
Paper On Providing Cloud-awareness

to Client’s DASH Application by Using DASH

over HTTP/2
Jordi Mongay Batalla1, Piotr Krawiec1, Daniel Negru2, Joachim Bruneau-Queyreix2,

Eugen Borcoci3, Andrzej Bęben4, and Piotr Wiśniewski4

1 National Institute of Telecommunications, Warsaw, Poland
2 CNRS-LaBRI, Bordeaux, France

3 University Politehnica Bucharest, Bucharest, Romania
4 Institute of Telecommunication, Warsaw University of Technology, Warsaw, Poland

Abstract—Mobile Cloud Networks group together mobile

users and clouds containing content servers. Hence, they

are an ideal framework for media content delivery. Stream-

switching adaptive video players cope well with some limita-

tions of Mobile Cloud Networks as low bandwidth and band-

width variability in access network. Nonetheless, other lim-

itations, as cloud congestion, are difficult to be managed by

the video players. This paper presents a system for discover-

ing fault situations at the cloud (e.g., cloud congestion) and

notifying to the video player, which will take appropriate ac-

tions for saving the quality of media transmission. In pro-

posed implementation the video application is DASH-capable

and adaptation action may be both stream rate adaptation

and content server adaptation. The communication between

client and server uses “bidirectional” communication feature

of HTTP/2 thanks to the new deployed modules running DASH

over HTTP/2 in both client’s and server’s applications.

Keywords—adaptive video streaming, DASH, HTTP/2.

1. Introduction

Mobile Cloud Networks (MCN) are a great opportunity for

media delivery since they group together mobile users and

media content servers (in cloud networks) under the same

umbrella. However, the challenging issue still remains the

quality of the delivery coming up to the user’s expectations,

without escalating the cost [1]. In fact, most of the recog-

nized problems of MCN [2]–[5] directly affect the media

streaming and should be solved for offering integrated so-

lutions of media delivery. Specifically, the limitations of

MCNs that mainly affect media delivery are:

• low bandwidth in the wireless access networks [2].

Even when 4G technology increased the bandwidth

in mobile devices, the continuous raise of demand for

mobile applications presents bandwidth limitations at

users’ disposal;

• excessive latency in wireless access networks [3], due

to physical media delay caused by the low-quality

connectivity with cell tower, and the latency of the

protocol for access to the physical media;

• resource limitations of mobile devices [3], i.e., elec-

tric power, processing power and storage capacity.

In the case of video applications, an added resource

limitation in mobile devices is the poor display in

comparison to laptops or TV;

• non-optimal management of access network re-

sources [4], which influences negatively in the afore-

mentioned points causing inappropriate access to the

available bandwidth and increasing unnecessarily the

latency in access networks;

• congestion of cloud networks [5], defined as the over-

load of any of the cloud resources (e.g., processing

capacity, uplink bandwidth), which causes delay in

the services damaging the delivery of media con-

tent and, as a consequence of this, impoverishing the

quality of the media event.

Aforementioned limitations require extra-management

mechanisms into the cloud directed to ensure appropriate

user’s satisfaction of the media event [6]. This paper cen-

ters on one of the mentioned limitations. It presents a man-

agement framework for discovering Cloud congestion situ-

ations and informing the user’s video player about the pre-

dicted state of the cloud (avoiding to keep per-connection

information in the cloud). The user’s video player has then

information for interpreting the cause of the reduction of

bandwidth measured at the player. If the bandwidth re-

duction is caused by the cloud congestion, then the video

player could adapt the video content server by switching

the streaming to another server located in a different cloud.

If the bandwidth reduction is caused by congestion in the

user’s mobile network, then the video player could adapt

the streaming by reducing the media bitrate.

Even when the presented framework is independent of the

video player (client application), the solution fits well in the

case of stream-switching adaptive video players. Stream-

switching adaptive players (e.g., Dynamic Adaptive Stream-

ing over HTTP-DASH, Akamai HD Video Streaming –

AHDVS, Adobe Dynamic Streaming and Apple HTTP

Adaptive Live Streaming – HLS) request consecutive small

portions of video (called chunks or segments), each one

with the appropriate media rate (called representation rate).

54



On Providing Cloud-awareness to Client’s DASH Application by Using DASH over HTTP/2

The player decides both the representation rate and the con-

tent server from where the next segment will be down-

loaded, so it may adapt to the current state of the network

and of the content server.

The paper is organized as follows. Section 2 gathers the

state of the art of the proposed management framework

and stream-switching adaptive protocols, whereas Section

3 provides some exemplary simulation results that prove the

gain of considering the information about the state of the

cloud into adaptation decisions. Section 4 presents the end-

to-end framework considering both architecture and com-

munication between involved entities and Section 5 shows

implementation details of client’s and server’s applications

deploying the presented framework. The proposed imple-

mentation has been optimized from the point of view of

cloud management since authors avoid a separate channel

for signaling between client’s and server’s applications. The

communication uses the streaming channel instead, and it is

based on DASH over HTTP/2, which makes bidirectional-

like (initiated from the client or from the server) commu-

nication feasible.

An undoubted added value of this paper is the extension

of QTSamplePlayer [7] for interworking with HTTP/2,

which is available to the researchers in the web page:

http://www.nit.eu/offer/research-projects-products/

http2dash.

Results of the tests performed on the implemented software

are presented in Section 6. At last, Section 7 summarizes

the paper.

2. Background

Between all the limitations of MCN, stream-switching

adaptive protocols cope pretty well with low bandwidth

and bandwidth variability thanks to the adaptation mech-

anism that dynamically selects the media bitrate that fits

better with the current download rate. Mobile networks

with unmanaged and variable resources require from the

client’s application to constantly control the occupancy of

its buffer [8] in order to avoid, from one side, re-buffering

and, from the other side, suboptimal use of resources in the

wireless link.

Even if stream-switching adaptive protocols are relatively

new, the papers on this issue are countless. Until the

publication of some open standards, the stream-switching

adaptive protocols were, mainly, close solutions. Therefore,

many of the first papers were based on inverse engineering,

i.e., the analysis of existing solutions by testing them in

different scenarios. A good recompilation of such analy-

ses was made by Akhshabi et al. in [9], where the au-

thors compared the adaptation mechanisms used by the

most important service providers from the point of view

of how aggressive/conservative they are in different scenar-

ios. The authors of [10] compared the Smooth Streaming

protocol which downloads video chunks periodically with

traditional technique of continuous consecutive download.

With the publication of the open MPEG standard Dynamic

Adaptive Streaming over HTTP (DASH), the research cen-

tered on improving the adaptation algorithm in order to

balance the stability of video playout and the stability of

buffer occupancy. This trade raises due to the variability

of download bandwidth. Since the instability of buffer oc-

cupancy is less harmful from the end user’s point of view,

the applications try, as the main goal, to trade off oscilla-

tions in video playout. In order to avoid such oscillations,

Dobrian et al. [11] outlined the importance of the variabil-

ity of the size of consecutive segments when estimating the

download rate and Seo and Zimmermann [12] proposed to

estimate the download rate from the rate measurements of

a number of downloaded segments. The number of seg-

ments to be considered should be dependent of the state

of the network. Other approaches for consolidating video

playout consisted of monitoring the connections at the TCP

level [8] or using not only measurements of download rate

but also other measurements, such as packet losses, delay

and TCP throughput [13], [14].

In MCNs the conditions, which the client’s application

should adapt to, are not controllable at the client’s terminal.

In other words, it is unlikely to differentiate the increase of

the end-to-end delay from the decrease of bandwidth [11],

so the congestion in the cloud is difficultly recognizable at

the client’s side. A more general vision about the situation

of the server and network could improve the adaptation de-

cisions. Some researchers have proposed to place the adap-

tation logic out of the end user’s video player. For example

Liu et al. proposed to deploy centralized video controllers

with a global view of network and server conditions that

may take decisions about adaptation for the clients [15].

Rejaie and Kangasharju proposed to introduce proxies for

managing the quality of the media streaming at the network

level [16]. At last, some papers showed several benefits of

controlling the adaptation logic at the server side. For ex-

ample, Sodagar [17] proposed to base adaptation decisions

on the state of the sending buffer instead of the receiv-

ing one. Anyway, it seems that the adaptation logic should

be located in the end user’s video application, mainly by

two reasons: the client application is in the best position

to detect and respond to the dynamics on time and, on

the other hand, there is a strong need for keeping minimal

per-connection information in the cloud and servers [15].

In this paper a mechanism for informing the client about

cloud congestion situations is proposed. With this informa-

tion, the client may optimize the adaptation decisions by

differentiating mobile access congestion from cloud con-

gestion distinguishing two adaptation actions: media bi-

trate adaptation when there is mobile access congestion,

and content source switching when there is cloud conges-

tion. Moreover, the content server keeps no information

about situation of the clients in presented solution.

3. Rationale

The simulation tests provided in this section aim to show

that the adaptation decisions based only on user’s side

55



Jordi Mongay Batalla, Piotr Krawiec, Daniel Negru, Joachim Bruneau-Queyreix, Eugen Borcoci, Andrzej Bęben, and Piotr Wiśniewski

(video player) measurements are more error prone than

in-cloud decisions assuming that further are supported by

measurements at the network level (as it occurs in com-

mercial cloud systems). Let us remark that the current

simulation analysis does not aim to cover a wide range of

cases and scenarios for offering exhaustive results about the

necessity of considering the state of the cloud into adapta-

tion decisions, but they only aim to confirm (in an exam-

ple scenario) that more information (about the state of the

cloud) is useful for taking better decisions about the media

streaming.

With this scope, the downloading of segments and calculate

the time of download of each segment (segment download

time) in presence of background traffic is modeled. A pos-

teriori (when the simulations are finished), the behavior of

user- and cloud-based adaptation algorithms for the values

of segment download rate obtained in the simulations will

be compared.

The simulation scenario is shown in Fig. 1. The cloud

uplink is modelled by a single server with infinite FIFO

queue that serves (service time equal to 120 µs) the stream

under test, which is composed of “segments” of 333 packets

(105 of such segments), and the background traffic, which

is Poisson traffic with a rate that varies for different tests:

Rbg = {2, 3, 4, 5 and 6}× 103 packet/s. The packets of

each segment of the stream under test arrive to the queue

with an interarrival time equal to 12 µs (shaped packets

arrival without considering TCP effects) and the first packet

of each segment is sent only when the last packet of the

previous segment finished its service in the queue.

Stream under
test generator

Background
traffic generator

Receiver

CBR
(333 packets/segment,

interarrival time = 12 s)m

Poisson (different )l
T = 120 sm

Fig. 1. Simulation model for rationale.

Note that if no background traffic were in the queue, then

the complete segment would be downloaded in around

40 ms and the next segment could be sent immediately

after that. Whereas, if there were 6× 103 packet/s back-

ground traffic, then the segment would be downloaded in

around 0.22 s, which means 7.5×103 packet/s of total traf-

fic (stream under test and background) and server utilization

ρ ≈ 0.9.

The test is repeated for five values of background traffic

rate indicated above. The mean rate of the stream under

test (called base rate) equals {3.9, 3.3, 2.8, 2.2 and 1.6}×
103 packet/s, respectively for each aforementioned value of

background traffic rate, which means queue utilization ρ ≈
{0.7, 0.75, 0.8, 0.85 and 0.9}, respectively. Let us remark

that for each segment of the stream, the download rate is

slightly different to the base rate due to the unpredictability

of Poisson traffic.

When the simulations are finished, the download rate of

each segment (105 segments in each one of the five tests),

ri, as the number of packets in the segment (333 packets)

divided by the segment download time are calculated.

With the obtained values of segment download rate, the

authors try to understand how the adaptation algorithm

works in the case when it has no information about the

state of the cloud (the server and the queue) and when it

has this information. During adaptation decisions, three

potential representations with rates: R1, R2 and R3, where

R2 is the base rate minus 5% (of the base rate) are as-

sumed. R1 is the base rate minus 15% and R3 is the base

rate plus 5%, as indicated in Table 1. Note that R2 is the

reference representation, i.e., the representation that should

be selected for all segments if the background traffic were

Constant Bit Rate (CBR) instead of Poisson.

Table 1

Probability of erroneous decision

P
Representation User-based Cloud-based

(packets×103/s) Perr Perr

0.70
R1 = 3.3, R2 = 3.7,

9.7×10−3 3.8×10−3
R3 = 4.1

0.75
R1 = 2.8, R2 = 3.1,

1.1×10−2 4.5×10−3
R3 = 3.5

0.80
R1 = 2.4, R2 = 2.7,

1.2×10−2 5.2×10−3
R3 = 2.9

0.85
R1 = 1.9, R2 = 2.1,

1.4×10−2 5.9×10−3
R3 = 2.3

0.90
R1 = 1.4, R2 = 1.5,

1.5×10−2 6.5×10−3
R3 = 1.7

For the adaptation algorithm which does not consider infor-

mation about the state of the cloud (called user-based adap-

tation algorithm), authors assume an algorithm that adapts

the representation bitrate of the next segment to the down-

load rate of the last segment. This is, the representation

selected for segment i, Ri, is calculated as:

Ri = max
n

{Rn|Rn < ri−1} , (1)

where ri−1 is the download rate of segment i−1.

The authors are conscious that the assumed adaptation al-

gorithm is too simple (compared to commercial ones), but

it is enough to compare user- and cloud-based adaptations.

This adaptation algorithm is applied to the 105 ordered

values of segment download rate ri, obtained in the sim-

ulations. In this case, the representation R1 (simulation

results for total load in the server ρ = 0.7) will be selected

for 472 segments (since 472 segments were downloaded

with rate lower than R2). The representation R3 will be

selected in 502 segments (since 502 segments were down-

loaded with rate higher than R3). All the other segments

will be requested with representation rate equal to R2.

56



On Providing Cloud-awareness to Client’s DASH Application by Using DASH over HTTP/2

For analyzing the adaptation decisions, authors consider

that the adaptation decision is erroneous when the selected

representation for segment i, Ri, is higher than the down-

load rate of segment i: ri (resulted from the simulations).

This is, the decision is incorrect if Ri > ri. Let us remark

that Ri > ri could cause image freezing in video players

with short playback buffer. Note that Ri is a function of

ri−1, so the erroneous decision rate is closely related to the

correlation of the segment download rate. The probability

of erroneous decision for different values of ρ is presented

in Table 1 (user-based column).

The second algorithm analyzed is the so-called cloud-based

algorithm. It considers the information about the current

state of the cloud and (based on historical data) the average

conditions of the cloud. In the presented simulations, the

average traffic is the same during all the simulations, so

the average conditions (load, available bandwidth) of the

cloud does not vary. Therefore, we assume that the cloud-

based algorithm selects the same representation (R2) for all

the segments: Ri = R2, i = 1 . . .105. Also in this case, we

consider that taken decision for segment i was erroneous

when Ri > ri.

The probability of error (erroneous decisions divided by to-

tal decisions, i.e. 105) is presented in Table 1 for each of the

five tests (different values of ρ), together with the values of

the representation rates. As we can observe, the error for

user-based decision is always much higher than in the case

of cloud-based decisions since cloud-based decisions are

based on the knowledge of the situation of the cloud bot-

tleneck, unlike user-based decisions. For increasing values

of ρ , the probability of erroneous decisions raises, which is

explained by the higher variability of the state of the queue,

which causes higher variability into the download time of

the consecutive segments.

The authors are aware that the presented results are very

dependent on the assumptions (especially on the assumed

adaptation algorithms), but the aim of the simulation-based

comparison was only to show that user-based decisions

are less reliable since the user’s video application does

not have information about the bottleneck. A lector could

find other algorithms that provide better results, but the

conclusion would be the same. The cloud has information

about the cloud’s bottleneck that the user does not own, and

such information may be useful for taking right adaptation

decisions.

4. End-to-end Framework for

Cloud-aware Adaptation

In order to provide awareness about the state of the cloud

into adaptation decisions, authors propose that cloud sys-

tem performs measurements at the cloud premises (gener-

ally, in the cloud access), which will be used for predicting

the state of the cloud for the next few seconds (in pro-

posed implementation the state of the cloud is predicted for

the next 5 s). The information about potential restrictions

of the cloud is then passed to the content server, which is

responsible for sending it to the user’s DASH application

(client DASH application) by using the push function of

HTTP/2. The DASH application, on its turn, will request

the next segment by considering the state of the user’s

mobile access network (as measured by the DASH ap-

plication) and the state of the cloud (as indicated by the

information received from the content server). The deci-

sions taken by the client application can be to perform the

media bitrate adaptation or the content server adaptation

(switching to another cloud for serving the request). Me-

dia bitrate adaptation is efficient if the congestion is in the

wireless access since the unique possibility is to reduce

bitrate for reducing congestion but, in the case of cloud

congestion, better results by switching the content server

while maintaining the previous media bitrate (saving the

quality of the future streaming) can be obtained. Let us re-

mark that both media bitrate and content server adaptation

decisions should be in accordance with the original Media

Presentation Description (MPD) file managed by the DASH

application (different representations for media bitrate

adaptation and different BaseURL tags for content server

adaptation).

In order to obtain reliable information about cloud conges-

tion, the system performs the next operations:

• The Monitoring Resource Mediator (MRM) (see

Fig. 2) collects (in some time windows before a cur-

rent instant of time) bandwidth information avail-

able at uplink of the cloud and processor load in

the servers. Bandwidth information about aggregate

traffic avoids potential problems of scalability dur-

ing the measurements. This information is stored in

the monitoring database at the Cloud Manager (CM).

Let us remark that commercial clouds actually con-

tain MRMs that monitor the state of the links.

• At time t, the Traffic Forecast within the CM (using

the collected data read from the monitoring database)

provides small-term bandwidth forecast for the next

T seconds, i.e. [t, t + T ], and decides whether the

cloud will experience in that time an over-load (con-

gestion) that will be able to impoverish the quality of

the media transmission. In that case, the CM informs

the content server and the latter sends information to

the client DASH application. The system finishes the

above steps before time t, so that an over-load alert

can be sent to the DASH application at time t for

the period [t, t + T ], after which the above process

is repeated for the next period [t + T, t + 2T ]. Let

us remark that the time T is not synchronized with

the segment duration or segment download duration

but the two operations (DASH streaming and cloud

congestion control) work independently.

Figure 2 shows the entities involved in providing cloud-

awareness to the user’s terminal.

57



Jordi Mongay Batalla, Piotr Krawiec, Daniel Negru, Joachim Bruneau-Queyreix, Eugen Borcoci, Andrzej Bęben, and Piotr Wiśniewski

Monitoring
Resourse
Mediator

Traffic
Forecast

QoS/QoE
Policies

Monitoring
Repository

Historical data

Current
data

Adaptation
alert

Cloud Manager

Cloud

Content
server

Adaptation
requirement
(DASH over
HTTP 2.0)

Client
terminal

Client’s
access

network

Fig. 2. Framework for cloud-aware adaptation.

The MRM is the monitoring tool that provides information

about the traffic in selected points of the cloud (especially

in the uplink of the cloud) and about the state of the proces-

sors in the servers. Many enterprize clouds, open-source

clouds and CDNs provide a multimodal selection of possi-

ble monitoring metrics that span beyond the CPU utilization

and Bulk Transport Capacity up to more detailed per ser-

vice or user-defined metrics (e.g. [18]). In this case, the

measurements used for predicting over-load of the cloud

are the bandwidth of the aggregate (at cloud uplink) and

the number of new requests arrived to the cloud during

the last 30 s. The commercial Riverbed Stringray Traffic

Manager tool [18] provides the requested measurements.

Two different kinds of measurements are necessary for the

traffic forecast algorithm: the current bandwidth measure-

ments and the historical data (stored into the Monitoring

Repository), as shown in Fig. 2.

The Traffic Forecast module has to efficiently predict the

needed bandwidth capacity in the cloud based on observed

fluctuations of cloud resources and to conclude which situ-

ations may lead to cloud congestion. For the implementa-

tion of the traffic forecast algorithm, a similar approach as

in [19] is proposed but considering each http request (dur-

ing one video session) as a separate video channel. The

algorithm estimates the bandwidth required to the server

(bT ) during the next instant of time, T , according to esti-

mated values of active population (NT ) and target download

rate which, on mean, each user will require (R), as indicated

in Eq. (2).

bT = R×NT . (2)

Generally, the estimation of the population is based on

the past measurements of population that are downloading

content (active population) during a long period of time.

These population time series are processed by using dif-

ferent mathematical techniques (e.g. Box-Jenkins) in order

to eliminate periodicity and trends related to specific pe-

riods of time (e.g. daily periods) [19]. In this way, the

data can be used independently of the moment when they

were taken. The output of these operations can be charac-

terized by autoregressive moving-average (ARMA) model.

The characteristics of the past active population define the

population during the next instant of time.

In presented implementation the active population that will

download a content (NT ) to the server as the average of

the measurements of last 30 s (which is the reference value

of playback buffer for many video players) is calculated,

and it is assumed that during this short period there is no

periodicity trend that could have negative influence into

the prediction. Note that the estimations presented are very

sensitive to error since they use short-term measurements,

but let us remember that the implemented system is a proof

of concept. Its deployment in commercial networks should

consider more sophisticated (by using long-term processed

measurements) forecast algorithms.

The target download rate R is calculated as follows. Let

us assume that the server has c different contents with the

same popularity. Each content c contains i different repre-

sentations with rate equal to Ric. Then the average of the

target download rate is:

R =
1
C
×

C

∑
c=1

Ic
∑

i=1
Ric

Ic
. (3)

If the predicted bandwidth goes beyond a given threshold

(90% of the uplink bandwidth of the server in author’s

implementation), then the traffic forecast algorithm pre-

dicts cloud congestion in the next time slot. In this case,

the cloud manager contacts the content servers in order to

inform about the situation. The interface implementation

between CM and content server is based on JSON/RPC

protocol. The content server contacts the users’ terminals,

which the server is actually serving in order to inform about

the congestion situation. The server could decide to send

such information only to a number of clients (e.g. one of

five clients) in order to avoid avalanche situations (all the

clients switch to another cloud). The communication be-

tween server and clients is based on the push functionality

of HTTP/2. Details of such a communication are given in

the Section 5.

At last, the client DASH application is responsible for tak-

ing the final decision about adaptation. Such a decision

may include:

• media adaptation, i.e. switching media stream to

lower representation without changing content server,

as it is illustrated in Fig. 3,

58



On Providing Cloud-awareness to Client’s DASH Application by Using DASH over HTTP/2

• content server adaptation, i.e. downloading further

segments from another content server (from the set of

available servers specified in MultiBaseURL element

into MPD) leaving representation unchanged.

DASH client Content server

Adaptation
decision

Congestion
alert?

stream#n: Request (Seg#x:Repr#y)

stream#n+1: Request (Seg#x:Repr#z)

stream#n+1: Response (Seg#x:Repr#z)

stream#n:Response Headers

stream#n+1:Response Headers

stream#n:PUSH PROMISE

stream#n:PUSH Response(cong.alert)

stream#n:RST STREAM

Fig. 3. Sequence diagram for push-based congestion alert.

For this, the DASH application should implement an en-

hanced adaptation algorithm that may adapt not only Media

bitrate but also content server (e.g. to select another cloud

for streaming the content) considering the information gath-

ered by the same application and the information arrived

from the content server. An example algorithm fulfilling

such functionalities was presented in [20]. The selection

of the server is, generally, a blind decision in the DASH

application. It is responsibility of the service provider to

inform the application about the characteristics of the new

servers, but this is out of the scope of this paper. In case

when DASH application switches the content server (con-

tent server adaptation), it should avoid to come back to

previously used server, from which the client downloaded

a previous segment, in order to avoid ping pong effect of

endless switching between two overloaded clouds.

The scalability of the solution is ensured due to the fact

that the unique interchanged information is about the cloud

congestion, which is not specific per video session. cloud

congestion can be predicted only by taking measurements

of the aggregate traffic and marked flows, which saves most

of the potential scalability issues in the monitoring tool.

Moreover, the network measurements are taken in specific

nodes, which are the bottlenecks of the cloud system (e.g.

uplink). These points are well-known to the cloud provider

and are constantly controlled by traffic manager tools.

5. Implementation Details of DASH

over HTTP/2 Module

HTTP/2, which is still under development within the IETF

HTTPbis Working Group, is a binary protocol that aims at

better utilization of network capacity than previous versions

while preserving compatibility with the transaction seman-

tics of HTTP 1.1. HTTP/2 introduces a framing layer be-

tween HTTP and TCP used for multiplexing several HTTP

requests into one TCP connection. HTTP/2 provides effi-

cient header compression in order to reduce the protocol

overhead [21] and also proposes server push mechanism,

which allows a server to send a response without an ex-

plicit request from the client. In [22], the authors employ

the server push to decrease media delivery latency in DASH

live video streaming. In presented approach, authors apply

the push feature to transfer information about cloud con-

gestion from server to client without the need for client’s

request.

Figure 3 presents the communication between DASH client

and content server assuming that the server received a con-

gestion alert from the CM. The client DASH application

downloads media segments in separate streams. The con-

tent server, after receiving a request for a segment, checks

if during the time, which elapsed from the previous request,

the CM signaled a congestion. If no, the server returns re-

quested segment. If yes (what is depicted in Fig. 3), the

server responses to the request with Headers frame and next

sends Push Promise frame to notify that the server intends

to initiate new stream for “pushed” data. Then, the server

sends RST Stream header to reset current stream, followed

by Push Response, which carries information about conges-

tion. Canceling the current stream allows for faster reaction

to congestion alert since the client does not need to wait

with adaptation process until the whole required segment

(Seg#x:Repr#y in Fig. 3) will be downloaded. Such process

delays downloading of the current segment by Round Trip

Delay required for transferring, one by one, Push Promise,

RST Stream, Push Response frames and a new request for

the segment. On the other hand, the client may ask for the

new adapted segment (Seg#x:Repr#z in Fig. 3) just after

receiving Push Response. Seg#x:Repr#z is the result of

adaptation decisions after receiving cloud congestion alert

(media bitrate adaptation or content server switching).

Let us remark that server push action can be executed only

when server receives a segment request from the client

(as the “supplementary response” to this request) since in

HTTP client-server scheme an exchange of messages is ini-

tiated solely by the client.

5.1. DASH HTTP/2 Client Implementation

In the above-mentioned papers [21] and [22], the au-

thors used implementations of SPDY protocol to develop

HTTP/2-compilant DASH applications. Although HTTP/2

and SPDY have equivalent functionalities (Google’s

SPDYv2 protocol was chosen as the basis for HTTP/2),

they are incompatible due to, for example, different header

compression mechanisms (GZIP in SPDY, whereas HTTP/2

uses dedicated HPACK scheme). Therefore, authors have

implemented own version of HTTP/2 DASH client using

nghttp2 library [23], which is compliant with IETF HTTP

2.0 Draft v13 [24].

For this purpose, the SPDY-based QTSamplePlayer, an

open-source DASH application provided by Bitmovin [7]

(which bases on libdash3 library) has been extended, by

implementing new class HTTP2Connection responsible for

59



Jordi Mongay Batalla, Piotr Krawiec, Daniel Negru, Joachim Bruneau-Queyreix, Eugen Borcoci, Andrzej Bęben, and Piotr Wiśniewski

Client#bkg Server#bkg

Server#1

Server#2

Client#bkg

Client#bkg

signaling

http streaming if#C: 8 Mbit/s

if#A: 10 Mbit/s

if#B

Cloud ManagerPhysical host

Physical host

Monitoring
entity

2

2

1

5

3

4

4

Fig. 4. Experimental setup for evaluation tests.

establishing and handling HTTP/2 connections. Moreover,

we modified DASHReceiver module of the QTSample-

Player to include adaptationAlert() method for interrupting

the current segment downloading process whenever a server

push occurs.

5.2. Content Server Implementation

The HTTP/2 content server was implemented based on

nghttpd server implementation provided by nghttp2 [23].

The authors deployed AlertModule, which contains JSON-

RPC server for receiving congestion alerts from the CM.

The havePushData() method of the AlertModule is called

by main thread of content server whenever a new request

for media segment arrives (which means opening a new

stream). This method checks if a congestion alert from

the CM exists and, in positive case, it records the label of

congestion alert in order not to propagate the same alert in

the future and returns data which should be pushed to the

client. When the response of the havePushData() is pos-

itive, the server triggers push procedure and, at the same

time, cancels the stream related with media segment re-

quest. Let us remark that additional functionality results in

a very low overhead comparing to standard HTTP/2 server.

This overhead is related with receiving a JSON message

(of small size) from CM and performing one extra step in

client’s request handling flow to check if there is a message

to be pushed.

Source code for both implementations (client and server),

are available on web page http://www.nit.eu/offer/research-

projects-products/http2dash.

6. Test Results

The experimental setup, presented in Fig. 4, includes two

physical hosts with three virtual machines (labeled as

server#bkg, server#1 and server#2) containing our afore-

mentioned implementation of content streaming server.

Each physical host emulates one separate cloud domain

characterized by own IP prefix.

The servers in the first cloud are connected through a link

that is constantly monitored (monitoring entity is located on

physical host output interface if#A, see Fig. 4). The avail-

able bandwidth in the output interfaces if#A and if#C was

restricted to 10 Mb/s and 8 Mb/s, respectively, by using the

Linux Traffic Control system (tc command). The servers

provide media content (Big Buck Bunny movie [25]) with

15 different representations, from 100 Kb/s up to 6 Mb/s,

divided into segments of two seconds duration.

The client applications, client#1 and two client#bkg, run

under Linux Ubuntu 14.04. The adaptation algorithm in

the DASH client applications is based on mean download

rate but it has been modified in order to switch the content

server whenever congestion information arrived from the

server (see [20]). Just after connecting with the server, the

clients increased its HTTP/2 flow control window from de-

fault value equal to 64 KB up to 1048 KB using a Settings

frame. In this way, streaming stop is avoid due to exhaus-

tion of client’s window space, and also we limit the number

of Windows Update frames generated by the clients, which

indicate how many bytes the server is permitted to transmit.

The server#1 starts streaming the content to client#1 (ar-

row no. 1 in Fig. 4) with the highest representation. At

second 60, both client#bgk start downloading the same con-

tent from server#bgk located at the same cloud domain as

server#1 (arrows no. 2 in Fig. 4), so the uplink of the cloud

becomes overloaded. The monitoring information of if#A

arrives to the CM (arrow no. 3 in Fig. 4), which determines

that there is bandwidth congestion since the occupancy of

the interface is higher than 0.9 (simple prediction algorithm

created for testing purposes). Then, the CM sends an alert

about cloud congestion to the content servers: server#1 and

server#bgk (arrow no. 4 in Fig. 4). The next request for me-

dia segment arrived to server#1 and server#bgk are used to

perform server push to the clients. The DASH adaptation

60



On Providing Cloud-awareness to Client’s DASH Application by Using DASH over HTTP/2

50

50

100

100

150

150

200

200

Time [s]

Server pushserver#1

server#bkg

server#2

representation

representation

10

10

8

8

6

6

4

4

2

2

0

0

B
it

ra
te

 [
M

b
it

/s
]

B
it

ra
te

 [
M

b
it

/s
]

(a)

(b)

Fig. 5. Segment download rate with cloud-awareness.

150

150 200

server#1

server#bkg

representation

representation

10

10

8

8

6

6

4

4

2

2

0

0

B
it

ra
te

 [
M

b
it

/s
]

B
it

ra
te

 [
M

b
it

/s
]

(b)

(a)

50

50

100

100

Time [s]

200

Fig. 6. Segment download rate without cloud-awareness.

mechanism at the client#1 terminal receives information

about cloud congestion and performs content server adap-

tation by switching the streaming to server#2, as it is sig-

naled by arrow no. 5 in Fig. 4. However, for demonstration

purposes both client#bkg applications received MPDs with-

out MultiBaseURL option, therefore they performed media

adaptation only (without content server adaptation).

Figure 5a shows download rate of each segment received by

client#1 from server#1 and server#2, as well as the repre-

sentation rate selected by the client for each segment. The

moment when server push occurred is indicated by a red

vertical line in Fig. 5a (pointed also by an arrow).

Figure 5b shows the segment download rate and selected

representation for one of client#bkg.

As may be observed in the results presented in Fig. 5a,

thanks to the cloud congestion notification, client#1 could

switch the content server while maintaining the same (high-

est) representation during the whole downloading process.

Moreover, thanks to prediction algorithm, the adaptation

algorithm is able to react fast to the congestion situation

(only 3 segments from the moment when server#bkg started

streaming to client#bkg). Both client#bkg compete for the

if#A bandwidth, so they download the content with lower

representation (Fig. 5b).

61



Jordi Mongay Batalla, Piotr Krawiec, Daniel Negru, Joachim Bruneau-Queyreix, Eugen Borcoci, Andrzej Bęben, and Piotr Wiśniewski

Figure 6 shows the same scenario but, in this case, the

cloud congestion information is not sent to the server, so

DASH application of client#1 performs media bitrate adap-

tation with a delay of 14 segments from the moment when

server#bkg started streaming (client#1 had to wait for col-

lecting enough measurement data to discover bandwidth

decrease). This delay may result in image freezing during

video playout, if only the client buffer size is not enough

to compensate degradation of downloading conditions.

By comparing Figs. 5 and 6, it may be concluded that

cloud-awareness improves the performance of the system

enhancing QoE due to the predictive feature that allows

to fast reaction from the DASH application. Moreover,

content server adaptation allows maintaining higher me-

dia bitrate by switching the transmission to another (non-

overloaded) cloud.

7. Conclusions

The system presented in this paper allows for communica-

tion between Cloud Manager and video player in the end

user’s terminal by means of the content server. Such a com-

munication is used for notifying situations of cloud con-

gestion foreseen for close time. This way, the client video

application may take proper decisions about adaptation tak-

ing into account both bandwidth limitations in the mobile

access and congestion situations in the cloud. The results

obtained by means of the system implemented on DASH-

capable video player and DASH-capable server, present the

applicability of the proposed system in situations of con-

gestion in the cloud and compare the same situation when

the DASH application does not own information about con-

gestion. In the latter case, the application might not adapt

bitrate in time, which would cause frozen image (in the

case of strong degradation in the cloud). Moreover, mak-

ing a distinction between cloud congestion and mobile ac-

cess congestion allows for dual adaptation (media bitrate

and content server), which may improve the quality of the

media event experience.

Two issues will be addressed in planned future work: the

use of bidirectional feature of HTTP/2 communication for

sending dynamic MPD from the server to the client’s DASH

application and new dual adaptation algorithms in DASH

application that integrate together rate measurements at the

video player and information about congestion arrived from

the Cloud Manager.

Acknowledgements

This work is supported by the European research project

DISEDAN (http://wp2.tele.pw.edu.pl/disedan/) under the

CHIST-ERA framework program.

References

[1] T. Jursonovics and S. Imre, “Quality-based charging solutions for

wireless multimedia services”, Int. J. Netw. Manag., vol. 24, no. 5,

pp. 357–401, 2014.

[2] M. Mehta, I. Ajmera, and R. Jondhale, “Mobile cloud computing”,

Int. J. Elec. Commun. Engin. & Technol., vol. 4, no. 5, pp. 152–160,

2013.

[3] S. Qureshi et al., “Mobile cloud computing as future for mobile

applications – Implementation methods and challenging issues”, in

Proc. IEEE Int. Conf. Cloud Comput. & Intell. Syst. CCIS 2011,

Beijing, China, 2011, doi: 10.1109/CCIS.2011.6045111.

[4] N. Fernando, W. L. Seng, and W. Rahayu, “Mobile cloud computing:

A survey”, Future Gener. Comp. Sys., vol. 29, no. 1, pp. 84–106,

2013.

[5] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mo-

bile cloud computing: Architecture, applications, and approaches”,

Wirel. Commun. & Mob. Comput., vol. 13, no. 18, pp. 1587–1611,

2013.

[6] J. Famaey and F. De Turck, “Federated management of the Fu-

ture Internet: Status and challenges”, Int. J. Netw. Manag., vol. 22,

no. 6, pp. 508–528, 2012.

[7] GitHub repository for bitmovin libdash library [Online]. Available:

https://github.com/bitmovin/libdash/tree/http2 (last access:

Aug. 2015).

[8] C. Dovrolis, M. Jain, and R. Prasad, “Measurement tools for the

capacity and load of Internet paths” [Online]. Available:

http://www.cc.gatech.edu/fac/Constantinos.Dovrolis/bw-est/

(last access: Aug. 2015).

[9] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evalu-

ation of rate-adaptation algorithms in adaptive streaming over http”,

in Proc. 2nd Ann. ACM Conf. Multimed. Syst. MMSys 2011, San

Jose, CA, USA, 2011, doi: 10.1145/1943552.1943574.

[10] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen,

“What happens when http adaptive streaming players compete for

bandwidth?, in Proc. 22nd Int. Worksh. Netw. Oper. Sys. Supp. for

Digit. Audio Video NOSSDAV’12, Toronto, Ontario, Canada, 2012,

doi: 10.1145/2229087.2229092.

[11] F. Dobrian et al., “Understanding the impact of video quality on user

engagement”, in Proc. ACM SIGCOMM 2011 Conf., Toronto, ON,

Canada, 2011, doi: 10.1145/2043164.2018478.

[12] W. C. B. Seo and R. Zimmermann, “Efficient video uploading from

mobile devices in support of http streaming”, in Proc. 3rd Ann. ACM

Conf. Multimed. Syst. MMSys 2012, Chapel Hill, NC, USA, 2012,

doi: 10.1145/2155555.2155589.

[13] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning

approach to tcp throughput prediction”, IEEE/ACM Trans. Netw.,

vol. 18, no. 4, 2010, doi: 10.1109/TNET.2009.2037812.

[14] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large

transfer tcp throughput”, ACM SIGCOMM Comp. Commun. Rev.,

vol. 35, no. 4, pp. 145–156, 2005.

[15] X. Liu et al., “A case for a coordinated internet video control plane”,

in Proc. ACM SIGCOMM 2012 Conf., Helsinki, Finland, 2012, doi:

10.1145/2342356.2342431.

[16] R. Rejaie and J. Kangasharju, “Mocha: A quality adaptive multime-

dia proxy cache for internet streaming”, in Proc. 21st Int. Worksh.

Netw. Operat. Syst. Support for Digit. Audio and Video NOSS-

DAV’11, Vancouver, BC, Canada, 2011,

doi: 10.1145/378344.378345.

[17] I. Sodagar, “The MPEG-DASH standard for multimedia streaming

over the Internet”, IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

[18] Riverbed Stingray Traffic Manager [Online]. Available:

http://www.riverbed.com/

[19] D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand forecast and perfor-

mance prediction in peer-assisted on-demand streaming systems”, in

Proc. 30th IEEE Int. Conf. Comp. Commun. IEEE INFOCOM’11,

Shanghai, China, 2011, doi: 10.1109/INFCOM.2011.5935196.

[20] J. Mongay Batalla and S. Janikowski, “In-segment content server

adaptation for dual adaptation mechanism in DASH”, in Proc. 5th

Int. Conf. Comput. Intell., Commun. Syst. Netw. IEEE CICSyN 2013,

Madrid, Spain, 2013, doi: 10.1109/CICSYN.2013.16.

[21] C. Mueller, S. Lederer, C. Timmerer, and H. Hellwagner, “Dy-

namic adaptive streaming over HTTP/2.0”, in Proc. IEEE Int. Conf.

Multim. & Expo ICME 2013, San Jose, CA, USA, 2013, doi:

10.1109/ICME.2013.6607498.

62



On Providing Cloud-awareness to Client’s DASH Application by Using DASH over HTTP/2

[22] W. Sheng and V. Swaminathan, “Low latency live video streaming

over HTTP 2.0”, in Proc. 24st Int. Worksh. Netw. Operat. Syst. Sup-

port for Digit. Audio and Video NOSSDAV’14, Singapore, 2014, doi:

10.1145/2578260.2578277.

[23] nghttp2 – HTTP/2 C Library. Project webpage [Online]. Available:

http://nghttp2.org (last access: Aug. 2015).

[24] M. Belshe et al., “Hypertext Transfer Protocol version 2”, IETF

HTTPbis Working Group Internet-Draft, 2014 [Online]. Available:

http://tools.ietf.org/html/draft-ietf-httpbis-http2-13

[25] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive stream-

ing over HTTP Dataset”, in Proc. 3rd Ann. ACM Conf. Mul-

timed. Syst. MMSys 2012, Chapel Hill, NC, USA, 2012, doi:

10.1145/2155555.2155570.

Jordi Mongay Batalla received

his M.Sc. degree from Uni-

versitat Politecnica de Valencia

(Spain) in 2000 and Ph.D. de-

gree from Warsaw University

of Technology (WUT) in 2009.

His work experience includes

jobs in Centro Nazionale di As-

trofisica in Bologna, Italy as

well as Telcordia Poland. Cur-

rently, he is with National Insti-

tute of Telecommunications as Head of Internet Architec-

tures and Applications Department. He has also an As-

sociate Professor position at WUT. His research interest

focus mainly on quality of service in both IPv4 and IPv6

infrastructures, Future Internet architectures, as well as ap-

plications for Future Internet (Internet of Things, Smart

Cities, IPTV).

E-mail: jordim@tele.pw.edu.pl

National Institute of Telecommunications

Szachowa st 1

04-894 Warsaw, Poland

Piotr Krawiec received his

M.Sc. and Ph.D. degrees in

Telecommunications from War-

saw University of Technology,

in 2005 and 2011, respectively.

Since 2012 he is an Assis-

tant Professor at the Depart-

ment of Internet Architectures

and Applications, National In-

stitute of Telecommunications,

and Institute of Telecommuni-

cations, Warsaw University of Technology. His research

areas include IP networks (fixed and wireless), Future

Internet architectures and applications, prototyping and

testbeds.

E-mail: P.Krawiec@itl.waw.pl

National Institute of Telecommunications

Szachowa st 1

04-894 Warsaw, Poland

Daniel Negru received his

Ph.D. from the University of

Versailles Saint Quentin en

Yvelines in 2006 in the field of

Broadcast and Internet conver-

gence solutions at the network

and service levels. In 2007,

he became Associate Professor

at ENSEIRB School of Engi-

neers/University of Bordeaux,

specializing in multimedia and

networking. From 2010 to 2014, he has been coordinating

the ICT FP7 ALICANTE IP project that tackles network-

ing and multimedia research fields. He has participated

to more than 10 collaborative research projects at the na-

tional or European level, published more than 50 papers,

such IEEE Communication Magazine, IEEE Multimedia,

Globecom, ISCC, FIA. In 2013, he received his Habilita-

tion à Diriger des Recherches (HDR) from the University

of Bordeaux.

E-mail: daniel.negru@labri.fr

CNRS-LaBRI, University of Bordeaux

351 cours de la Libération

33 405 Talence CEDEX, France

Joachim Bruneau-Queyreix

received his M.Sc. in Tele-

communications at ENSEIRB-

MATMECA graduate school

of engineering, Bordeaux, in

2014. Since 2014, he is pursing

his Ph.D. at LaBRI/Bordeaux

Computer Science Laboratory

in the field of multi-criteria

optimization for content deliv-

ery within the Future Media

Internet. His research areas include video codecs, stream-

ing protocols, Future Internet streaming systems and

architectures as well as multimedia streaming application

prototyping.

E-mail: jbruneau@labri.fr

CNRS-LaBRI, University of Bordeaux

351 cours de la Libération

33 405 Talence CEDEX, France

Eugen Borcoci, Ph.D, is full

professor at University “Po-

litehnica” of Bucharest (UPB),

Electronics, Telecommunica-

tions and Information Tech-

nology Faculty. His expertise

has been oriented to specific

domains of telecommunica-

tions and computer networks

architectures, technologies and

services. Recently, his research

63



Jordi Mongay Batalla, Piotr Krawiec, Daniel Negru, Joachim Bruneau-Queyreix, Eugen Borcoci, Andrzej Bęben, and Piotr Wiśniewski

interest and activities are on new architectural approaches:

Future Internet, SDN/NFV, Content Aware/Centric Net-

working. He has published 5 books, 4 textbooks and

over 130 scientific or technical papers and scientific

reports. He has been UPB team leader in several European

research projects. He is member of several International

Conferences Committees and member of the Technical

Sciences Academy of Romania.

E-mail: eugen.borcoci@elcom.pub.ro

University Politehnica Bucharest

Splaiul Indeependenei

Bucharest 5, 060042 Romania

Andrzej Bęben received his

M.Sc. and Ph.D. degrees in

Telecommunications from War-

saw University of Technology

(WUT), Poland, in 1998 and

2001, respectively. Since 2001

he has been Assistant Professor

at WUT, where he is a mem-

ber of the Internet Architec-

tures and Applications research

group. His research areas cover

Future Internet, IP networks, information centric networks,

network virtualisation, traffic engineering, multi-criteria

decision theory, simulation techniques, measurement

methods, and testbeds.

E-mail: abeben@tele.pw.edu.pl

Institute of Telecommunication

Warsaw University of Technology

Nowowiejska st 15/19

00-665 Warsaw, Poland

Piotr Wiśniewski is a Ph.D.

student at the Institute of

Telecommunications at the War-

saw University of Technology,

where he received his M.Sc.

(2010) and B.Sc. (2009) de-

grees in Telecommunications.

He is a specialist at the National

Institute of Telecommunications

and a Research and Teaching

Assistant at the Warsaw Univer-

sity of Technology. His research interests include quality

of service, Information Centric Networks, media streaming

solutions, Future Internet architectures and applications.

E-mail: pwisniewski@tele.pw.edu.pl

Institute of Telecommunication

Warsaw University of Technology

Nowowiejska 15/19

00-665 Warsaw, Poland

64


