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Abstract—Fiber To The Home (FTTH) is the most ambitious

among optical technologies applied in the access segment of

telecommunications networks. The main issues of deploying

FTTH are the device price and the installation cost. Whilst

the costs of optical devices are gradually decreasing, the cost

of optical cable installation remains challenging. In this pa-

per, the problem of optimization that has practical applica-

tion for FTTH networks is presented. Because the problem

is Non-deterministic polynomial-time hard (NP-hard), an ap-

proximation algorithm to solve it is proposed. The author has

developed the algorithm in a C# program in order to analyze

its performance. The analysis confirms that the algorithm

gains near-optimal results with acceptable time consumption.

Therefore, the algorithm to be applied in a network design

tool for FTTH network planning is proposed.

Keywords—cost optimization, development optimization, FTTH,

optical technology, telecommunications network.

1. Introduction

Unlike in other technologies, in FTTH the digital data

stream is transmitted through the optical medium directly to

the subscriber’s terminal. Thanks to this approach, FTTH

allows for data transmission with higher speed and better

quality than other networks based on radio, copper, coaxial

and optical-coaxial mixed technologies. Moreover, FTTH

is future proofed – a greater transmission speed requires

only faster terminals and routers, with the fibers remaining

unchanged.

However, nowadays the FTTH development in the world

(also in Europe) is unequal. In annual ranking of FTTH

Council based on FTTH coverage (the percentage of In-

ternet subscribers using FTTH) in particular countries [1],

apart from about 20 countries (led by South Korea, United

Arab Emirates and Japan) with FTTH technology widely

developed (FTTH coverage larger than 25%), for the rest of

the world this key factor is still less than 5%. The problem

is due to economic issues – FTTH requires high cost of de-

vices and optical cable installation. Below a brief overview

of the technology FTTH is presented.

The FTTH network starts from an Optical Line Terminal

(OLT), an endpoint of the core network (Fig. 1). The op-

tical signals that carry the digital data streams to the sub-

scribers are firstly transmitted in a common cable. This is

possible thanks to Wave Division Multiplexing technology

(WDM), which allows a fiber to simultaneously transmit

several tens of optical signals, each of them in a separate

waveband. Later, the signals are split into different routes,

by means of splitters, and end in the Optical Network Units

(ONUs) installed in the subscribers’ homes. Unlike other

networks, in an FTTH network copper cables are not used.

Therefore, optical to electrical conversion, which severely

lowers the limit of data transmission speed for a single user,

is not needed.

Whilst the prices of optical devices (OLTs and ONUs), the

most problematic issue so far, are gradually decreasing, the

cost of optical cable installation remains unchanged. The

cost is made up of several factors as:

– the duct digging,

– the drilling the conduits in new or existing ducts,

– the laying the cables in new or existing conduits,

– the cable.

In this paper, a new method for FTTH network optimiza-

tion with the focus on cable installation minimization is

proposed. After analyzing the previous work, the FTTH

network optimization issues as a mathematical problem is

presented, called the problem of FTTH Network Optimiza-

tion (FNO). An exact algorithm to solve FNO is proposed,

modeling it as an Integer Linear Programming (ILP) prob-

lem. Due to the NP-hardness of FNO, the exact algorithm

allows to solve the problem only for small FNO instances

(with less than ten subscribers). Therefore, for larger FNO

instances, the author proposes an approximation algorithm.

Although the algorithm does not guarantee the ideal so-

lution, it allows for finding the solution closed to opti-

mum. The algorithm computation complexity is polyno-

mial, which allows for its application in computer system

with acceptable cost for FTTH network planners. In order

to evaluate presented algorithms, the result of their opera-

tions in examples is presented.

2. Related Work

The optimization issues in FTTH network planning are con-

sidered in various surveys, among others [2]. Detailed stud-

ies about FTTH optimization focus on 3 areas:

– device installation optimization [3],

– cable installation optimization [4]–[7],

– bandwidth utilization optimization in an FTTH exist-

ing network [8].

In [3], the network cost to be optimized is composed

of two parts: CAPEX – cost of device installation, and

OPEX – cost of network element maintenance. The net-
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Fig. 1. FTTH network structure.

work optimization is modeled as an Integer Linear Pro-

gramming (ILP) problem. Due to the NP-hardness prop-

erty of the problem, an approximated solution is proposed.

Cable installation cost optimization is not considered in

the paper.

In [4]–[7], the cable installation cost optimization issues

are considered. However, the authors have limited the re-

search scope to the problem of selection of the best ca-

ble routes from among the predefined ones. Thus, this

approach makes the result strongly depended on the sub-

jectively predefined cable routes. In [7], the robustness of

the network is also considered. The network should oper-

ate without loss after a failure of a single cable. In [8],

another category of optical network optimization is consid-

ered: optimization of bandwidth distribution in an existing

FTTH network.

After thorough analysis of the previous studies, it could be

concluded that the problem of FTTH network optimization

in the full format of geographical optimization – finding

the optimal allocation of devices and cables in a given area,

with the geographical aspects considered has not been re-

solved yet. Therefore, the aim of this study is to fill this

research gap.

Geographical optimization is applied in various areas, in-

cluding energy, transport, industry, and also in telecommu-

nications (especially for core networks). The basic geo-

graphical optimization problems are the problems of Eu-

clidean Traveling Salesman (ETS) and Euclidean Steiner

Tree (EST) [9], [10]. The first of these problems is to find

the shortest tour to visit a set of points in a plane, whilst

the later problem is to find the shortest tree-network that

connects a set of points in a plane.

The author has analyzed the attempts to extend EST

problem with geometrical conditions in previous stud-

ies [11], [12]. In those studies, the algorithms to find the

EST that avoid given obstacle areas are proposed. In this

paper, the problem further by considering the following

aspects is extended:

• The geographical aspect. In EST, the optimization

objective is to find the shortest network. In practice,

it may not be the network with the lowest cost, if

some of its links have to be provided across areas,

where cable installation is difficult or impossible. In

this work, the cable installation cost resulting from

the terrain condition is assigned to each point of the

plane and the algorithm finds the network with the

lowest total cost.

• The cable capacity limitation.

• The existing network resources. This extension is

essential for using the algorithm in frequent prac-

tical situation, in which the network planner task is

rather to develop an existing network than to create

a new network for a “green-field”.

3. FTTH Network Optimization Problem

In this section, the formal description of the FTTH network

optimization problem (FNO) is presented.

It starts with geometrical input data:

• finite set of source points in the plane S ⊂ R2

(a source point represents an OLT);

• finite set of destination points in the plane space

D ⊂ R2 (a destination point represents an ONU);

• finite set of existing transit points in the plane T1 ⊂R2

(a transit point represents a splitter);
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• finite set of lines connecting the points in the sets

S, D and T1 : E1 ⊂ (S∪D∪ T1)
2 (a line represents

a linear segment of a cable).

In Fig. 2 the model of an FTTH network is presented.

OLT
(Optical Line Terminal)

Central office

ONU
(Optical Network Unit)

Destination
point

Destination
point

Line
Source point

Transit point

Fig. 2. Modeling FTTH network in FNO problem.

Other input data:

• Cable capacity C. It represents the maximum number

of WDM channels that can be transmitted via the

cable;

• Density function of cable installation cost in the

area g: R2 → R. The cost of cable installation de-

pends on the terrain of the area and the infrastructure

existing in the area. The cost of cable installation can

be: quite low if the cable is laid along a road, quite

high if the cable is laid across a road, or infinite if

the cable has to cross a building or a housing estate

(impossible to install).

Function g(x) describes the installation cable cost with

a unit length at the point x ∈ R2. Having the function g,

the installation cost of a cable e by means of the following

integral can be calculated:

f (e) =

∫

1

r=0

g
(

(1− r) · in(e)+ r ·out(e)
)

dr , (1)

where in(e) denotes the input point of line e, out(e) denotes

the output point of line e.

It is assumed that function g is described by means of

a finite and sorted collection of polygons, each of which

has an assigned cost value, and called the g-polygons. The

value g(x) for point x in R2 is the cost of the first g-polygon

that contains x. If x does not belong to any g-polygon, the

g(x) = 1. A g-polygon represents an area with the same

cost. For example: a roadside (low cost), a road (high

cost), a building (infinite cost).

In Fig. 3, the cost of cable installation from A to B is

f (AB)= ||AT1||+||T1T2|| ·m1+||T2T3|| ·m2+||T3T4|| ·m1+
||T4B||, where m1, m2, m3 are the costs of the highlighted

areas, respectively.

A

B

m1

m2

m3

T3
T4

T2

T1

Fig. 3. The cost of installing cables through g-polygons.

The next step is to find:

• finite set of transit points T ⊂ R2,

• finite set of lines connecting the points in the sets S,

D and T : E ⊂ (S∪D∪T )2,

• finite set of paths (sequences of connected lines) P =
{p : p = (e1,e2, . . . ,en); ∀i = 1 . . .n, ei ∈ E , where

∀ j = 1 . . .n−1, out(e j) = in(e j+1)}.

Conditions:

• The connectivity condition. Each destination point

is connected to at least one source point, either di-

rectly via one line or a sequence of connected lines.

In other words, for each point d ∈ D, there exists

a path p ∈ P so that in(p) ∈ S, out(p) = d, where
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in(p) denotes the input point of the first line of

path p, and out(p) denotes the output point of the

last line of path p;

• The capacity condition. The number of path con-

taining a line should not exceed the predefined ca-

pacity of the line: ∀e ∈ E , ∑p∈P:e∈p 1 ≤ C. In the

context of WDM technology, C is the number of

channels that can be transmitted through an optical

cable.

Optimization goal:

• The optimization objective is to get seek solution

with the least total cost of installation of the cables:

Minimize ∑
e∈E\E1

f (e) . (2)

4. Exact Algorithm for FNO

In this paper, the two algorithms for FNO are proposed.

The main one is an approximation algorithm that allows for

effective finding of a near optimal solution of the problem.

In addition an exact algorithm modeled as an Integer Linear

Programming (ILP) is proposed, which is effective only for

small problem instances. The exact algorithm is used to

evaluate the quality of the solution obtained from the main

algorithm.

FNO is strongly related to the family of Steiner Tree Prob-

lems (STP). Apart from the EST already mentioned earlier,

FNO is also related to the topological version of the STP.

The descriptions of the two problems are as follows:

• the Topological Steiner Tree (TST): given a graph

consisting of node set V and link set E (each link has

a cost value assigned), interconnect a given subset T

of V by a sub-graph with the shortest total link cost;

• the Euclidean Steiner Tree (EST): given n points in

the plane (called the terminal points), connect them

by line segments of the minimum total length in such

a way that any two terminal points may be inter-

connected by the line segments either directly or via

other points (called the Steiner points).

TST will be used multiple times as a subroutine of the

algorithms for FNO, whilst EST is a special case of FNO

when S is a one-single-element set, g is a constant function,

and C is larger than |D|.
Because EST has been intensively studied in the last cen-

tury, the author will construct the exact algorithm using the

knowledge collected in the studies on EST. EST is proved

to be an NP-hard problem [13].

Transferring the EST and its derived problems, like FNO,

into an ILP form is difficult, because the Steiner points to

be found are derived from a continuum and unconstrained

set, whilst an ILP is assumed to have discrete and lim-

ited set of variables and equalities. Therefore, in order to

transfer FNO into an ILP, there is need to “discretize” the

problem data space. In other words, the aim is to construct

a limited and discrete set of points that contains the sought

Steiner points. The author calls these points the candidate

points.

4.1. Candidate Points for EST and FNO

There are two approaches for discretizing the space of EST

deriving problems:

• by means of a grid of pixels on the plane – the can-

didate points are defined as the vertices of the grid;

• by generating the candidate points, based on geomet-

rical properties of EST.

The first approach is practical for an approximation algo-

rithm. However, it does not allow for finding the exact

solution. The quality of the solution depends on the grid

granularity. The second approach is used in presented exact

algorithm.

Firstly, the set of candidate points for EST is found, then the

set of candidate points for FNO is extended. The symbol

EST(n) is used to denote the EST of the given value of n.

EST(2) is trivial. The solution consists of the line segment

connecting the two given points.

EST(3) is equivalent to the Fermat Point Problem – given

a triangle ∆ABC, find a point F in the plane such that

the total distance from the three vertices of the triangle

to the point is minimum. The problem was first raised in

year 1643 by the famous French mathematician Fermat, as

a challenge to the Italian mathematician Torricelli. Fermat

resolved the problem (Fig. 4) by:

• constructing 3 equilateral triangles (∆BCA′, ∆ACB′

and ∆ABC′), each of which shares an edge of the

given triangle;

• constructing the line segments AA′, BB′ and CC′,

which meet at one point. If this point belongs to the

∆ABC area, it will be the Fermat point.

Torricelli announced another, equivalent, solution (see

Fig. 5):

• construct a point P, so that ∆BCP is an equilateral

triangle which does not cut ∆ABC. P is called the

Torricelli substituting point of the pair of points B

and C;

• construct the circumscribed circle of ∆BCP. We

call the short arc BC of this circle the Torricelli arc

of BC;

• if line AP will meet the Torricelli arc of BC at a point,

this point will be the Fermat point.

The Torricelli solution is more useful for further solving

the EST(n) problem with n > 3. The solution is based on

the fact that for any point T lying on the Torricelli arc,

the following equation holds: |TP| = |TB|+ |TC|. There-
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Fig. 4. Fermat Point Problem and its original solution.

fore, the sum of |TA|+ |TB|+ |TC| will be minimized if

|TA|+ |TP| is minimized, which will happen if T belongs

on AP.

A

B C

F

P

Fig. 5. Torricelli solution for Fermat Point Problem.

A

S

B

F1
F2

C

D

S1

Fig. 6. Solution of EST(4).

Both Fermat and Torricelli solutions are valid only for a tri-

angle with angles less than 120◦. Otherwise, F will be the

vertex of the triangle with the widest angle.

EST(4) problem can be solved as follows (Fig. 6):

• choose two points from the 4 points (the chosen

points are called A and B, and the remaining points

C and D);

• construct the Torricelli substituting point and Torri-

celli arc of A, B: S = S(A,B) and α = α(A,B);

• construct the Fermat point of C, D and S: F1 =

F(C,D,S);

• if α cuts the line segment SF1 at F2, then we have

the EST solution consisting of AF2, BF2, F1F2, CF1

and DF1;

• otherwise, return to the beginning of the procedure,

and choose another pair A, B. It has been proven that

the solution will be found for at least one A, B pair.

The method proposed for EST(4) can be generalized for

EST(n) with n > 4 as follows:

• choose two points from the n points (we call the

chosen points A and B);

• construct the Torricelli substituting point and Torri-

celli arc of A, B: S = S(A,B) and α = α(A,B);

• find the solution of the EST(n− 1) problem for the

set of points consisting of S and the remaining points.

Let F1 be the first point, through which S is connected

to the remaining points of the EST(n−1) solution.

• if α cuts the line segment SF1 at F2, then we have

the solution of the EST(n) problem consisting of AF2,

BF2, and the element of the EST(n−1) problem so-

lution reduced by SF2;

• otherwise, return to the procedure beginning, and

choose another pair A, B.

The given algorithm has the complexity of O(n!). It has

application in practice for small value of n. For large value

of n, it is impossible to use this algorithm to find the EST

in a sensible time. However, an essential property of the

algorithm will be reused in proposed algorithm, in order

to construct the set of candidate points. Thus, a candidate

point should be either: the Torricelli substituting point of

a pair of points, each of which is a terminal point or another

candidate point, or the Fermat point of a triple of points,

each of which is a terminal point or another candidate point.

Another proven fact is that the number of Steiner points

cannot excess n−2 [9].

Therefore, the set of candidate points can be generated as

shown in Fig. 7.

Up to now, we have been finding the candidate points

for EST. The FNO, however, has a larger set of candi-

date points, due to the impact of g function, described by

means of a collection of g-polygons. Each g-polygon has

an assigned cost value. Providing the g-polygons causes
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procedure GenerateESTCandidates(in

terminals; out candidates)
begin

candidates = terminals

n = Cardinality(terminals)
for i=1 to n-2 do

begin

candidates += {set of points, each of

which is a Torricelli substituting

point of a pair of points in

candidates}
candidates += {set of points, each of

which is a Fermat point of a triple

of all triple of points in

candidates}
end

candidates -= terminals

Fig. 7. Method of generating set of candidate points.

the straight line between two points to not always be the

least cost line.

Let us consider a situation in Fig. 8, in which the

plane is divided into two half-planes with different costs

(m1 and m2). The goal is to find the lowest-cost line that

connects two points A and B belonging to the two half-

planes.

A

m1

m2

B

Fig. 8. Fermat Principle.

According to Fermat Principle, the line with lowest cost is

the two-segment polyline A-O-B, where O belongs to the

interface between the two half-planes and fulfills following

condition:
sinα

sinβ
=

m1

m2

. (3)

The Fermat Principle has wide applications in physics;

among others, it explains the phenomenon of light refrac-

tion. The point O is called the refraction point of A, B

through the interface line.

In FNO, the Fermat Principle allows for finding a new

subset of candidate points, each of which is the refraction

point of a pair of other candidate points through an edge

of a g-polygon. Taking refraction points into consideration,

the candidate points of FNO can be generated by means of

procedure shown in Fig. 9.

procedure GenerateFNOCandidates(in sources,

destinations, g-polygons; out candidates)

begin

candidates = sources + destinations +

{set of vertices of the g-polygons}

n = Cardinality(sources + destinations)

for i=1 to n-2 do

begin

candidates += {set of points, each of

which is the Torricelli substituting

point of a pair of points in

candidates}

candidates += {set of points, each of

which is the Fermat point of a triple

of all triple of points in

candidates}

candidates += {set of points, each of

which is the refraction point of a

pair of points in candidates through

an edge of a g-polygon}

end

candidates -= sources + destinations;

end

Fig. 9. Generating procedure of NFO candidate points.

The cardinality of the set of the candidate points grows

according to O
(

(n+m)3n
)

, where n is the total number of

source and destination points, whilst m is the total number

of the g-polygons vertices.

4.2. Transformation of FNO into ILP

In FNO problem, let K denote the set of candidate point

generated for S, D and the given g-polygons. Let V denote

the sum of S, D, T1 and K.

For each pair of u, v ∈ V a binary variable xuv ∈ {0,1} is

defined. In addition the cost of the line segment u-v is

calculated by means of the given cost density function g:

cuv =
∫

1

r=0

g
(

(1− r)u + rv
)

dr . (4)

Because the exact algorithm is not the main goal of this

work, the author leaves the capacity constraints to future

work.

The FNO problem can be transferred into ILP format, de-

noted by ILP FNO(V, S, D, c), as follows:

Minimize

∑
u,v∈V

cuvxuv

Subject to:

∑
u∈M,v∈V\M

xuv ≥ 1

for each set M ⊂V , M∩S 6= /0 and V\M∩D 6= /0.

ILP FNO can be resolved by means of an integer linear

programming package. Furthermore, ILP FNO has a very

similar form to the ILP of the TST problem [14]. In partic-

ular, the ILP FNO into the ILP form of TST is derived by

creating an artificial “super source node” connected to all

93



Hoang Nghia Le

nodes of S by artificial links with zero cost. Hence, the al-

gorithms proposed for TST to find the exact or approximate

result of ILP FNO can be reused.

For a FNO instance presented in Fig. 10 (Example 1), with

the only g-polygon is the brown triangle with assigned

cost = 2, the exact algorithm provides the optimal result

presented by the bold polylines: AS2, BS3, CS1, S1S2,

S1S3, with the total cost = 10.59. If the g-polygon was not

considered in the algorithm, the total cost would be 10.96

(3.5% more expensive).

A

B

C

S1

S3

S2

Fig. 10. FNO instance resolved by exact algorithm.

Since the FNO problem is NP-hard, the exact algorithm

allows to find exact solutions only for small instances of

FNO. The algorithm has been developed and conducted

performance tests, which have shown that for typical con-

figurations of the computer systems used by FTTH network

planners, it is possible to apply the exact algorithm for a net-

work with less 10 users. This limitation is unacceptable in

practice, since a typical FTTH network is to serve several

hundred users.

5. Approximation Algorithm for FNO

In the previous section, the mathematical properties of the

EST have been applied in order to find the candidate points

for optimization. This approach allows for finding the exact

optimal solution, but due to the enormous cardinality of the

candidate points set, it is impossible to use it for a larger

instance of FNO in a sensible time. However, parts of the

work on the exact algorithm can be reapplied in construc-

tion the approximation algorithm.

5.1. Approximation Algorithm Strategy

In the approximation algorithm, instead of starting already

with the full set of candidate points, as the exact algo-

rithm, the author starts the algorithm with a basic candi-

procedure CalculateCostVector

(in candidates; out cost_vector)

begin

foreach v1,v2 in candidates do

begin

cost_vector[v1,v2] = the cost of

the g-polygons containing v1 and v2.

end

end

procedure CalculateILP_FNO(in candidates,

sources, destinations, cost_vector; out

steiner_points, steiner_lines)

begin

Resolve the ILP by means of CPLEX, MS

Solver, or Steiner algorithms

end

procedure FNO_Main(in PEC, LVR; in sources,

destinations, existingTransits,

g-polygons; out steiner_points,

steiner_lines)

begin

candidates = sources + destinations +

existingTransits + vertices(g-polygons)

for i=1 to PEC do

begin

foreach a, b in candidates do

begin

if a, b belongs to different

g-polypons then

begin

Construct the cut points of line

segment (a,b) with the

g-polygons. Call them x1, x2, ..

xn

candidates += {x1, x2, .. xn}

end

end

for j=1 to LVR do

begin

foreach a, b, c in candidates do

begin

if a, b, c belong to the same

g-polygon then

begin

Construct the Fermat point for

the triple a, b, c. Call it f

candidates += {f}

end

end

end

cost_vector =

CalculateCostVector(candidates)

CalculateILP_FNO(candidates, sources,

destinations, cost_vector,

steiner_points, steiner_lines)

foreach s in steiner_points do

begin

if s belongs to the boundary of a

g-polygon then

begin

Find the nearest (clockwise and

anti-clockwise) candidate

points to s in the g-polygon

boundary: v1 and v2

Establish the midpoints of line

segments: v1-s and

v2-s and call them x1 and x2

candidates += {x1,x2}

end

end

end

end

Fig. 11. Algorithm details.
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date point set consisting only of given points: the sources,

destinations, existing transit points and the vertices of the

g-polygons. After resolving the ILP FNO for those points,

the result will be improved in iterations. In each iteration,

new points are added to the candidate point set. The num-

ber of the iterations is preset by means of the algorithm

configuration parameters.

The main configuration parameters of the algorithm are:

• Loose Vertices Resolution (LVR) – the number of

iterations, in each of which we find the Fermat point

for each triple of candidate points lying on the same

g-polygon. This way, we can locally improve the

solution quality;

• Polygon Edge Cut (PEC) – the number of iterations,

in each of which we find the quasi-refraction points

and add them to the set of candidate points.

For the ILP FNO implementation, beside using the com-

mercial optimization packages, the author also created his

own algorithm based on the known algorithms for the TST)

[14]–[16].

The details of the algorithm are presented in Fig. 11.

The complexity of the approximation algorithm is O(n4) ·
PEC · LVR + S(n4·PEC) · PEC, where n is the cardinality

of the starting candidate point set (consist of S, D and

the g-polygon vertices), and S(k) is the complexity of the

algorithm that resolve the TST problem for a k-element

graph.

6. FNO Algorithm Evaluation

6.1. Comparison with Exact Algorithm

In order to compare the results of the approximation

and exact algorithms, the FNO instance in Example 1,

which has been resolved by the exact algorithm (Fig. 8)

is considered. The approximation algorithm operates as

follows:

A

B

CS1

S3

S4

S5

S2

Fig. 12. Approximate algorithm for Example 1 (step 2).

A

B

CS1

S3

S4

S5

S2

F

Fig. 13. Approximate algorithm for Example 1 (step 4).

1. It starts with the basic candidate points A, B, C (the

given points), S1, S2 and S3 (the vertices of the

g-polygon).

2. Next, we add to the candidate point set the cut points

of AC and AB with the boundary of the g-polygon:

S4 and S5 (Fig. 12).

3. The Fermat point of all point triples that belong to

the same g-polygon is constructed. In this example,

the most interesting is the Fermat point of (C, S4

and S5).

4. The ILT FNO for (A, B, C, F, S1, . . . ,S5) is resolved.

The result is the red (bold) polyline presented in

Fig. 13.

5. The midpoints of the line segments of the candidate

points belonging to the g-polygon edges (S1S4, S4S5,

etc.) is constructed. The constructed midpoints are

treated as the quasi-refraction points, and added to

the candidate point set.

6. The PEC is decreased by one, and repeat step 2 until

PEC is zero.

A

B

CS1

S3

S6

S7

S4

S5

S2

F

F2

Fig. 14. Approximate algorithm for Example 1 (final result).
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Fig. 15. FNO testing Web application – main page.

Fig. 16. FNO testing Web application – mass test panel.

The final result for PEC = 20 is presented in Fig. 14. It

is very close to the exact algorithm result (0,001% cost

difference).

6.2. Analysis of Algorithm Performance in Practical

Example

In order to evaluate the effectiveness of the algorithm, the

author has developed it in a .net C# program (Fig. 15).

The program has been run in a PC based on Intel Core i5

2.66 GHz and 8 GB RAM.

The Web application includes a test panel that allows for

mass testing of the algorithm problem for different values

of configuration parameters PEC and LVR (Fig. 16).

In order to explain how the configuration parameters im-

pact the result quality and the time consumption, let us

consider an FNO instance (Example 2), in which we have

1 source (the square symbol), 3 destinations (triangles) to

be connected through 3 high-cost polygons.

For PEC = 1 and LVR = 1 (Fig. 17), the cost is quite

high (644.9) but the algorithm runs exceptionally fast (0.7 s

duration).

When LVR is increased to 10 (Fig. 18), the cost is improved

significantly (638.3). However, the algorithm runs slower

(6 s), though the duration is still acceptable (near real-time).

Additional increasing LVR up to 20 (Fig. 19), causes min-

imal cost improvement (638.2). However, the algorithm
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Fig. 17. Algorithm result for Example 2, PEC = 1, LVR = 1,

cost = 644.9.

Fig. 18. Algorithm result for Example 2, PEC = 1, LVR = 10,

cost = 638.3.

runs much slower (374 s), and the duration is unacceptable

for a network design tool.

Fig. 19. Algorithm result for Example 2, PEC = 1, LVR = 20,

cost = 638.2.

More detailed impact analysis of the configuration param-

eters PEC and LVR on the algorithm operation has been

conducted by means of the mass testing on a practical ex-

ample of FTTH network optimization for a housing estate

in Warsaw (Example 3, Fig. 20). The mass testing relies

on running the algorithm multiple times, changing the con-

figuration parameters for each iteration.

In Fig. 21, the tendency regarding the result quality when

PEC and LVR increase is presented. It can be observed that

increasing LVR from 0 to 1 causes significant improvement

of the result quality. Increasing LVR from 1 to 2 gives

only modest improvement, whilst further increment of this

parameter does not causes any noticeable effect. This ten-

dency is logical, because parameter LVR only decides on

local improvement of the algorithm result relying on finding

the Fermat points.

The PEC impact on the algorithm is different. The au-

thor has observed that, a number of iteration is needed

(PEC = 20 for LVR = 0 and PEC = 7 for LVR = 1), in

order to gain a significant improvement of the result quality.

This tendency is logical, because parameter PEC decides

on the cardinality of the set of candidates points, whilst the

algorithm needs the set large enough in order to return the

converging the optimum.

The performance of the algorithm is presented in Fig. 22.

It can be observed that each increment of LVR causes

a significant growth of operation time, whilst the LVR rise

causes rather modest increment of operation time.

The conclusion of mass testing analysis is that in practical

situation, it is recommended to run the algorithm with LVR

to be 1, 2 or 3, whilst PEC should be set to be as large as

possible. The mass testing analysis confirms that, although

the algorithm does not guarantee the ideal solution, it allows

for finding the solution closed to the optimum. This allows

the algorithm to be applied in computer systems used by

FTTH network planners.

7. Conclusion

In the paper, a new method for FTTH optimization focused

on minimizing the cost of cable installation is presented.

This method is a development of the previous work result

on geometric optimization. The author added new aspects

not considered in previous work, in particular geographical

aspect and the aspect of existing network resources.

The optimization problem FTTH has been formulated as

a mathematical problem called FTTH Network Optimiza-

tion (FNO). FNO problem has been transformed into an

Integer Linear Programming. Since FNO problem is NP-

hard, its exact algorithm allows to find optimal solutions

only for small FNO instances (for less than ten end-users).

The algorithm has been developed and performance tests

were conducted, which have shown that for typical config-

urations of the computer systems used by FTTH network

planners, it is possible to apply the exact algorithm for

a network with less than 10 users. This limitation is un-
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Fig. 20. Example 3, testing for housing estate in Warsaw.
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Fig. 21. Result quality dependence on parameters PEC and LVR for Example 3.
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Fig. 22. Performance dependence on parameters PEC and LVR for Example 3.
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acceptable in practice, since a typical FTTH network is to

serve several hundred users.

Therefore, for larger FNO instances, an approximation al-

gorithm have been proposed. Although the algorithm does

not guarantee the ideal solution, it allows for finding the

solution closed to optimum. The algorithm computation

complexity is polynomial. It can be applied in typical com-

puter systems used by FTTH network planners.

In the paper, the approximation algorithm has been de-

scribed. In order to confirm its performance in practice,

the author has developed the algorithm in a .net C# pro-

gram. In order to verify the result quality and evaluate the

impact of the algorithm configuration parameters, the mass

testing on a practical example was conducted. As a con-

clusion after analyzing the test results, the recommendation

for algorithm usage in practice has been presented.
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