
Paper Server Workload Model
Identification: Monitoring

and Control Tools for Linux
Michał Karpowicz and Piotr Arabas

Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland
Research and Academic Computer Network (NASK), Warsaw, Poland

Abstract — Server power control in data centers is a coordi-
nated process carefully designed to reach multiple data center
management objectives. The main objectives include avoiding
power capacity overloads and system overheating, as well as
fulfilling service-level agreements (SLAs). In addition to the
primary goals, server control process aims to maximize vari-
ous energy efficiency metrics subject to reliability constraints.
Monitoring of data center performance is fundamental for its
efficient management. In order to keep track of how well the
computing tasks are processed, cluster control systems need to
collect accurate measurements of activities of cluster compo-
nents. This paper presents a brief overview of performance and
power consumption monitoring tools available in the Linux
systems.

Keywords — cloud computing, energy efficiency, Linux, server
performance metering.

1. Introduction

Data centers supporting both cloud services and high perfor-
mance computing (HPC) applications consume enormous
amounts of electrical energy. From 2005 to 2010 the energy
consumed by data centers worldwide rose by 56%, which
was accounted to be between 1.1% and 1.5% of the total
electricity use in 2010. The growth of energy consumption
rises operating costs of data centers but also contributes to
carbon dioxide (CO2) production. According to the anal-
ysis of current trends (gesi.org/SMARTer2020), the carbon
dioxide emissions of the ICT industry are expected to ex-
ceed 2% of the global emissions, a level equivalent to the
contribution of the aviation [1]. Energy usage in data centers
grows rapidly with the climbing demand for cloud and HPC
services. However, the growth rate of ICT cannot be sus-
tained unless the power consumption problem is addressed
[2]–[4]. In response to the created momentum new comput-
ing elements, i.e. CPUs/GPUs, memory units, disks, net-
work interface cards (NICs), have been designed to operate
in multiple (performance and idle) modes of differentiated
energy-consumption levels (ACPI).
Although energy efficiency (FLOPS/watt) of ICT systems
continues to improve, the rate of improvement does not
match the growth rate of demand for computing capacity.
Based on the projections of technology development it has
been argued that continued scaling of available systems will
eventually lead to a data center architecture consuming more
than a gigawatt of electrical power (at exaflop level), a level

that violates economic rationale for providing cloud or HPC
services. Unless radically new energy-aware technologies
are introduced, both in hardware and software domain, it
will not be possible to meet DARPA’s 20-megawatt exaflop
goal (50 GFLOPS/watt) by year 2020 [3]. Limiting power
consumption and related thermal emission has therefore be-
come a key engineering problem.
In order to meet the challenging goals of cloud and high
performance computing, advances in hardware layer devel-
opment require immediate improvements in the design of
cluster control software. In Section 2 a general structure
and components of a data center monitoring and control sys-
tem are presented. A brief description of resource allocation
and performance control process is also given. In particular,
the role of energy-efficient device controllers is indicated.
Section 3 presents currently developed concepts of power
measurement and control programming interfaces, both for
data centers and wired IP networks. Basic performance met-
rics and benchmarking strategies are presented in Sections 4
and 5. Finally, in Section 6 the results of simple experiments
are given to illustrate the discussed profiling and metering
techniques.

2. An Overview of Data Center
Management

Monitoring of cluster performance is fundamental for its ef-
ficient management. In order to keep track of how well
the computing tasks are processed, cluster control systems
need to collect accurate measurements of activities of cluster
components. The collected measurements, including both
data processing and power consumption metrics, provide
feedback for management operations and serve as a basis
for the design of new cluster control systems.
Figure 1 presents an overview of a cluster control sys-
tem architecture. The racks, supplied with electric power
by power distribution units (PDUs), are filled with blade
servers. The racks are connected into a data center net-
work with a hierarchy of switches (SW). The management
layer is responsible for allocation of resources, job submis-
sion, adjustments of the interconnect settings, power bud-
geting and system monitoring. These tasks are executed
by dedicated resource allocation and job management sys-
tems (RJMS) and system-wide energy management systems
(SEM). The lower control layer, composed of operating sys-

5

Michał Karpowicz and Piotr Arabas

Resource and job management system (RJMS)
U

se
rs

P
o
w

er
 s

u
p
p
ly

RJMS agent RJMS agentRJMS agent RJMS agent

NEM

NEM

NEM

Node-level energy management (NEM)

P
D

U
-m

P
D

U
-1

Rack-m

Rack-1

S
en

so
rs

S
en

so
rs

S
en

so
rs

S
en

so
rs

Core

Core

Core

Core

Core

Core

Core

Core

MEM

MEM

MEM

MEM

N
o
d
e-

m
1

N
o
d
e-

1
1

N
o
d
e-

m
1

N
o
d
e-

1
n

C
P

U
 G

o
v

C
P

U
 G

o
v

C
P

U
 G

o
v

C
P

U
 G

o
v

S
W

[t
o
p
 o

f
ra

ck
]

S
W

[t
o
p
 o

f
ra

ck
]

L
in

k
s

S
W

S
W

A
P

I

S
y
st

em
-w

id
e

en
er

g
y
 m

an
ag

em
en

t
(S

E
M

)

Fig. 1. An overview of cluster control system architecture.

tems controlling servers, is responsible for job execution
and enforcement of resource usage constraints in comput-
ing nodes [5]–[7]. Available computing resources, includ-
ing CPUs, memory and sockets, are exposed to the manage-
ment systems via customized Abstract Programming Inter-
faces (APIs).
The challenging problem of data center control is to max-
imize the utilization of the resources subject to energy
consumption and quality of service constraints. To solve
this problem hardware-specific power saving capabilities of
computing elements are used to keep the total power con-
sumption of data center within the required power range.
The resources that remain idle can be switched to a power
saving (or sleeping) mode for a configurable time and re-
stored to operating mode on demand. The resources per-
forming operations can reduce their power consumption by
dynamically adjusting their performance level [8]–[11].

3. Power Control Programming
Interfaces

Power management capabilities of hardware layer are ex-
posed in the form of Application Programming Interfaces
(APIs). The foundations of power control APIs were built
by the Advanced Configuration and Power Interface (ACPI)
specification [12]. The specification defines hardware de-
pendent energy saving (idle) and performance (active) states
that can be adjusted on demand from the software level.

This allows to control power saving and data processing ef-
ficiency according to a designed policy.
An attempt to design a vendor-neutral API dedicated for
power measurement and control in HPC systems resulted
in development of Power API specification [13], [14]. The
Power API describes cluster as a collection of objects form-
ing a discoverable hierarchy. Objects in the system are char-
acterized by a set of attributes, which allow for measurement
(reading attributes) and control (overwriting attributes) of
their power saving capabilities. Functions providing gath-
ering of statistics are provided for objects and groups of ob-
jects. Both ACPI and PAPI can be adapted to the Power API
abstract model.
A similar approach is proposed by the ETSI Green Abstrac-
tion Layer (GAL) standard [15]. It describes a general con-
cept of programming interface for energy state configuration
of energy-aware telecommunication fixed network nodes.
A hierarchical representation of a network device is pro-
posed, which allows to control the available energy-aware
states of its internal components. The innovation is not only
in the described unification of control but also in the ability
to query energy-aware capabilities of the components.

4. Performance Metrics and Benchmarks

Energy consumption management is a multi-objective op-
timization problem in which multiple performance and

6

Server Workload Model Identification: Monitoring and Control Tools for Linux

energy related metrics are considered [16]–[19]. Usually at
least the following two objectives are considered:

• minimization of peak power consumption,

• maximization of energy-efficiency.

Limiting peak power consumption is critical to maintaining
reliability of data center, avoiding power capacity overloads
and system overheating, as well as fulfilling service-level
agreements (SLAs). At the same time, since economically
feasible power consumption levels are strongly correlated
with the costs of electricity and power provisioning, it is
important to maximize efficiency of operations performed
in data center [2], [3], [20].
Energy-efficiency is defined as a number of operations per-
formed per energy unit, i.e.:

Energy efficiency =

Computing performance
Total energy consumed

. (1)

This universal metric has been in the center of research fo-
cused on energy-aware control of data processing systems.
In order for the metric to be improved it is necessary to
increase the number of operations performed per unit of
energy consumed or to decrease the amount of energy re-
quired per operation. Based on the above observations var-
ious strategies of power management have been developed.
Consequently, the metric has also been used in many bench-
marking methodologies.
Basic industry-standard methodology for power and perfor-
mance benchmarking of a computing server is SPECpower
[21]–[23]. The benchmark measures power consumption
of a server running an appropriately designed application
(Java application server) at workload ranging from 10 to
100% of peak achievable level. Namely, a steady flow of
work requests is submitted to the server under test to deter-
mine the number of requests that can be satisfied in a given
time. The benchmark drivers request work at intermediate
points between zero and the maximum throughput value.
The related toolset can be used with other cluster-wide
benchmarks.
Energy efficiency has been used as a default benchmark-
ing metric. In the case of HPC systems (or batch proces-
sing systems) the performance metric is typically defined
by the number of GFLOPS performed on average per watt
while executing a selected benchmark [24], [25]. Transac-
tion processing systems, composed of application and Web
servers, as well as networks of routers have been evalu-
ated in terms of served requests per watt during throughput-
based benchmarks [26]–[28]. Dedicated tests reporting
transaction throughput per watt have been developed for
storage systems [29], [30] as well. Finally, from the perspec-
tive of data center management energy efficiency is viewed
as a product of [17]:

• facility efficiency – the ratio of total amount of energy
used by a data center facility to the energy delivered
to computing equipment (PUE),

• server power conversion efficiency – the ratio of to-
tal server input power to its useful power consumed
by the electronic components directly involved in the
computation (SPUE),

• server’s architectural efficiency – the ratio of comput-
ing performance metric to total amount of energy used
by electronic components.

5. Power Monitoring and Profiling
Monitoring of power and energy consumption in computing
clusters is a complex problem [7], [31]–[33]. Two general
approaches can be distinguished that allow to perform the
required measurements. The first one is based on power
metering devices connected to the servers. Basic system-
wide measurements are usually provided at rate ranging
from 0.01 to several samples per second by power supply
units (PSUs) and power distribution units (PDUs) through
the Intelligent Platform Management Interface (IPMI) [34].
More accurate and detailed measurements, collected at high
sampling rate and covering selected components of servers,
may be provided by additional and dedicated metering
devices [35], [36].
Whenever IPMI-based monitoring systems directly commu-
nicate with the Baseboard Management Controllers (BMC)
or metering devices, there is no direct overhead on the ob-
served servers caused by the measurements. Otherwise, per-
turbations of measurements should be expected. In practice
IPMI is often used with server management software run-
ning under the local operating system. This allows to access
hardware-specific function, exposed by available APIs, and
conveniently deal with local measurements, control com-
mands execution, error handling and alerting.
Monitoring, configuration and control of devices that sup-
port IPMI on Linux systems can be performed with
ipmitool utility. A list of sensors visible in the system
and their records can be viewed with commands:

$ ipmitool sensor
$ ipmitool sdr -v
$ ipmitool sdr elist full

Example below presents an outcome of IPMI-based moni-
toring:

ipmitool sdr elist full
Fan1 RPM | 30h | ok | 7.1 | 3840 RPM
Fan2 RPM | 31h | ok | 7.1 | 3840 RPM
Fan3 RPM | 32h | ok | 7.1 | 3960 RPM
Fan4 RPM | 33h | ok | 7.1 | 3960 RPM
Fan5 RPM | 34h | ok | 7.1 | 3960 RPM
Fan6 RPM | 35h | ok | 7.1 | 3840 RPM
Inlet Temp | 04h | ok | 7.1 | 17 degrees C
Exhaust Temp | 01h | ok | 7.1 | 28 degrees C
Temp | 0Eh | ns | 3.1 | Disabled
Temp | 0Fh | ns | 3.2 | Disabled
Current 1 | 6Ah | ok | 10.1 | 0.60 Amps
Current 2 | 6Bh | ok | 10.2 | 0 Amps
Voltage 1 | 6Ch | ok | 10.1 | 230 Volts
Voltage 2 | 6Dh | ok | 10.2 | 240 Volts
Pwr Consumption | 77h | ok | 7.1 | 140 Watts

7

Michał Karpowicz and Piotr Arabas

S
er

v
er

 p
o
w

er
 c

o
n
su

m
p
ti

o
n
 [

W
]

60

40

20

0
0

0

50

50

100

100

150

150

200

200

250

250

300

300

Time [s]

3.5

3.0

2.5

2.0

1.5C
P

U
 c

lo
ck

 f
re

q
u
en

cy
 [

G
H

z]

server

CPU

Fig. 2. Correlation of server/CPU power consumption (above) and CPU clock frequency.

The second approach to monitoring of power consump-
tion exploits hardware-level counters provided by se-
lected computing elements, including CPU, GPU and
DRAM. The most commonly available counters are exposed
through Intel’s Running Average Power Limiting (RAPL)
interface and NVIDIA’s Management Library (NVML)
functions [37], [38]. Performance counters allow to collect
measurements at rate ranging from 100 to 1000 samples per
second with high accuracy [39].

When used together with benchmarking probes of the oper-
ating system kernel a runtime estimation of power consump-
tion and performance can be realized on a per-application
basis. In the Linux system the required instrumentation is
provided by the Performance Application Programming In-
terface (PAPI) and perf events functions allowing to ob-
serve micro-architectural events (such as instructions com-
pleted per cycle and cache-misses) [27], [28], [40]–[43].
This paves the way for high resolution identification of data
processing dynamics and its energy-efficiency, and poten-
tially for the design of energy-aware application-specific
server controllers. Novel auto-tuning systems are also devel-
oped that allow to introduce server energy control instruc-
tions into application source code [44].

It is important to point out that care must be taken when
MSR-based measurements are used for performance bench-
marking. Since readouts are taken on the system under
test the measurements may be significantly perturbed by the
measurement process itself, especially under high sampling
rate. Figure 2 shows the results of measurements taken from
ipmi system and MSRs of CPU.

Both methods of monitoring, briefly discussed above, are
conveniently integrated by the resource allocation and job

scheduling systems [7]. As a result it is not only possible
to perform energy accounting and power profiling per job
but also to setup system power-saving configuration for the
purpose of job execution. Along with the scheduled batch of
jobs appropriately defined control server control policies can
be submitted to the computing nodes, thereby optimizing
energy efficiency [45].

6. An Experimental Illustration

To demonstrate how benchmarking tools can be combined
with performance and power consumption monitoring APIs
several simple experiments are presented below.
Listing 1 illustrates how an average power consumption of
CPU and DRAM can be calculated in Linux systems. List-
ing 2 illustrates how the desired RAPL MSRs (address
variable) can be accessed from application level1.
In order to get energy consumption information from the In-
tel’s RAPL model specific registers (MSRs)2 it is necessary
to multiply increments of appropriate energy status coun-
ters, stored in MSR * ENERGY STATUS registers, by scaled
energy status unit, stored in MSR RAPL POWER UNIT regis-
ter. Energy status MSRs are updated approximately every
1 ms, with wraparound time of around 60 s when power
consumption is high [37], [39].

The following listing shows how Linux stress micro-
benchmark can be analyzed with perf tool based on
perf events subsystem of the Linux kernel:

1 Appropriate permissions should be setup to access /dev/cpu/*/msr

interface.
2 Intel’s Sandy Bridge processors.

8

Server Workload Model Identification: Monitoring and Control Tools for Linux

perf stat -a\
stress --cpu 32 --io 32 --vm 32 \
--vm-bytes 512M --hdd 10 --timeout 30s

task-clock (msec) # 32.006 CPUs utilized
context-switches # 0.122 K/sec
cpu-migrations # 0.004 K/sec
page-faults # 0.125 M/sec
cycles # 2.154 GHz
instructions # 0.75 ins per cycle

0.89 stalled cycles/ins
branches # 430.045 M/sec
branch-misses # 0.20% of all branches

Finally, in order to retrieve detailed measurements of perfor-
mance and power consumption of selected parts of applica-
tion source code, low-level performance and energy coun-
ters exposed via PAPI and RAPL MSRs can be used. For

Listing 1: Simple power consumption monitoring script

#!/bin/bash

SAMPLING_RATE=1 # seconds
MSR_PKG_ENERGY_STATUS="0x611" # CPU energy

counter
MSR_DRAM_ENERGY_STATUS="0x619" # DRAM energy

counter

Energy Status Units (ESU)
ESU=‘echo "ibase=16;\

1/2 $̂(rdmsr -X 0x606 -f 12:8)" | bc -l‘
Calculate number of CPU energy status
counter incremants during sampling period
ESPKG=‘a=$(rdmsr -X $MSR_PKG_ENERGY_STATUS);\

sleep $SAMPLING_RATE; echo "ibase=16;\
$(rdmsr -X $MSR_PKG_ENERGY_STATUS)-$a"|bc‘

Calculate DRAM energy status
counter incremants during sampling period
ESDRAM=‘a=$(rdmsr -X $MSR_DRAM_ENERGY_STATUS);\

sleep $SAMPLING_RATE; echo "ibase=16;\
$(rdmsr -X $MSR_DRAM_ENERGY_STATUS)-$a"|

bc‘
Calculate power consumption [W]
CPUPOW=‘echo "$ESPKG * $ESU" | bc -l‘
DRAMPOW=‘echo "$ESDRAM * $ESU" | bc -l‘
echo CPU: $CPUPOW W
echo DRAM: $DRAMPOW W

Listing 2: Example of RAPL MSR read function

int read_msr(int cpu, unsigned int address,
uint64_t *value)

{
int err = 0;
char msr_path[32];
FILE *fp;

sprintf(msr_path, "/dev/cpu/%d/msr", cpu);
err = ((fp = fopen(msr_path, "r")) == NULL);
if (!err) err = (fseek(fp, address, SEEK_CUR)

!= 0);
if (!err) err = (fread(value, sizeof(uint64_t)

, 1, fp) != 1);
if (fp != NULL) fclose(fp);
return err;

}

illustrative purposes the Linux stress micro-benchmark
was appropriately adapted. The list of counters introduced
into the source code of the benchmark included:

• total number of CPU cycles,

• reference clock cycles,

• number of completed instructions (INS),

• Level 1 instruction cache misses (ICM),

• Level 1 data cache misses (DCM),

• RAPL MSRs counting power consumption of CPU
core and DRAM (W).

Figures 3 and 4 present the results of experiments in which
the server under test3 was forced to execute CPU and mem-
ory intensive benchmarking loops consisting of randomly
generated number of iterations. In addition, the exper-
iments were conducted for two different CPU frequency
scaling governors, intel pstate powersave and in-

tel pstate performance [46]. The results show a rela-
tion between the CPU frequency, power consumption, num-
ber of completed instructions and L1 cache misses. It can
be seen that energy-efficiency of instructions is high when
the CPU frequency is reduced. The same pattern can be
observed with L1 cache misses, i.e. probability of a cache
miss rises with the number CPU cycles performed. Integra-
tion of collected data allows to retrieve aggregated results of
experiments.
Based on the obtained results interesting observations can
be made regarding operations performed by the operating
system. In particular, it is possible to study efficiency of
CPU frequency control policy implementation. In order
to increase the number of computing operations performed
per watt, thereby maximizing Eq. (1), it is necessary to
reduce the amount of time the processor spends running
idle loops or stall cycles [16]. Therefore, energy-efficiency
maximizing CPU controllers should implement a workload
following policy dynamically adjusting CPU performance
state (ACPI P-state) to the observed short-term CPU uti-
lization or application-related latency metrics. This control
concept is indeed implemented in the currently distributed
CPU frequency governors of the Linux kernel, namely
intel pstate and cpufreq ondemand.
Given a CPU workload estimate the intel pstate gov-
ernor, used in the presented experiments, applies PID con-
trol rule to keep the workload at the default reference level
of 97%. In comparison, the ondemand governor calculates
CPU frequency according to the following policy. If the
observed CPU workload is higher than the upper-threshold
value then the operating frequency is increased to the max-
imal one. If the observed workload is below the lower-
threshold value, then the frequency is set to the lowest level
at which the observed workload can be supported. For a dis-
cussion of optimal CPU frequency control policy design
problem see e.g. [45], [47]. Identification of server data pro-
cessing dynamics is discussed e.g. in [27], [28].

3 DELL PowerEdge R720, 2 × Intel Xeon E5-2670 2.60 GHz, 20 MB
cache, 12 × 16 GB RDIMM 1600 MHz, Linux kernel ver. 4.4.

9

Michał Karpowicz and Piotr Arabas

0

0

0

0

5

5

5

5

10

10

10

10

15

15

15

15

20

20

20

20

25

25

25

25

30

30

30

30

3

2

1

1.5

1.0

0.5

4

3

2

1

40

30

20

10

x10
7

x10
6

x10
5

E
ffi

ci
en

cy
[i

n
s/

W
]

L
1

 c
ac

h
e

m
is

se
s

[i
n

s/
ic

m
]

C
o

re
 p

er
fo

rm
an

ce
[G

H
z]

C
P

U
 p

o
w

er
 c

o
n

su
m

p
ti

o
n

[W
]

Time [s]

10.0

9.5

9.0

8.5

[W
]

2.0

1.5

1.0

0.5

[i
n
s/

d
m

c]

0.8

0.6

0.4

0.2

[G
in

s]

instr.

data

instr.
freq.

core

DRAM

Fig. 3. Server performance and energy-efficiency trace (intel pstate powersave).

7. Summary

Currently developed techniques of server power control ex-
ploit increasing possibilities provided by high-resolution
sensors of modern computing hardware and software. This
paper presents a brief overview of performance and power
consumption monitoring tools available in Linux systems.
It is argued that the measurements collected at high sam-
pling rate can be used to develop maximally informative
power consumption metrics and accurate dynamical pro-
cessing models for the purpose of energy-aware design of
server controllers.

This research was partially supported by the National Sci-
ence Centre (NCN) under the grant no. 2015/17/B/ ST6/
01885.

References
[1] J. Koomey, Growth in Data Center Electricity Use 2005 to 2010. Oak-

land, CA: Analytical Press, 2011.

[2] B. Subramaniam and Wu-chun Feng, “Towards energy-proportional
computing for enterprise-class server workloads”, in Proc. 4th
ACM/SPEC Int. Conf. Perform. Engin. ICPE 2013, Prague, Czech
Republic, 2013, pp. 15–26.

[3] J. Dongarra et al., “The international exascale software project
roadmap”, Int. J. High Perform. Comput. Appl., vol. 25, no. 1,
pp. 3–60, 2011.

[4] S.-Y. Jing, S. Ali, K. She, and Y. Zhong, “State-of-the-art research
study for green cloud computing”, The J. of Supercomput., vol. 65,
no. 1, pp. 445–468, 2013.

[5] V. K. Vavilapalli et al., “Apache hadoop yarn: yet another resource
negotiator”, in Proc. 4th Ann. Symp.on Cloud Comput. SOCC’13,
Santa Clara, CA, USA, 2013, pp. 5:1–5:16, 2013.

[6] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox, “A tale of
two data-intensive paradigms: applications, abstractions, and archi-
tectures”, in Proc. 3rd IEEE Int. Congr. on Big Data BigData 2014,
Anchorage, AK, USA, 2014, pp. 645–652.

[7] Y. Georgiou, T. Cadeau, D. Glesser, D. Auble, M. Jette, and
M. Hautreux, “Energy accounting and control with SLURM resource
and job management system”, in Distributed Computing and Net-
working, M. Chatterjee et al., Eds., LNCS, vol. 8314, pp. 96–118.
Springer, 2014.

[8] E. Niewiadomska-Szynkiewicz, A. Sikora, P. Arabas, M. Kamola,
M. Mincer, and J. Kołodziej, “Dynamic power management in
energy-aware computer networks and data intensive computing sys-
tems”, Future Gener. Comp. Syst., vol. 37, pp. 284–296, 2014
(doi: 10.1016/j.future.2013.10.002).

[9] M. P. Karpowicz, P. Arabas, and E. Niewiadomska-Szynkiewicz,
“Energy-aware multilevel control system for a network of Linux
software routers: design and implementation”, IEEE Syst. J.,
vol. PP, no. 99, pp. 1–12, 2015
(doi: 10.1109/JSUST.20152489244).

10

Server Workload Model Identification: Monitoring and Control Tools for Linux

0

0

0

0

5

5

5

5

10

10

10

10

15

15

15

15

20

20

20

20

25

25

25

25

30

30

30

30

3

2

1

15

10

5

4

3

2

1

40

30

20

10

x10
7

x10
5

x10
5

E
ffi

ci
en

cy
[i

n
s/

W
]

L
1

 c
ac

h
e

m
is

se
s

[i
n

s/
ic

m
]

C
o

re
 p

er
fo

rm
an

ce
[G

H
z]

C
P

U
 p

o
w

er
 c

o
n

su
m

p
ti

o
n

[W
]

Time [s]

10

9

8

[W
]

1.5

1.0

0.5

[i
n

s/
d

m
c]

0.8

0.6

0.4

0.2

[G
in

s]

4

0

instr.

data

instr.
freq.

core

DRAM

Fig. 4. Server performance and energy-efficiency trace (intel pstate performance).

[10] P. Jaskóła, P. Arabas, and A. Karbowski, “Simultaneous routing and
flow rate optimization in energy–aware computer networks”, Int. J.
Appl. Mathem. & Comp. Sci., vol. 26, no. 1, pp. 231–243, 2016.

[11] A. Karbowski and P. Jaskóła, “Two approaches to dynamic power
management in energy-aware computer networks – methodological
considerations”, in Proc. of Feder. Conf. Comp. Science and Inform.
Syst. FedCSIS 2015, Łódź, Poland, 2015, vol. 5, pp. 1177–1182.

[12] ACPI Specification Document [Online]. Available: www.acpi.info
[13] J. H. Laros III, D. DeBonis, R. Grant, S. M. Kelly, M. Levenhagen,

S. Olivier, and K. Pedretti, “High performance computing-
power application programming interface specification”, Tech. Rep.
SAND2014-17061, Sandia National Laboratories, 2014.

[14] D. DeBonis et al., “A power API for the HPC community”, Sandia
Report SAND2014-17061, Sandia National Laboratories, 2014.

[15] R. Bolla et al., “Green Abstraction Layer (GAL): power manage-
ment capabilities of the future energy telecommunication fixed net-
work nodes”, Techn. Rep. ES 203 237, ETSI, 2014.

[16] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. W. Keller, “Energy management for commercial servers”, Com-
puter, vol. 36, no. 12, pp. 39–48, 2003.

[17] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale Machines,
2nd ed. Morgan & Claypool Publ., 2013.

[18] L. Wang and S. U. Khan, “Review of performance metrics for green
data centers: a taxonomy study”, The J. Supercomput., vol. 63,
no. 3, pp. 639–656, 2013.

[19] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and
A. V. Vasilakos, “Cloud computing: survey on energy efficiency”,
ACM Comput. Surveys, vol. 47, no. 2, pp. 33:1–33:36, 2015.

[20] B. Subramaniam, W. Saunders, T. Scogland, and Wu-chun Feng,
“Trends in energy-efficient computing: A perspective from the
Green500”, in 4th Int. Green Comput. Conf. IGCC 2013, Arlington,
VA, USA, 2013, pp. 1–8.

[21] Standard Performance Evaluation Corporation (SPEC), SPEC Power
and Performance Benchmark Methodology [Online]. Available:
www.spec.org/power ssj2008/

[22] K.-D. Lange, “Identifying Shades of Green: The SPECpower Bench-
marks”, IEEE Computer, vol. 42, no. 3, pp. 95–97, 2009.

[23] D. Molka, D. Hackenberg, R. Schöne, T. Minartz, and W. E. Nagel,
“Flexible workload generation for HPC cluster efficiency benchmark-
ing”, Comp. Science-Res. & Develop., vol. 27, no. 4, pp. 235–243,
2012.

[24] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Bench-
mark: past, present and future”, Concurr. & Comput.: Practice and
Experience, vol. 15, no. 9, pp. 803–820, 2003.

[25] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and
D. H. J. Epema, “Performance analysis of cloud computing services
for many-tasks scientific computing”, IEEE Trans. Parall. & Distrib.
Syst., vol. 22, no. 6, pp. 931–945, 2011.

[26] S. Bradner and J. McQuaid, “RFC 2544: Benchmarking methodology
for network interconnect devices”, Mar. 1999.

[27] P. Arabas and M. Karpowicz, “Server power consumption: mea-
surements and modeling with MSRs”, in Challenges in Automation,
Robotics and Measurement Techniques, R. Szewczyk, C. Zieliński,
and M. Kaliczyńska, Eds., Advances in Intelligent Systems and Com-
puting, vol. 440, pp. 233–244. Springer, 2016.

[28] M. P. Karpowicz and P. Arabas, “Preliminary results on the Linux
libpcap model identification”, in Proc. 20th Int. Conf. Methods &
Models Autom Robot MMAR 2015, Miȩdzyzdroje, Poland, 2015,
pp. 1056–1061.

11

Michał Karpowicz and Piotr Arabas

[29] SNIA Emerald, SNIA Emerald Power Efficiency Measurement Spec-
ification [Online]. Available: www.snia.org

[30] Storage Performance Council (SPC), Storage Performance Council
SPC Benchmark 2/Energy Extension [Online]. Available:
www.storageperformance.org

[31] D. Hackenberg et al., “Power measurement techniques on standard
compute nodes: A quantitative comparison”, in Proc. IEEE Int. Symp.
on Perform. Anal. Syst. & Software ISPASS 2013, Austin, TX, USA,
2013, pp. 194–204.

[32] J. Mair, D. Eyers, Z. Huang, and H. Zhang, “Myths in power es-
timation with performance monitoring counters”, Sustain. Comput.:
Inform. & Syst., vol. 4, no. 2, pp. 83–93, 2014.

[33] M. E. Mehdi Diouri et al., “Assessing power monitoring approaches
for energy and power analysis of computers”, Sustainable Comput.:
Informatics and Syst., vol. 4, no. 2, pp. 68–82, 2014.

[34] Intel Intelligent Power Node Manager [Online]. Available:
www.intel.com

[35] D. Hackenberg et al., “HDEEM: high definition energy efficiency
monitoring”, in Proc. IEEE Energy Efficient Supercomput. Worksh.
SC14, New Orleans, LA, USA, 2014, pp. 1–10.

[36] M. F. Dolz, M. R. Heidari, M. Kuhn, T. Ludwig, and G. Fabre-
gat, “ARDUPOWER: A low-cost wattmeter to improve energy effi-
ciency of HPC applications”, in Proc. 6th Int. Green Comput. Conf.
& Sustain. Comput. Conf. IGSC 2015, Las Vegas, NV, USA, 2015,
pp. 1–8.

[37] Intel IA-64 and IA-32 Architectures Software Developer’s Manual
[Online]. Available: www.intel.com

[38] NVML API Reference Manual, 2012 [Online]. Available:
http://developer.nvidia.com

[39] T. Ilsche, D. Hackenberg, S. Graul, R. Schöne, and J. Schuchart,
“Power measurements for compute nodes: improving sampling rates,
granularity and accuracy”, in Proc. 6th Int. Green Comput. Conf.
and Sustain. Comput. Conf. IGSC 2015, Las Vegas, NV, USA,
2015.

[40] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring energy and power with PAPI”,
in Proc. 41st Int. Conf. Parallel Proces. Worksh. ICPPW 2012, Pitts-
burgh, PA, USA, 2012, pp. 262–268.

[41] L. Taniça, A. Ilic, P. Tomás, and L. Sousa, “Schedmon: A per-
formance and energy monitoring tool for modern multi-cores”, in
Euro-Par 2014: Parallel Processing Workshops, LNCS, vol. 8806,
pp. 230–241. Springer, 2014.

[42] Performance Application Programming Interface (PAPI) [Online].
Available: icl.cs.utk.edu/papi

[43] Unofficial Linux Perf. Events Performance Counter Weg Page [On-
line]. Available: web.eece.maine.edu/∼vweaver/projects/perf events

[44] M. Gerndt, E. César, and S. Benkner, Eds., Automatic Tuning of HPC
Applications. Shaker Verlag, 2015.

[45] M. P. Karpowicz, “Energy-efficient CPU frequency control for the
Linux system”, Concur. & Computat.: Pract. & Exper., vol. 28, no. 2,
pp. 420–437, 2016 (cpe.3476).

[46] D. Brandewie, “Intel P-state driver” [Online]. Available:
www.kernel.org/doc/

[47] M. P. Karpowicz, P. Arabas, and E. Niewiadomska-Szynkiewicz,
“Design and implementation of energy-aware application-specific
CPU frequency governors for the heterogeneous distributed comput-
ing systems”, Future Generation Computer Systems, available online,
2016 (doi: 10.1016/j.future.2016.05.011).

Michał Karpowicz received
his Ph.D. in 2010. He is an
Assistant Professor of Com-
puter Science at the Research
and Academic Computer Net-
work (NASK) and the Warsaw
University of Technology. His
research interests focus on
stochastic control theory, con-
trol engineering, game theory
and network optimization.

E-mail: M.Karpowicz@elka.pw.edu.pl
Research and Academic Computer Network (NASK)
Wa̧wozowa st 18
02-796 Warsaw, Poland

Piotr Arabas received his
Ph.D. in Computer Science
from the Warsaw University of
Technology, Poland, in 2004.
Currently he is an Assistant
Professor at the Institute of
Control and Computation En-
gineering at the Warsaw Univer-
sity of Technology. Since 2002
with Research and Academic
Computer Network (NASK).

His research area focuses on modeling computer networks,
predictive control and hierarchical systems.
E-mail: P.Arabas@elka.pw.ewu.pl
Research and Academic Computer Network (NASK)
Wa̧wozowa st 18
02-796 Warsaw, Poland

Institute of Control and Computation Engineering
Warsaw University of Technology
Nowowiejska st 15/19
00-665 Warsaw, Poland

12

