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Abstract—Malware is a software designed to disrupt or even
damage computer system or do other unwanted actions.
Nowadays, malware is a common threat of the World Wide
Web. Anti-malware protection and intrusion detection can
be significantly supported by a comprehensive and extensive
analysis of data on the Web. The aim of such analysis is
a classification of the collected data into two sets, i.e., nor-
mal and malicious data. In this paper the authors investigate
the use of three supervised learning methods for data min-
ing to support the malware detection. The results of applica-
tions of Support Vector Machine, Naive Bayes and k-Nearest
Neighbors techniques to classification of the data taken from
devices located in many units, organizations and monitoring
systems serviced by CERT Poland are described. The perfor-
mance of all methods is compared and discussed. The results
of performed experiments show that the supervised learning
algorithms method can be successfully used to computer data
analysis, and can support computer emergency response teams
in threats detection.

Keywords—data classification, k-Nearest Neighbors, malware
analysis, Naive Bayes, Support Vector Machine.

1. Introduction

Malicious software (malware) is software designed to dis-
rupt or damage computer system, gain access to users or
gather sensitive information. Malicious programs can be
classified into worms, viruses, trojans, spywares, etc. In
recent years numerous attacks have threaten the ability and
operation of the Internet. Therefore, mechanisms for suc-
cessive detection of malicious software are crucial compo-
nents of network security systems. In this paper the use
of selected data mining techniques to malware analysis is
investigated. Comprehensive and extensive analysis of data
on the Web can significantly improve the results of malware
detection. A large number of learning based methods have
been developed over the past decades and used to com-
plex data analysis. The taxonomy and survey are provided
in [1]. Recently, a class of supervised learning methods
has emerged as powerful techniques for heterogenous data
analysis and classification. It is obvious that most data on
the World Wide Web is heterogeneous, unstructured, and
often incomplete. Therefore, in presented research the au-
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thors focus on the application of the supervised methods to
malware detection.

The goal is to detect malware based on classification of
data taken from various computer networks that belong to
various users and organizations. The objective is to classify
a given program on the Web into a malware or a clean
class. Hence, a problem of two-class pattern classification
is considered.

The problem of identifying to which set of categories a new
observation (measurement) belongs is crucial in many do-
mains, i.e., pattern recognition, anomaly detection, simi-
larity analysis, social networks etc. [2], [3], [S]-[8]. The
individual observations usually have to be analyzed with re-
spect to a set of quantifiable properties. Various techniques
for heterogenous data classification are described in liter-
ature. The three learning methods are employed: Support
Vector Machine (SVM), Naive Bayes (NB) and k-Nearest
Neighbors (kNN) techniques to malware detection. The
application of these methods to malware analysis and data
on the Web classification is discussed in [3], [5], [9]. The
novelty of presented approach is classification based on the
extensive set of the malware samples features. Moreover,
a large Web databases consisting of strong heterogeneous
data is considered.

The paper is structured as follows. In Section 2 a brief
overview of techniques to malware detection is provided.
In Section 3 the problem of malicious software detected
is specified. Three methods used in experiments, i.e., Sup-
port Vector Machine, Naive Bayes and k-Nearest Neighbors
are reported in Section 4. In Section 5 the results of nu-
merical experiments are presented and discussed. Finally,
conclusions are drawn in Section 6.

2. Related Work

In recent years the important direction of research in
network security is devoted to design and development
of methods and tools for malware analysis and detec-
tion [3], [5]. The widely used approach to analyze ma-
licious software is based on the extraction of information
about suspicious communication with the system, the detec-
tion of Intrusion Detection System (IDS) signatures and the
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generation of new IDS signatures. Honeypot systems are
often employed to detect, deflect or counteract attempts at
unauthorized use of information systems. Other techniques
utilize algorithms inspired on human immune system to
detection and prevention of Web intrusions [10], [11].
Malware samples can be used to create a behavioral model
to generate signature, which is served as an input to a mal-
ware detector, acting as the antibodies in the antigen de-
tection process. In case of malicious botnets a new trend
is to use alternative communication channels, i.e., DNS-
tunneling or HTTP instead of IRC to connect command
& control (C&C) servers and infected hosts [12].
Malware detection can be significantly supported by a com-
prehensive and extensive analysis of data taken from the
Internet. The common direction is to use statistic analy-
sis [13] and data mining methods [14]. The supervised
learning algorithms are successfully used to data classifi-
cation taking into account the unique set of features. Wide
range of applications of these techniques to malware detec-
tion is described in literature [9], [15], [16]. The focus is on
anomaly detection and similarity analysis of data samples
related with the malware programs [16], [17].

3. Problem Specification

Let us consider the set Q of vectors of measurements x.
The goal is to detect the malicious data among the data
gathered from the Internet.

In general, the classification problem consists of two steps:
training and prediction. To classify the dataset into disjoin
subsets consisting of samples with similar characteristics
we have to divide the whole data space Q into training and
testing sets. Each instance in the training set contains one
target value (i.e., the class label) and several attributes (i.e.,
the features and attributes of observed variables). The goal
of a classifier is to produce a model based on the training
data, which can enable us to assign an object from the
testing set to the appropriate class as well as possible. The
decision about classification of a new object is made only
based on its features and attributes.

In presented research, the authors consider a problem of
two-classes pattern classification. Each data sample have
to be classified into one of two categories: positive class
containing normal data and negative class containing ma-
licious data. In the following sections three methods that
can be used to classify the heterogenous data are described
and evaluated.

4. Classification Techniques

4.1. k-Nearest Neighbors Classifier (kNN)

The k-Nearest Neighbors (kKNN) algorithm [18], [19] is
widely used for regression and classification. It is one of
the simplest of the machine learning algorithms. The gen-
eral idea of the k-Nearest Neighbors classifier is to clas-
sify a given query sample based on the class of its near-
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est neighbors (samples) in the dataset. The classification
process is performed in two phases. In the first phase the
nearest neighbors are determined. The neighbors are taken
from a set of samples, which the class is known. The op-
timal number of neighbors (value of k in Fig. 1) can be
calculated in different ways. They are described in litera-
ture [18], [19].

The neighbors of a query sample are selected based on the
measured distances. Therefore, a metric for measuring the
distance between the query sample and other samples in the
dataset has to be determined. Various metrics can be used:
Euclidean, City-block, Chebyshev, etc. The Euclidean dis-
tance metric was used in those experiments.

Fig. 1.
of k.

k-Nearest Neighbors classification for various number

The aim of the second phase is to determine the class for
a query sample based on the outcomes (assigned classes)
of the k selected neighbors. The decision about class is ob-
viously straightforward in case when all determined neigh-
bors belong to the same class. Otherwise, in case of neigh-
bors from different classes various ways to select a class
are proposed. The most straightforward solution is to as-
sign the majority class among the k neighbors. The other
widely used approach applies voting. The neighbors vote
on the class, and their votes depend on their distances to
the query sample.

4.2. Naive Bayes Classifier

A Naive Bayes (NB) classifier [20] employs Bayes’ theorem
with strong independence assumptions. In this technique, it
is assumed that the presence or absence of a given charac-
teristic of a class is unrelated to the presence or absence of
any other characteristic. The learning algorithm based on
Bayes classifier allows to combine prior knowledge and cur-
rent measurements. It calculates explicit probabilities for
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hypothesis. This method can be successfully used to the
analysis of heterogeneous and high dimensionality data. Pa-
rameter estimation for naive Bayes models uses the method
of maximum likelihood.

Naive Bayes classifiers can handle an arbitrary number of
independent variables whether continuous or categorical.
Given a set of variables, X = xy,x3,...,x4, the goal is to
calculate the posterior probability for the event C; among
a set of possible outcomes C = cy,c¢3,...,c4. The Bayes’
rule (1) can be used to perform calculations.
X%a|Cj)p(Cj), (1)

p(Ci|x1,x2, cen ,xd) o< p(xl,)C2, .

where p(Cj|xi,x2,...,x;) denotes the posterior probability
of class membership, i.e., the probability that X belongs
to C;. Since NB assumes that the conditional probabilities
of the independent variables are statistically independent
the likelihood to a product of terms (2) can be decomposed:

d
p(X|Cj) o< [T p(xIC)), 2)
k=1

and rewrite the posterior as (3):

IS

p(Cj|X) =< p(C H (x|Cj)- 3)

Using Bayes’ rule described above, a new case X with
a class level C; is labeled, that achieves the highest pos-
terior probability. Although the assumption that the pre-
dictor variables are independent is not always accurate, it
does simplify the classification task dramatically, since it
allows the class conditional densities p(xx|C;) to be cal-
culated separately for each variable, i.e., it reduces a mul-
tidimensional task to a number of one-dimensional ones.
Hence, Naive Bayes reduces a high-dimensional density
estimation task to a one-dimensional kernel density estima-
tion. Furthermore, the assumption does not seem to greatly
affect the posterior probabilities, especially in regions near
decision boundaries, thus, leaving the classification task
unaffected.

Naive Bayes can be implemented in several variants includ-
ing normal, lognormal, gamma and Poisson density func-
tions. In the experiments described in this paper the normal
distribution function is considered.

4.3. Support Vector Machine classifier (SVM)

The Support Vector Machine (SVM) [21] is a widely used
supervised learning model with associated learning algo-
rithms to analyze high dimensional and sparse data and
recognize patterns [2], [3], [22].

The concept of SVM is to classify each data sample into
one of two categories: positive class denoted by “+1” and
negative class denoted by “—1”. It boils down to find a de-
cision boundary — a plane (a hyperplane for n > 3), which
divides data into two sets, one for each class. Next, all the
measurements on one side of the determined boundary are
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Class “~1”

Decision boundaries

Fig. 2. Binary classification.

classified as belonging to “+1” class and all those on the
other side as belonging to “—1” class.

The problem is that many hyperplanes that divides the
dataset can be determined (see Fig. 2). Hence, the best
one has to be selected. In general, SVM tries to learn
the decision boundary, which gives the best generaliza-
tion. A good separation is achieved by the hyperplane that
has the largest distance to the nearest data sample of any
class — a wider margin implies the lower generalization
error of the classifier [1], [23] (Fig. 3). To select the max-

Class “-1” Class “+1”

Fig. 3. Various margin hyperplane.

4014

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY



imum margin hyperplane the optimization problem is for-
mulated and solved.
Let us focus on the SVM algorithm. Under the assump-
tion that two classes +1 and —1 are considered the training
set D of N pairs (x;, i), i =1,...,N, which is used during
the training process can be defined as follows [24]:
N

D:{(Xi,yi)|xi€R",yi€{*1a+1}}Hv “)
where x; denotes a training sample — fixed-length vector
consisting of n values (measurements) and y; is a binary
label associated to the i-th vector.
Given a training dataset, the SVM algorithm searches for
a plane (a hyperplane for n > 3) in the input space that
separates the positive samples from the negative ones.
Let us focus on the original SVM model developed by
Vapnik [21] — linear classifier. Assume that all hyperplane
in R" are parameterized by a vector w, and a constant b

wix+b=0, (5)

where w is the vector orthogonal to the hyperplane and b
denotes the width of a margin.

For hyperplane (w,b) defined in Eq. (5) that separates the
data the classification rule can be formulated:

By (x) = sign(w x+b). (6)

The function h,, should correctly classify the training data.
Moreover, it should classify the other data that has not been
known yet. The problem is that many such hyperplane can
be found, i.e., all expressed by pairs (0w, ab) for each pos-
itive constant @ € R, and the optimal one should be se-
lected. Therefore, as it has already been mentioned training
a binary classification SVM means solving the optimiza-
tion problem, which solution should be a maximum margin
hyperplane (Fig. 3). For a given training set D defined in
Eq. (4) the optimization problem is formulated [21]:

min (lwrw—i—Ci g) %)
w,b,§ 2 =1 ')’

subject to the constraints:

yiw xi+b)>1-8,  §>0, (8)
where §; denotes the slack variable, which measures the
degree of misclassification of the sample x;. C > 0 is the
constant value, which can be seen as a tunable parameter.
The higher value of C involves more importance on classi-
fying all the training data correctly. The lower value of C
involves a more flexible hyperplane that tries to minimize
the margin error. The quadratic programming can be used
to calculate the optimal decision hyperplane [24], [25].

The next step is the prediction process. The goal is to
classify each sample from the testing dataset on one side
of the determined decision hyperplane as belonging to “~1”
class and each that on the other side as belonging to “+1”
class [26], [27]. Hence, the final goal of SVM is to produce
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a model (based on the training data), which classifies the
samples from a new dataset based only on the knowledge
about their features and attributes.

In practical applications, it often happens that the datasets
are not linearly separable in the data space. Due to the fact
that the separation is easier in the higher space the solution
of this problem is to map the original finite-dimensional
space into a much higher-dimensional space (even infinite).
Hence, the solution to create nonlinear classifiers by apply-
ing kernel functions to maximum-margin hyperplanes was
developed [28]-[30]. A kernel function K(x;,x;) defines
the similarity between a given pair of objects. A large
value of K(x;,x;) indicates that x; and x; are similar and
a small value indicates that they are dissimilar.
Summarizing, the resulting nonlinear SVM algorithm is
formally similar — every dot product in (8) is replaced by
a nonlinear kernel function. Various kernel functions are
employed. They are described in literature [31], [32]. The
authors used the polynomial kernel function

K(xi,xj) = (yxl-ij —l—r)"l7 y>0 9)

to malware analysis. In Eq. (9) 7, r, and d denote kernel
parameters. The other kernel functions widely used in the
literature are as follows:

e radial basis function (RBF):

K (xi,x5) = exp(y || xixj %), >0,
e sigmoid:
K(xi,x;) = tanh(yxIxj+r), y>0.

5. Case Study Results

5.1. Input Dataset

The kNN, NB and SVM methods were used to classify het-
erogeneous data from the real malware database of the n6
platform. The n6 platform was developed in Research and
Academic Computer Network (NASK) [33]. The purpose
of the system is to monitor computer networks, collect,
and analyze data about such events as threads, incidents,
etc. [15].

Data in the n6 database are taken from a numerous sources
and distributed channels. Events are detected by the de-
vices located in many units and organizations (e.g. secu-
rity organizations, software providers, independent experts,
etc.) and monitoring systems serviced by CERT Poland
(Computer Emergency Team Poland). Access to all col-
lected datasets, i.e., URLs of malicious websites, addresses
of infected machines, open DNS resolvers, etc., is pro-
vided through a REST API. The API exposes an unified
data model. Hence, the collected data is represented as
a searchable collection of atomic events with a flexible
set of properties (key-value pairs) with predefined seman-
tics. The native output extension is JSON [RFC7159], al-
though n6 supports other extensions, i.e., CSV [RFC4180]
and IODEF [RFC5070]. A fine-grained permission model
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and mandatory TLS [RFC2246] with client certificates for
authentication and confidentiality are provided to control
the access to the system (see Fig. 4).

Security data
providers

- URL-s
- domains E

—_—

noé

ENGINE

- IP adresses
- malware
- others

Fig. 4. The n6 database.

Most of the data collected in the n6 database is updated
daily. The n6 platform provides tools for sorting the in-
cidents. Due to a sophisticated tagging system, incidents
can be assigned to unique entities (e.g. based on IP address
and AS numbers). Data are collected into special pack-
age, which keeps an original source format (each source in
separate file). Additionally it is possible to provide other
information, e.g., about C & C servers that are not consisted
in a client network, but can be utilized to detect infected
computers. Information about malicious sources is trans-
ferred by the platform as URL’s, domain, IP addresses or
names of malware.

5.2. Training Dataset Analysis and Visualization

The preliminary analysis of the training dataset was per-
formed. Four attributes are assigned to each sample col-
lected in the n6 database: time, format, domain, and ad-
dress. The record time consists of two components: date
and time of inserting an event into the n6 database. To
simplify the analysis two attributes were transformed to the

Time

Format ¢ ¢ Domain

Address

0
Normalized values

Fig. 5. n6 dataset visualization (radius visualization).
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more suitable forms. Each domain attribute was clustered,
and converted to the numerical. Each IP address was de-
scribed in decimal according to the formula: W.X.Y.Z =
2563W + 256X +256Y + Z, where W, X,Y,Z correspond
with values in IP address.

Then, the data samples from the training dataset were ana-
lyzed. The visualization of all attributes, i.e., format, time,
domain, and address are displayed in Figs. 5 and 6. Prior
to visualization, values of attributes are scaled to the val-
ues between 0 and 1. The widely used non-linear multi-
dimensional visualization technique Radviz [34] was used
to present the data in the four-dimensional space defined
by these attributes. In this approach, all attributes are pre-
sented as anchor points equally spaced around the perime-
ter of a unit circle (Fig. 5). Data samples are shown as
points inside the circle. Their positions are determined by
a metaphor from physics: each point is held in place with
springs that are attached at the other end to the attribute
anchors. The stiffness of each spring is proportional to the
value of the corresponding attribute and the point ends up
at the position where the spring forces are in equilibrium.
Data samples that are close to a given anchor have higher
values of this attribute. We can determine some groups of
samples with similar values of all attributes.

2.69
2.33
121.97
151.60

181.24
® address
@ domain
® format

Fig. 6. n6 dataset visualization (self-organizing map).

Next, the self-organizing map (SOM) — another technique
for displaying multidimensional data — was applied to in-
vestigate the general structure of the training dataset. The
map depicted in Fig. 6 shows the distribution of samples
in the dataset mapped into the space of all attributes.

Figure 7 presents the correlations between time attribute
and three other, i.e., format, domain and address. It can
be observed that all attributes are commonly correlated,
and the correlation coefficient for each pair of attributes is
different. Correlations between format and domain versus
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Fig. 7. Correlations between time and other attributes.

time are positive (rising), and for address versus time is
negative (falling).

5.3. Validation of Classification Systems and
Comparative Study

The goal of the experiments was to validate the kNN, NB
and SVM classification systems on datasets taken from the
n6 platform. Three series of experiments were performed
for the same input dataset consisting of 398 samples. The
goal of all tests was to classify each data sample from the
input dataset into one of two categories: positive class de-
noted by “+1” (normal data) and negative class denoted

Table 1
Confusion matrix for kNN classification
CV [%] LOO [%] RS [%]
Class
+1 | ~1 +1 | ~1 +1 | ~1
+1 94 .4 7.6 94.3 8.3 96.0 13.7
-1 5.6 92.4 5.7 91.7 4.0 86.3
Table 2
Confusion matrix for NB classification
CV [%] LOO [%] RS [%]
Class
+1 | -l +1 | -l +1 | -1
+1 96.6 6.6 96.9 7.2 96.2 8.7
-1 3.4 93.4 3.1 92.8 3.8 91.3
Table 3
Confusion matrix for SVM classification
CV [%] LOO [%] RS [%]
Class
+ [ 1 +1 [ -1 | 41 | -1
+1 98.1 13.9 95.4 7.3 99.2 11.8
-1 1.9 86.1 4.6 92.7 0.8 88.2
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by “~1” (malicious data). The accuracy of the classifica-
tion was evaluated and efficiency of kNN, NB and SVM
techniques was compared (Tables 1-3). Parameters of the
techniques equals respectively: number of neighbors were
k =3 in Euclidean metrics for kNN, Laplace probability
estimation and size of LOESS window equals 0.5 for NB
and for SVM the polynomial kernel function was used with
parameters Y= 0.5, r =1 and d = 3.

Three commonly used cross-validation methods were used
for assessing how the results of the classification will gen-
eralize to an independent data sets [4], [23]: CV — Cross
Validation, LOO — Leave-One-Out and RS — Random Sam-
pling. Multiple tests for various parameters of these meth-
ods were performed. In this paper the results obtained for
5-folds cross validation and random sampling with 5 repe-
titions of training process and 50% of the relating training
set size is presented. For these values of parameters, the au-
thors got the best compromise between accuracy and speed
of calculations.

The achieved efficiency of fitting of the testing data was
from 86 to 99% respective to the given method and class
(+1 or —1). The SVM method gave the best accuracy of
selecting to the class “+1” (99.2% for RS technique).
Figure 8 shows the calibration plots that illustrate the qual-
ity of the kNN, NB and SVM based classification systems
the classification systems. Figure 9 displays the receiver
operating characteristic curves (ROC) for these systems.
Then, the quality of the classification systems was as-
sessed. Five commonly used criteria were taken into con-
sideration:

— CA - classification accuracy,
— Sens — sensitivity,

— Spec — specificity,

— AUC - area under ROC curve,

— F1 — F-measure.
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Fig. 8. Calibration plots for kNN, NB and SVM based systems:
(a) CV, (b) LOO, (c) RS.

The sensitivity of learning machine (Sens) is defined as

follows:
TP

TP+FP’
where TP denotes the number of true positive predictions
and F'P the number of false positive predictions.

The specificity of learning machine (Spec) is defined as
follows:

Sens = (10)

TN

= TN Y
ITN+FN

Spec

30

Fig. 9. Receiver operating characteristic curves for kNN, NB and
SVM based systems: (a) CV, (b) LOO, (c) RS.

where TN denotes the number of true negative predictions
and F'N the number of false negative predictions.

The classification accuracy (CA) is defined by the ratio of
number of correctly identified samples into the size of the

dataset.
TP+TN

"IN+ FN+tTP+FP

The accuracy of a test (AUC) depends on how well the test
separates the data samples being tested. The accuracy is
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measured by the area under the ROC (Receiver Operating
Characteristic) curve plotted in the coordinate system with
x-axis corresponding to the probability of false positive se-
lection and y-axis corresponding to the probability of true
positive selection. In this research, x-axis corresponds to
the false alarm and y-axis to the true malware detection. In
general, an area of 1 represents a perfect test; an area of
0.5 represents a worthless test. F-measure is a measure of
a test’s accuracy. It considers both the precision p (ratio
of the number of correct results to the number of returned
results) and the recall r (ratio of the number of correct
results to the number of results that should have been re-

Comparative Study of Supervised Learning Methods for Malware Analysis

used in the experiments described in the previous section)
were used to classify dataset consisting of 10747 samples.
Hence, in contrary to the validation tests the training dataset
was about five times smaller than the testing one. More-
over, both training and testing datasets contained different
measurements.

The results of data classification are presented in Table 5.
The quality of the classification systems is presented in
Figs. 10 and 11 and Table 6. Figure 10 displays the ob-
tained receiver operating characteristic curves (ROC) for all
systems. Figure 11 shows the calibration plots.

Table 5
turned) .Of the test to ComPute the score. The F-mea}sgre Confusion matrices (three classification systems)
can be interpreted as a weighted average of the precision
and recall, where the F-measure reaches its best value at 1 Class kNN [%] NB [%] SVM [%]
and worst score at 0. + ] -1 +1 | -1 + | -1
The values of CA, Sens, Spec, AUC and F1 criteria +1 58.4 8.2 73.8 152 | 76.1 15.3
calculated for kNN, NB and SVM based classification sys- 1 416 | 918 | 262 | 848 | 239 | 847
tems are collected in Table 4.
Table 4 10 -
Evaluation of kNN, NB, and SVM classification 0.9 1
Method cv LOO RS 0.8 1
kNN Z 071 Naive Bayes
CA 0.9371 0.9347 0.9246 Z 06 kNN
Sens 0.9617 0.9579 0.9237 3 05
Spec 0.8905 0.8905 0.9265 £ 041
AUC 0.9776 0.9788 0.9631 g 03 1
Fl 0.9526 0.9506 0.9416 02 1
NB 011
CA 0.9548 0.9548 0.9447 o
Sens 0.9655 0.9617 09542 0 0.1 020304 050607 08 09 1.0
Spec 0.9343 0.9416 0.9265 FP Rate (1-specificity)
AUC 0.9910 0.9912 0.9898 Fig. 10. Receiver operating characteristic curves for kNN, NB
Fl 0.9655 0.9654 0.9579 and SVM based systems.
SVM
CA 0.9398 0.9422 0.9497
Sens 0.9808 0.9732 09774 104
Spec 0.8613 0.8832 0.8971 091
AUC 0.9937 0.9927 0.9907 0.8
F1 0.9552 0.9567 0.9623 :? 0.7 1
g 061
o
The results for all validation experiments confirm a good 2 053
quality of our classification systems. The obtained classifi- % 0.4 1 SVM
cation accuracy was from about 92 to 95%, sensitivity from < 031 Naive Bayes
92 to 98%, and specificity from 86 to 94%. All validation 02 1 kNN
experiments gave the similar results. However, the slight 011
better specificity was obtained for NB, while sensitivity was ozl
the best for SVM. 0 0.1 02 03 04 05 0.6 0.7 0.8 0.9 1.0
Estimated probability

5.4. Application of Classification Systems to Malware
Detection

Finally, the kNN, NB and SVM based classification systems
were used to malware detection. The systems trained on the
training dataset consisting of 398 samples (the same that
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Fig. 11. Calibration plots for kNN, NB and SVM based systems.
The values of CA, Sens, Spec, AUC and F1 criteria calcu-

lated for the kNN, NB and SVM based systems are collected
in Table 6.
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Table 6
Evaluation of classification systems
Validation criterion kNN NB SVM
CA 0.8117 0.8311 0.8342
Sens 0.4661 0.7669 0.4576
Spec 0.8259 0.9474 0.9641
AUC 0.8736 0.8991 0.8637
F1 0.5714 0.6630 0.5714

Next, the performance of the NB, kNN and SVN based clas-
sification systems was compared. Table 7 collects the train-
ing and classification times for all methods. The efficien-
cies of kNN and SVM are similar (training: 0.31-0.33 s,
classification: 1.71-2.11s). Both methods provide satisfac-
tory results. It is obvious that the complexity of these meth-
ods depends on the assumed number of neighbors (KNN)
and employed kernel core function (SVM). NB based clas-
sification system is much slower, and its execution time
strongly depends on the size of a dataset.

Table 7
Training and classification times
Techniques | NN NB SVM
training [S] 17.21 5.91 5.03
tclassification [s] 30.00 5.33 10.05

In general, the results presented in the tables and figures
show that the classification systems employing kNN, NB
and SVM methods provide a good accuracy classification
(CA more than 80%). However, the results are of course
much worse than in case of cross-validation experiments.
The largest differences are observed for the specificity cri-
terion.

6. Summary and Conclusion

In this paper the authors consider the application of three
types of supervised learning methods: k-Nearest Neigh-
bours, Naive Bayes, and Support Vector Machine to mal-
ware detection systems. These methods were used to the
classification of data on the Web into malware and clean
class. The performance of the methods was validated. The
commonly used validation techniques, i.e., k-folds Cross-
Validation, Leave One Out, and Random Sampling were
applied.

Moreover, the systems were used to malware detection in
real network. In general, the results of all experiments
confirm that the examined classification methods achieve
the relatively high level of accuracy, sensitivity, and speci-
ficity. Therefore, it can be expected that these methods
could be successfully implemented in intrusion detection
systems. However, the size of training dataset, selection
of methods and their parameters strongly influences the
results of classification. Dealing with unstructured data
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is the main strength of investigated methods especially in
the case of computer network datasets that are frequently
heterogeneous, unstructured and often incomplete. In au-
thors opinion future work can be focused on optimization
of calibration parameters in order to achieve better values
of criteria.

Nevertheless, the computation of strong heterogeneous
data, and pre-processing of this data is still heavy. There-
fore, the classification of large dataset on the Web is still
a challenging task. The further improvements of investi-
gated methods are necessary to achieve efficient techniques
for network security.
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