor-

responding values obtained at the end of the HMOR-S2

run.

In the second set of tests (relaxation tests), the focus was

on the first level objective functions. In one of the tests, the

blocking function BMm|Q is no longer treated as an objec-

tive function and an upper bound on its value is imposed.

This upper bound is less demanding than the correspond-

ing value [BMm|Q]basis obtained at the end of the HMOR-S2

run. The purpose of this test is to check whether the QoS

traffic revenue can still be improved by relaxing the value

of the other main objective function. In the other test, the

QoS services revenue WQ is no longer treated as an objec-

tive function and a lower bound on its value is imposed.

This lower bound is less demanding than the correspond-

ing value [WQ]basis obtained at the end of the HMOR-S2

run. The purpose of this test is to check whether the block-

ing function BMm|Q can be improved when the value of the

other objective function is relaxed.
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Generally speaking, the results of the sensitivity tests for

the HMOR-S2 heuristic were as expected, allowing us to

assume that the heuristic is balanced in the treatment of the

different objective functions. Nonetheless, there are a few

results that are worth mentioning.

In the first set of tests, one or both of the upper level

objective function values were worse when a barrier

(i.e., a stricter value) was imposed on one of the lower

level blocking probability functions or BE traffic revenue.

That is, when the improvement of one of the lower level

functions is imposed, the upper level objective function val-

ues tend to be worse (at least for one of those functions).

There was however one situation where one of the first level

objective functions improved and the other worsened. This

result is not unexpected, as the two first level objective func-

tions are conflicting in nature, but showed that there was

one non-dominated solution that the basic heuristic was not

able to detect so far.

In the second set of tests, in one of the sensitivity tests

where the upper level objective function BMm|Q ceased to

be treated in the heuristic as an objective function and a re-

laxed upper bound was imposed on its value, a final solution

with slightly better values for both BMm|Q and WQ was ob-

tained. Therefore, in spite of allowing the value of BMm|Q to

increase beyond the value obtained when the basic heuristic

was run, it actually diminished, and there was a slight im-

provement of the QoS traffic revenue. This result suggests

that, in some rare cases, the heuristic is not capable of find-

ing a solution that slightly dominates the current selected

solution.

In order to try to obtain solutions with even better values

for both the upper level objective functions in these very

specific types of situations, new approaches were devised.

These new approaches consist of the introduction of meta-

heuristic techniques (SA and TS) in the structure of the

basic heuristic HMOR-S2.

3.2. Application of a SA Technique to the Basic

Heuristic

The SA technique can be viewed as a variant of the heuristic

technique of local neighbourhood search, where a subset of

feasible solutions is explored in the neighbourhood of the

current solution. In an optimization problem, the tradi-

tional implementations of local search always try to move

towards an improvement of the objective function. How-

ever, with this type of strategy, the risk of remaining in

a local optimum is high. The SA technique tries to pre-

vent this from happening, by allowing solutions with worse

values of the objective function (when compared with the

value of that function in the current solution) to be taken

into account. These moves towards worse solutions are

done in a controlled way, and with the purpose of avoiding

local minima or maxima. The probability of acceptance

of a solution that is actually worse than the current solu-

tion is controlled by the variation of the objective function

value and a parameter, a so-called temperature T , related to

the state of the system, in particular related to the number

of iterations that have occurred since the beginning of the

search procedure.

A generic SA algorithm for a single objective problem,

where a minimization problem is considered, with solu-

tion space S, objective function f and neighbourhood struc-

ture N, can be seen, for example, in [22].

The SA technique has been successfully used to solve many

different optimization problems. This technique is easy to

implement, it can be applied to a great diversity of combi-

natorial optimization problems and usually it allows for the

calculation of adequate solutions [22]. However, in order

to get good solutions, many parameters have to be care-

fully tuned: the cooling function ϑ(T ), the neighbourhood

area (based on the specific features of the problem to be

solved), the probability function of acceptance of the new

solution, the number of iterations nrep and the stopping

condition. Another disadvantage, apart from the need to

carefully tune the system parameters, is the execution time

of the SA algorithms that tends to be very long. Experi-

ences from many authors actually show that for a specific

and well-defined problem, an algorithm specifically tailored

to that problem tends to provide better results than a SA

algorithm [22]. Nevertheless, many authors have applied

SA techniques to telecommunication network optimization

problems, such as network design and routing problems –

see for instance [23]–[34].

Introduction of a SA technique in the HMOR-S2 heuris-

tic. Many issues had to be addressed to formulate this SA-

based variant, HMOR-S2SA. Firstly the basic technique of

SA had to be adapted to a hierarchical multiobjective prob-

lem. A choice was made to work only with the upper level

objective functions and two different SA processes were

considered simultaneously. The lower level objective func-

tions are used as in the basic heuristic, that is, their value

for the specific service under scrutiny has to improve so

that the new solution may be taken into account in further

steps.

Firstly, the initial temperature has to be specified. It should

be high in order to guarantee that the final solution of the

problem does not depend heavily on the initial solution.

A high initial temperature also assures a certain diversity

of solutions, which is advantageous on the initial stages of

the resolution approach. Remember that the temperature

decays throughout the heuristic procedure, which causes

the probability of accepting new solutions that are actually

worse than the current solution to diminish. This provides

an intensification strategy, which should be correct for the

final stages of the HMOR-S2SA. Note that diversification-

like and intensification-like strategies are already being

used in the basic dedicated heuristic, HMOR-S2, as the

parameter nPaths (that represents the number of paths that

can change from the current solution to the new one) starts

with a high value (that is, the new solution can be quite

diverse from the current one) and decays throughout the

algorithm, which means that the paths remain the same for

an increasing number of origin-destination pairs. As two

SA sub-algorithms are considered simultaneously, two dif-
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ferent initial temperatures have to be defined, in particular,

one associated with the QoS services revenue, T 0
W = W 0

Q =

W initial
Q , and the other associated with the blocking proba-

bility function BMm|Q, T 0
B = B0

Mm|Q = Binitial
Mm|Q.

The features of the neighbourhood area of the current solu-

tion have to be defined. In this implementation the features

of the neighbourhood change throughout the procedure.

Note that this is already being made in the basic heuristic,

as the portion of the state space where new feasibe solutions

are sought, is defined according to the flows for which the

paths may change in the current iteration. Therefore, not

only the neighbourhood, where new solutions are sought,

diminishes throughout the algorithm (because of the value

of nPaths) but also it adapts to the current conditions of

the resolution procedure and it is chosen in order to search

for improvements in the objective function values.

The number of iterations for each temperature value also

has to be determined. For higher temperatures (initial

stages of the resolution procedure), nrep is small; for lower

temperatures (final stages of the resolution procedure), nrep

is high, so as to seek a guarantee that the neighbourhood

area is thoroughly searched and no maxima (or minima)

for each main objective function remain undiscovered. The

value that was considered is nrep =
⌈

|F |+1−nPaths

2

⌉

, where

|F |= 1
|S | ∑s∈S |Fs| is the average number of traffic flows

per service.

The cooling mechanism has to be devised so that the tem-

peratures do not decay too slowly or too fast. Several ex-

periences were conducted and the cooling functions that

provided the best results were T
j

W =
[

T 0
W

(

1− j
J

)]a

and

T
j

B =
[

T 0
B

(

1− j
J

)]a

in iteration j, with J = 1000;5000 and

a = 0.1;0.01, for the 2 simultaneous SA procedures.

The probability of accepting a new solution that is actually

worse than the most adequate solution up to the current

stage of the algorithm (iteration j) is

p
j
W = exp

(

W
j

Q−max{WQ}

T
j

W

)

and p
j
B = exp

(

min{BMm|Q}−B
j

Mm|Q

T
j

B

)

for the 2 simultaneous SA procedures, where max{WQ} and

min{BMm|Q} are the upper level objective function values

in the most adequate solution found so far.

The stopping criterion is the same as the one used in

the basic heuristic, that is, the algorithm stops when

nPaths = 0.

The adaptation of the SA technique to the basic heuristic

HMOR-S2 can be described as depicted in Fig. 2.

The complete formalization of the meta-heuristic version

of HMOR-S2 using SA, HMOR-S2SA, is in Appendix B.1

of the report [35].

Note that one of the features of a standard SA technique

is the random choice of the new solution (to be taken into

account at each step of the algorithm) among all the feasible

solutions in the neighbourhood of the best solution found

so far. However, in the adaptation of a SA-like technique to

HMOR-S2, the choice of the feasible solution to be com-

pared with the most adequate solution found so far, is done

with the help of the MMRA-S2 algorithm, as in the basic

heuristic. Note that the solution provided by this auxiliary

algorithm is likely to produce better results than a randomly

chosen solution, taking into account the foundations of the

resolution procedure, given in Section 2.

I. Let the initial temperatures be T 0
W = W 0

Q = W initial
Q and

T 0
B = B0

Mm|Q = Binitial
Mm|Q.

II. j = 1

III. Define J and a.

IV. In the iteration j ≥ 1.

1. Let the current temperatures be T
j

W =
[

T 0
W

(

1− j
J

)]a
and T

j
B =

[

T 0
B

(

1− j
J

)]a
.

2. Cycle to be performed nrep times:

(a) Calculation of a new solution, using the

MMRA-S2 bi-objective algorithm.

(b) For the new solution, let WQ be the expected QoS

service revenue and BMm|Q the maximal average

blocking probability for all QoS services.

(c) Let XW and XB be two r.v. following a uniform

distribution in ]0.0;1.0[.

(d) If s ∈SQ, check whether (Bms ≤ min{Bms} and

BMs ≤min{BMs}). If s ∈SB, check whether

(WB ≥max{WB}).

– If so:

A. Check whether (WQ > max{WQ} and

BMm|Q < min{BMm|Q}).

• The solution is accepted.

B. Otherwise, check whether

XW < exp

(

WQ−max{WQ}

T
j

W

)

and whether

XB < exp

(

min{BMm|Q}−BMm|Q

T
j

B

)

.

• The solution is accepted.

C. Otherwise, the solution is not accepted.

Else, the solution is not accepted.

End of the nrep cycle.

3. j← j +1.

The cycle ends when all the cycles “For (s)”, “For (ape)”

and “For (nPaths)” have been executed.

Fig. 2. The adaptation of the SA technique to the basis heuristic

HMOR-S2.

Concerning the numerical complexity of this heuristic,

it can be said that the instructions in the inner cycle

of the procedure are executed C
HMOR-S2SA
i = 4|S ||F |2 +

2|S ||F | times. The numerical complexity of the heuris-

tic in terms of the number of solutions that are analyzed

is C
HMOR-S2SA
s = |S ||F |

6

(

2|F |2 + 9|F |+ 10
)

. For compar-

ison, the corresponding numerical complexities of the

HMOR-S2 heuristic approach (see [21]) are CHMOR-S2
i =

4|S ||F | and CHMOR-S2
s = 2|S ||F |(|F |+ 1). This means
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that the HMOR-S2 heuristic involves a significantly lower

number of calculations than HMOR-S2SA. For further de-

tails on these calculations, see [35]. These complexity mea-

sures are an indication of the heuristic numerical complex-

ity just at the level of the “optimization” procedures.

3.3. Application of a TS Technique to the Basic

Heuristic

The TS technique is a local neighbourhood search technique

applied to a dynamic neighbourhood defined in terms of the

current solution and the history of the states encountered

during the search up to the current instant. For example,

in [10], [36] this technique is described in detail and some

examples of application to different optimization problems

are provided. The TS can be defined as a technique where

restrictions are imposed so as to guide a search process into

areas that otherwise would not be explored in the search for

new solutions [10]. The restrictions are usually the exclu-

sion of some solutions that are classified as tabu, i.e., for-

bidden.

The reasoning behind the TS is that the resolution of prob-

lems should include an adaptive memory and an intelligent

exploration of the solution space (i.e., a guided and system-

atic exploration rather than a random one) [36]. An adap-

tive memory allows for the implementation of procedures

that manage to explore the solution space in an economic

and efficient way. The memory can be a short-time one and

its information is used to prevent the search from remain-

ing in a local “optimum”, or it can be a long-time one and

it allows for the use of intensification and diversification

strategies.

A generic TS algorithm for a single objective problem,

where a minimization problem is considered, with solu-

tion space S, objective function f and neighbourhood struc-

ture N, can be seen, for example, in [37].

For a successful use of the TS technique in solving

many different optimization problems, many implementa-

tion choices have to be carefully made concerning key as-

pects: the diversification and intensification strategies, the

information to be kept in memory, the neighbourhood area,

the criteria to attribute a tabu status to a move (a move

is a change that is imposed on a solution in order to find

another different solution), the tabu tenure (i.e., the time

during which a move remains tabu), the aspirational crite-

ria and the stopping condition.

Unlike what happens in the SA technique, in the TS tech-

nique the adequate solutions are sought having in mind not

only the objective function value, but also other influential

factors, such as the diversification of solutions, the intensi-

fication of solutions, the aspirational criteria, the frequency

of solutions and the tabu tenures.

Many authors have applied TS techniques to telecommu-

nication network optimization problems, such as network

design and routing problems – see for instance [38]–[44].

Introduction of a TS technique in the HMOR-S2 heuris-

tic. Note that some aspects of TS-like techniques are al-

ready used in the basic heuristic. For instance, some paths

are not allowed to change in certain steps (i.e., their change

is tabu or forbidden). In each iteration the number of paths

that can possibly change is nPaths and the choice of the

nPaths flows for which the paths are liable to change is

made according to the value of an auxiliary function ξ ( fs)
(see Subsection 2.2).

Many issues had to be addressed to formulate this variant

HMOR-S2TS. Firstly the basic technique of TS had to be

adapted to a hierarchical multiobjective problem. A choice

was made to focus this technique on the QoS services

revenue, having in mind its central role in the system of

preferences implicit in the model. In fact, given two non-

dominated solutions it is usually more acceptable, from

a network design point of view, to select the solution with

higher QoS service revenue, at the cost of some degradation

of BMm|Q.

The neighbourhood area where a new solution will be

searched for also has to be defined. Considering a spe-

cific solution, the neighbourhood of that solution is the set

of solutions that differ in the pair of routes (r1( fs),r
2( fs))

for one flow. Therefore a move from one solution to an-

other solution in the neighbourhood is done by choosing

a new set of paths for one of the flows. The new set of

paths for a flow is chosen by solving the auxiliary bi-

objective shortest path problem with the MMRA-S2 algo-

rithm. If this new set of paths for a particular flow allows

for a better solution to the routing problem, then the pre-

vious set of paths for that flow becomes tabu and a move

that would lead to using that previous set of paths again, is

forbidden.

The tabu list is a list of moves which are tabu, so in this

adaptation we consider the tabu list as a list of pairs of

paths which are tabu. The maximal size of the tabu list

is given by nPaths, which means it changes throughout

the algorithm: at the beginning of the algorithm, nPaths

is high, which means that many moves can become tabu;

towards the end of the algorithm, nPaths decreases. New

moves can be added to the tabu list and once it is full, the

oldest move (at the top of the list) is withdrawn and the

new move is added at the end of the list. Therefore, this

list is a queue with FIFO (first-in first-out) discipline. The

size of the tabu list also has an impact on the tabu tenure.

Note that a tabu list is used for a specific service s ∈ S

and when the algorithm proceeds to the analysis of a new

service in the “services cycle” of the basic heuristic the

tabu list is reinitialized.

An aspirational criterion may be defined: if the values

for the upper level objective functions and for the lower

level objective functions (for the service under scrutiny)

of a new solution are better than the corresponding values

in the most adequate solution found so far, then this new

solution should always be considered as the new most ad-

equate solution, even if it is obtained by performing a tabu

move.

The information on the tabu list is kept in the memory of

the resolution procedure, along with information on a vari-
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I. Initialization of the frequency values freq( fs),∀ fs,s∈S .

II. Cycle of services.

1. Initialization of the tabu list, with length given by

nPaths.

2. Cycle in nCycles:

(a) Calculation and ordering of the values of ξ ( fs).

(b) Use of MMRA-S2 to find pairs of paths for the

flows fs.

(c) Initialization of (WQ( fs)−W a
Q)−a · freq( fs) for

all the flows.

(d) Cycle in numIterations.

– (Search up to a maximum of numIterations

new solutions in the neighbourhood of the cur-

rent solution.)

– Go through the ordered flows fs according to

increasing values of ξ ( fs).

A. Check whether the pair of paths proposed

for the flow fs is tabu.

B. Keep a copy of the current pair of paths for

this flow and load the new pair of paths in

the solution.

C. If the new solution is “better” than the cur-

rent one (i.e., has better values for the up-

per level functions and for the lower level

functions for the service under scrutiny).

• If the move is tabu.

* If the aspirational criterion is met.

– The current solution is the most ad-

equate up to this stage of the algo-

rithm.

– Increment the value of freq( fs).

Otherwise, go back to the previous so-

lution.

Otherwise,

* Increment the value of freq( fs).

* Check whether the new solution is

better than the most adequate solu-

tion up to now and if it is so, the new

solution becomes the most adequate

solution.

* Add the move to the tabu list.

• Leave the cycle of “going through the

flows”.
Otherwise,

• If the move is not tabu, keep the in-

formation on the value of (WQ( fs)−
W a

Q)−a · freq( fs).

• Go back to the previous solution.

(End of the cycle of “going through the flows”.)

– If no new solution that improves the current

solution was found.

A. Choose the solution obtained with a non-

tabu move, with the highest value of

(WQ( fs)−W a
Q)−a · freq( fs).

(End of the cycle in numIterations.)

(End of the cycle in nCycles.)

End of the cycle of services.

Fig. 3. The adaptation of the TS technique to the basis heuristic

HMOR-S2.

able freq( fs), that gives the number of times a specific

flow fs has seen its set of paths changed throughout the

algorithm. This information is associated with a long-term

memory. As for the solutions that are found and explored,

the only information that is kept is the one concerning the

most adequate solution found up to the current stage of the

algorithm.

In the inner cycle of the heuristic, if new sets of paths for

all the nPaths flows have been considered and a solution

better than the current one has not been found yet, then

the solution that will be used in the next stage of the al-

gorithm will be the one originating from a non-tabu move

with the highest value of (WQ( fs)−W a
Q)−a ·freq( fs), where

WQ( fs) is the QoS services revenue value when the set of

paths for flow fs is changed, W a
Q is the QoS services rev-

enue value for the current solution, and a is an empirical

parameter for which a value has to be chosen. The value

of (WQ( fs)−W a
Q)− a · freq( fs) increases with the differ-

ence (WQ( fs)−W a
Q) (i.e., preference is given to the solu-

tions with higher value of the QoS services revenue) and/or

with lower freq( fs) (i.e., preference is given to the solu-

tions obtained with the change of paths for a flow fs which

has not seen its paths change very often in the past stages

of the algorithm). The reasoning behind this is based on

a proposal in [40].

Note that this choice of solutions (with which the algorithm

continues the search) tries to avoid local extremes. Instead

of always proceeding with the best solution found so far,

it becomes more advantageous to proceed with a solution

with good value of QoS traffic revenue. The algorithm stops

after a pre-defined number of iterations.

The adaptation of the TS technique to the basic heuristic

HMOR-S2 can be described as depicted in Fig. 3.

The complete formalization of the TS meta-heuristic ver-

sion of HMOR-S2, HMOR-S2TS, is in Appendix B.2 of the

report [35].

As for the numerical complexity of this heuristic, the in-

structions in the inner cycle of the procedure are exe-

cuted C
HMOR-S2TS
i = 4|S ||F | times and the number of solu-

tions that are analyzed is C
HMOR-S2TS
s = 2|S ||F |(|F |+1).

Therefore, the numerical complexity represented by any of

these measures is the same as for the HMOR-S2 heuristic

(see [21]). For further details on these calculations, see

also [35].

4. Experimental Results

In this section, the analytical and simulation results ob-

tained with the HMOR-S2SA and the HMOR-S2TS heuris-

tics in a network case study analogous to the one in [45]

are presented.

4.1. Application Model

In [45] a model for traffic routing optimization and ad-

mission control in multiservice networks supporting traf-

fic with different QoS requirements, was proposed. This
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model will be used as a benchmarking study for the present

work concerning upper bounds for the optimal value of the

QoS traffic revenue. The objective functions to be maxi-

mized in the problem formulated in [45] are the QoS and

BE flows revenues, WQ and WB. A bi-criteria lexicographic

optimization problem was formulated, so that the improve-

ments in WB are to be sought under the constraint that WQ

remains with the optimal value. A two-stage heuristic pro-

cedure based on a multicommodity flow (MCF) formulation

was developed to solve this problem. An admission control

mechanism was applied in the first stage of the heuris-

tic. Initially only QoS traffic in the original network N

is taken into account and the aim is to find the optimal

value of WQ. Once this has been achieved, the BE traf-

fic is offered to a residual network N ′, composed of arcs

with the remaining capacities. In the first stage determin-

istic models are used in the calculation of paths, in partic-

ular mathematical programming models based on MCFs.

As these models are only a rough approximation in this

context and they tend to under-evaluate the blocking prob-

abilities, Mitra and Ramakrishnan [45] propose an adapta-

tion of the original model to obtain more “correct” models,

that is models which constitute a better approximation in

a stochastic traffic environment. This adaptation consists

of a compensation of the required bandwidth values of the

flows in the MCF model with a parameter α ≥ 0.0, so as to

represent the effect of the random fluctuations of the traffic

that are typical of stochastic traffic flows. The parameter α
should have a high value if the need for compensation is

high, due to a high variability in the point processes. The

MCF-based result is mapped into the adapted model, keep-

ing the relations between traffic intensities invariant.

Furthermore, traffic splitting was used in this traffic routing

model, which means that the required bandwidth of each

flow may be divided by multiple paths from source to des-

tination, allowing for a more balanced traffic distribution in

the network, hence lower blocking probabilities.

The fact that the values of WQ obtained by this reference

model provide upper bounds for the optimal value of WQ

(for the same input traffic matrix) in our model, results from

the lexicographic optimization as well as the simplifications

in the traffic model, the admission control and the traffic

splitting mechanisms, adopted in [45].

4.2. Application of the Model to a Network Case Study

The routing model in [45] was applied to the test network

depicted in Fig. 4. It has N = 8 nodes, with 10 pairs of

nodes linked by a direct arc and a total of |L | = 20 uni-

directional arcs. The bandwidth of each arc C′k [Mbit/s] is

shown in Fig. 4. The number of channels Ck is Ck =
⌈

C′k
u0

⌉

,

with basic unit capacity u0 = 16 kbit/s. There are |S |= 4

service types with the features displayed in Table 1. The

values of the required effective bandwidths ds = d′s
u0

[chan-

nels] ∀s ∈S are also in the table (where d′s is the required

bandwidth in kbit/s). The expected revenue for a call of

Fig. 4. Test network M [45], with the indication of the band-

width of each arc C′k [Mbit/s].

type s is assumed to be ws = ds,∀s ∈S . The average du-

ration of a type s call is hs and Ds represents the maximum

number of arcs for a type s call.

Table 1

Service features on the test network M

Service Class
d′s

[kbit/s]

ds

[channels]
ws

hs

[s]

Ds

[arcs]
ms

1 – video QoS 640 40 40 600 3 0.1

2 – premium

data
QoS 384 24 24 300 4 0.25

3 – voice QoS 16 1 1 60 3 0.4

4 – data BE 384 24 24 300 7 0.25

A base matrix T = [Ti j] with offered total bandwidth values

from node i to node j [Mbit/s] is provided in [45]. As men-

tioned above, the adaptation of the MCF model to a stochas-

tic model was based on a compensation mechanism that

models the effect of random fluctuations of traffic that are

typical of a stochastic traffic model. After the introduction

of the compensation factor, a relation can be established

between the bandwidth demand of each flow fs for a traffic

mix T ( fs) = msTi j with ms ∈ [0.0;1.0] and ∑s∈S ms = 1.0,

in the MCF model and the parameters A( fs) (the mean traf-

fic offered associated with fs, in Erlang) and d′s = dsu0 of

the stochastic model. From [45, eq. (5.2)],

A( fs)≈
T ( fs)

d′s
−α

√

T ( fs)

d′s
=

msTi j

dsu0

−α

√

msTi j

dsu0

[Erl]

if
T ( fs)

d′s
=

msTi j

dsu0
> α2 and both T ( fs) and A( fs) are high.

Otherwise,

A( fs)≈
T ( fs)

d′s
=

msTi j

dsu0

[Erl].

From these data all the parameters needed by our traffic

model can be obtained as shown in [5].
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In this application example, results for the QoS flows rev-

enue WQ are presented for three values of α: α = 0.0 cor-

responds to the deterministic situation; α = 0.5 is the com-

pensation parameter when calls arrive according to a Pois-

son process, service times follow an exponential distribu-

tion and the network is critically loaded; and α = 1.0 is

used for traffic flows with higher “variability”.

For further details on the application of this traffic model

to the network case study under analysis, see [5].

4.3. Analytical Results

In the analytical study, the meta-heuristic versions were

run only once. For the routing plan obtained at the end

of this single run, values for all the objective functions are

computed and if the first level objective function values

dominate the corresponding values for the initial solution,

then this routing plan will be the final solution (Table 2).

Two different sets of tests were conducted: the (i) tests

where the initial solution is the same as the one used in the

basic heuristic HMOR-S2 runs, a solution which is typical

of Internet routing conventional algorithms; the (f) tests

where the initial solution of each meta-heuristic version is

the routing plan obtained at the end of the basic heuristic

runs for each specific α .

For the (i) tests, an initial solution with only one path for

each flow, i.e., without an alternative path, is considered

leaving it up to the heuristic to find an adequate solution

with second choice paths. The initial solution is the same

for all the services s ∈S and the paths are symmetrical.

The path for every flow fs is the shortest one (that is, the

one with minimum number of arcs); if there is more than

one shortest path, the one with maximal bottleneck band-

width (i.e., the minimal capacity of its arcs) is chosen; if

there is more than one shortest path with equal bottleneck

bandwidth, the choice is arbitrary.

As for the (f) tests, the aim is to check whether the meta-

heuristic variants can improve the quality of the final so-

lutions obtained with HMOR-S2 as an alternative to the

direct use of the meta-heuristics (as in the case of the (i)

tests).

The analytical results concerning WQ were compared with

results obtained with the previous heuristic HMOR-S2 [8]

and with the model proposed in [45], which provides an

upper bound to the objective function WQ optimal value in

P-M2-S2.

The experiences with the HMOR-S2SA were conducted with

different temperature cooling functions and the ones that

provided best results for the upper level objective functions

were T
j

W =
[

T 0
W

(

1− j
J

)]a

and T
j

B =
[

T 0
B

(

1− j
J

)]a

in iter-

ation j, with J = 1000;5000 and a = 0.1;0.01. The final

results were quite similar regardless of the chosen value.

An example of the results is displayed in Table 2. These

results were obtained with J = 1000 and a = 0.1 in 11m30s

on average in a Linux environment on a Pentium 4 proces-

sor with 3 GHz CPU and 1 GB of RAM.

The experiences with the HMOR-S2TS were conducted with

different values for numIterations = 10 and a, and the ones

that provided best results for the upper level objective func-

tions were numIterations = 10 and a = 20. These results

are displayed in Table 2 and they were obtained in 11m08s

on average in the same computer mentioned earlier.

In Table 2, two different comparative analysis can be per-

formed. For HMOR-S2SA(i) and HMOR-S2TS(i), the initial

solution is the same as the one used in the correspond-

ing basic heuristic so the table allows for a comparison of

the final results obtained with HMOR-S2 and HMOR-S2SA

or with HMOR-S2 and HMOR-S2TS. As for the variants

HMOR-S2SA(f) and HMOR-S2TS(f), the initial solution has

the objective function values displayed in the table under

HMOR-S2 (basis) so that a comparison of the initial and

the final results with HMOR-S2SA and with HMOR-S2TS

can be performed. If an objective function value obtained

with one of the variants is the same or better than the cor-

responding objective function value obtained with the basic

heuristic, this is indicated in bold. The table also shows the

obtained results for WQ as a percentage of the upper bound

optimal values given in [45].

With the (i) version of the heuristic HMOR-S2SA, the fi-

nal results for the upper level objective functions are worse

when α = 0.0 and are the same for the other values of α .

As for the (i) version of the heuristic HMOR-S2TS, the fi-

nal results for the upper level objective functions improve

for α = 1.0 but are worse for the other values of α . As

these variants take longer to run than the basic heuristic and

generally do not provide better results for WQ and BMm|Q,

when the initial solution is the same, they can not be con-

sidered a better approach for solving the routing problem.

However, their use on a second stage of the resolution of

the routing problem (after the basic heuristic has been used

on a first stage) seems to provide interesting results. In fact,

for α = 0.0;0.5, the upper level objective function results

are better with the (f) test of the heuristic HMOR-S2SA.

In particular, with the (f) application version of the heuris-

tic HMOR-S2TS, the upper level objective function results

improve for all the values of α .

The results with α = 1.0 for both variants are worth men-

tioning. After HMOR-S2SA(f) is run, the final solution

is actually the same as the initial solution. Note that the

heuristics always give the initial solution as a final result

if the algorithm has not succeeded in finding a better solu-

tion in terms of the objective functions WQ and BMm|Q. As

for HMOR-S2TS, the values for WQ and BMm|Q in the final

solution obtained with the (i) test are actually better than

the ones obtained with the (f) test, although the latter are

still slightly better than for the basic heuristic. This shows

the dependency of the final results on the initial solution,

and also shows that starting with a better solution does not

necessarily lead to a better final solution.

Taking these results into account, we may conclude that

a run of the basic heuristic HMOR-S2 followed by a run of

the HMOR-S2SA variant or a run of the HMOR-S2TS vari-

ant may provide improved results for the routing problem
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Table 2

Objective function values for the final solution for different traffic matrices

Objective HMOR-S2 HMOR-S2SA HMOR-S2TS

functions (basis) (i) (f) (i) (f)

α = 0.0

WQ 64731.51* 64517.97 64795.66⋄ 64619.61 64915.35⋆

BMm|Q 0.0898 0.107 0.0843 0.116 0.0731

Bm1|Q 0.0898 0.107 0.0843 0.116 0.0731

Bm2|Q 0.0199 0.0218 0.0194 0.0105 0.0189

Bm3|Q 0.00216 0.00283 0.00206 0.00480 0.00179

BM1|Q 0.691 0.673 0.700 0.854 0.721

BM2|Q 0.0723 0.115 0.0811 0.0434 0.0953

BM3|Q 0.0287 0.0274 0.0295 0.0467 0.0312

WB 17007.15 17662.81 17121.51 17489.36 17163.01

α = 0.5

WQ 60569.09† 60569.09 60724.32• 60162.90 60751.77⊙

BMm|Q 0.0424 0.0424 0.0289 0.0805 0.0258

Bm1|Q 0.0424 0.0424 0.0289 0.0805 0.0258

Bm2|Q 0.00534 0.00534 0.00270 0.0104 0.00259

Bm3|Q 0.00119 0.00119 0.000854 0.00254 0.000744

BM1|Q 0.628 0.628 0.619 0.742 0.634

BM2|Q 0.0432 0.0432 0.0108 0.0385 0.00769

BM3|Q 0.0243 0.0243 0.0237 0.0330 0.0246

WB 16904.99 16904.99 16738.50 17664.88 16905.73

α = 1.0

WQ 56100.60‡ 56100.60 56100.60� 56191.34 56109.97⊗

BMm|Q 0.0263 0.0263 0.0263 0.0179 0.0252

Bm1|Q 0.0263 0.0263 0.0263 0.0179 0.0252

Bm2|Q 0.00515 0.00515 0.00515 0.00266 0.00494

Bm3|Q 0.000560 0.000560 0.000560 0.000430 0.000555

BM1|Q 0.544 0.544 0.544 0.489 0.556

BM2|Q 0.0185 0.0185 0.0185 0.00955 0.0177

BM3|Q 0.0193 0.0193 0.0193 0.0165 0.0200

WB 16479.60 16479.60 16479.60 16288.89 16464.83

HMOR-S2: *) 99.35%; †) 99.57%; ‡) 99.58% of W max
Q (the optimal revenue in [45]); HMOR-S2SA(f): ⋄) 99.45%;

•) 99.83%; �) 99.58% of W max
Q ; HMOR-S2TS(f): ⋆) 99.63%; ⊙) 99.87%; ⊗) 99.59% of W max

Q .

under analysis. Finally note that the best results obtained

with the meta-heuristic variants are more than 99% of the

optimal value WQ. This shows that a significant improve-

ment on BMm|Q can be obtained just with a very slight

worsening on the average revenue WQ, which gives an idea

of the potential advantages of this type of multiobjective

routing formulations as previously noted in [4], [5].

4.4. Simulation Results

After the analytical experiences were performed, simulation

experiences, with static routing methods using the heuris-

tics, were also carried out for the cases where more promis-

ing results were obtained. We considered that simulations

with a dynamic version of the routing methods would not

provide any important additional information on the qual-

ity of the variants of the heuristic. In the simulation study

we used a discrete-event simulation platform developed for

this type of networks, which enabled the validation of the

routing model results and the evaluation of the errors in-

trinsic to the analytical model which provides the estimates

for the objective functions.

The discrete-event stochastic simulation was applied to

a static routing model, where the routing plan is the final so-

lution obtained after the (f) test for each of the variants was

run. This routing plan never changes throughout the sim-
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ulation regardless of the random variations of traffic of-

fered to the network. After an initialization phase that lasts

for a time twarm−up, information on the number of offered

calls and effectively carried calls in the network for each

flow fs,s ∈S , is gathered, until the end of the simulation.

With this information, B( fs),∀s ∈S and subsequently, the

values of the upper and lower level objective functions re-

lated to blocking probabilities can be estimated. As for the

expected revenues, knowing the effectively carried calls in

the network allows for the calculation of the carried traffic

estimates and average revenues.

The results displayed in Table 3 were obtained with a to-

tal simulated time ttotal = 48 h and a warm-up time

twarm−up = 8 h. It took almost 2 h to get these results

in the same computer mentioned earlier.

As the results for the (i) version in Table 2 show, only the

final solution for the TS-like variant and α = 1.0 is better

(in terms of the upper level objective function values) than

the corresponding final solution for HMOR-S2.

In Table 3, the analytical values of each objective func-

tion are displayed, together with the simulation results (av-

erage value ± half length of a 95% confidence interval,

computed by the independent replications method [46])

for these functions. If the statistical estimate of an objec-

tive function value obtained with one of the variants is the

same or better than the corresponding value obtained with

the basic heuristic, this is indicated in bold. Furthermore,

if some simulation result is better than the corresponding

analytical value, this is indicated in italic. The revenue

values have 2 decimal places and the blocking probability

values have 3 significant figures.

In most cases, the analytical results are outside the 95%

confidence interval of the static routing model simulation

results, but they are of similar magnitude. The analyti-

cal results tend to be better than the corresponding static

routing model simulation results, especially in situations

of lower traffic loads (which correspond to higher values

of α in this routing problem application example). In fact,

only for the HMOR-S2SA(f) heuristic with α = 0.0 did we

get a result where an upper level objective function an-

alytical value was in the corresponding confidence inter-

val and had a value worse than the corresponding static

routing model simulation result. These differences between

the simulation and analytic results are mainly due to the

inaccuracies intrinsic to the analytic/numerical resolution,

particularly those associated with the simplifications of the

traffic model, and the associated error propagation. As the

overflow traffic is treated as Poisson traffic, the analyti-

cal model is actually a simplification which tends to un-

derestimate the blocking probabilities in the network (and

to overestimate the revenues). The errors that result from

this simplification propagate throughout the complex and

lengthy numerical calculations associated with the resolu-

tion, for a great number of times, of the large systems of

implicit non-linear equations (4) and (5). Further simplifi-

cations were assumed in the stochastic model for the traffic

in the links: a superposition of independent Poisson flows

and independent occupations of the links. A more accurate

and realistic representation of the traffic flows would allow

for better estimates of the blocking probabilities (see for ex-

ample the numerical algorithms proposed in [47] where the

representation of the traffic flows is based on their means

and variance values). Nonetheless, the approximations in

our model can be considered appropriate in this context for

practical reasons. In fact, if more complex models were

used to represent the traffic and to calculate the blockings

in overflow conditions, the computational burden would be

too heavy since the analytical model has to be numerically

solved many times during the execution of the heuristic

and the routing method would be intractable. It is impor-

tant to note that, concerning accuracy, the focus is on the

relative value of the results of the traffic model rather than

on the absolute accuracy of such values, since the aim of

the routing optimization procedure is just the comparison

of routing solutions, in terms of the values of the objective

functions.

The results displayed in the table for the upper level ob-

jective functions obtained with the two variants are close,

but for the TS-like variant are slightly better than with the

SA-like variant. Therefore, the HMOR-S2TS heuristic may

be considered more adequate to the resolution of the very

complex routing problem P-M2-S2. A comparison of the

results obtained with both variants shows that the analyt-

ical and simulation results are coherent, in the sense that

whenever the analytical value of an objective function is

better for the TS-like variant than for the SA-like variant,

the same happens with the average values obtained with the

static routing model simulation.

5. Conclusions and Further Work

In this work we began by reviewing a hierarchical bi-level

multiobjective routing model in MPLS networks with alter-

native routing, with two classes of services (with different

priorities in the optimization model) and different types

of traffic flows in each class. A specialized heuristic strat-

egy, HMOR-S2, for finding “good” compromise solutions

to this very complex routing optimization problem, was

also reviewed.

Sensitivity tests performed on HMOR-S2 showed that in

particular cases there were “better” solutions to the routing

problem that the basic heuristic was unable to find. This

realization motivated the need to devise new variants that

could possibly find solutions “better” than the ones obtained

with the HMOR-S2 basic heuristic. Two different variants

of this heuristic HMOR-S2 were put forward by introducing

meta-heuristic techniques, namely SA and TS techniques.

These variants were applied to a test network used in

a benchmarking case study [45] that uses a lexicographic

optimization routing approach, including admission control

for BE traffic, based on a deterministic traffic representa-

tion, with the expected revenues associated with QoS and

BE traffic as objective functions. The analytical results ob-
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tained with the variants were compared with the optimal

values for the QoS service expected revenue in the bench-

marking study and with the values obtained with the basic

heuristic HMOR-S2. The results show that the introduc-

tion of meta-heuristic techniques, in particular SA and TS,

in the specialized basic heuristic, does not necessarily lead

to better results. However, the introduction of these tech-

niques is advantageous in the search for improvements of

the final solution obtained with the basic heuristic. In fact,

a run of the basic heuristic HMOR-S2 followed by a run of

either the variants tends to provide improved results for the

routing problem, especially in the case of the TS variant.

A discrete-event simulation platform was used for a more

exact evaluation of the results of the heuristic in a stochastic

environment closer to real network working conditions. In

most cases, the analytical results obtained with the HMOR-

S2 are not inside the 95% confidence interval of the static

routing model simulation results, although they are of sim-

ilar magnitude, due to the inaccuracies intrinsic to the an-

alytic/numerical resolution, namely those associated with

the simplifications of the traffic model, and the associated

error propagation.

Finally note that these variants have added a greater com-

plexity to the basic heuristic. The computational burden of

the resolution has also increased. These remain the major

limitations of this type of routing method and restrain its

potential practical application, at present, to networks with

a limited number of nodes, such as the core and interme-

diate (metro-core) level networks of low dimension.

Further work on this model will focus on the search for

possible simplifications and improvements in the heuristic

resolution approaches. Also the extension of the model to

broader routing principles such as probabilistic load sharing

or traffic splitting might be studied and tested.
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