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Abstract—Securing a computer network has become a need

in this digital era. One way to ensure the security is by de-

ploying an intrusion detection system (IDS), which some of

them employs machine learning methods, such as kkk-nearest

neighbor. Despite its strength for detecting intrusion, there

are some factors, which should be improved. In IDS, some re-

search has been done in terms of feature generation or feature

selection. However, its performance may not be good enough.

In this paper, a method to increase the quality of the generated

features while maintaining its high accuracy and low compu-

tational time is proposed. This is done by reducing the search

space in training data. In this case, the authors use distance

between the evaluated point and the centroid of the other clus-

ters, as well as the logarithmic distance between the evaluated

point and the subcentroid of the respective cluster. Besides

the performance, the effect of homogeneity in extracting cen-

troid and subcentroid on the accuracy of the detection model

is also evaluated. Based on conducted experiment, authors

find that the proposed method is able to decrease processing

time and increase the performance. In more details, by us-

ing NSL-KDD 20% dataset, there is an increase of 4%, 2%,

and 6% from those of TANN in terms of accuracy, sensitivity

and specificity, respectively. Similarly, by using Kyoto 2006

dataset, proposed method rises 1%, 3%, and 2% than those

of TANN.

Keywords—clustering, feature transformation, information se-

curity, network security.

1. Introduction

Transferring data through a computer network has become

an essential need in this digital era. This has made it easy

for people to communicate each other. Since the data are

transmitted in a public network, the security should have

more attention. It is because anyone may have access to it.

This works especially to sensitive data whose access must

be restricted to legitimate users only. Moreover, these pri-

vate data, such as medical and financial data, may become

a target of attacks. Therefore, there must be a mechanism

to protect it.

Based on its objective, data protection can be divided into

two categories. The first is securing data in a file or trans-

action. This is done by using either encryption [1], transfor-

mation [2] or steganography [3]. The second is protecting

data which reside in a network. In this case, the control is

usually carried out by an intrusion detection system (IDS).

Based on [4], IDS can be grouped into two categories. The

first is signature-based IDS, which uses records of known

attack. If an activity matches with any of that record, then

the IDS will trigger an alarm. The second is anomaly-based

IDS, which uses a model representing a normal activity.

Any flow that deviates too far from the model will trigger

an alarm.

That first type of IDS has lower resource consumption than

the second. However, it needs constantly update the sig-

natures, which have been stored in the database. Different

from this, the second type of IDS does not need signatures

to detect specific packets. So, it is able to detect unknown

attacks to some degree. Nevertheless, it has a slightly

higher false positive rate than the first [4].

There is some research, which have been introduced to

solve those problems. Their results, however, may not

be so optimal. In more details, there are at least two

factors that the anomaly-based IDS should be improved,

those are [5]:

• outlier detection – in common anomaly-based IDS,

the detection model only uses normal data. It is as-

sumed that data which are outside of the detection

model is anomaly, as specified in [6]. In real life,

however, this assumption may not be realistic;

• cost of false alarm – unlike other applications of ma-

chine learning, such as hand written recognition or

product recommendation, in this case false alarm re-

quires much time and energy to verify. Ignoring an

alarm is not a good idea since a true alarm can cause

the whole system down.

Some research, such as [7] and [8], has proposed a feature

transformation method to reduce the false alarm rate and at

the same time maintain high detection rate. This method

needs to use whole training data for the final classification

step. If the training data is too large, then the time needed

to classify an activity rises greatly. In authors’ previous

research [9], a method to reduce the size of training data

and to transform them for the classification purpose have

been proposed. This is done by measuring the distance

between the respective point and centroids, as well as and

logarithmic distance between the respective point and sub-

centroid. In this paper, we expands and further validate this

method.

The rest of this paper is organized as follows. Section 2

contains previous works, which relate to this research. Sec-

tion 3 explains the proposed method. The Sections 4 and 5

describe the experimental design and result, respectively.

Finally, the conclusions in the Section 6 are drawn.
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2. Related Works

Some research has been introduced to classify data by using

distance to the centroid. This includes [7], [8], [10]–[14],

which have used that distance to generate features. The

basic idea of those methods is similar, that is, the distance

between a point and the respective centroid is used to dif-

ferentiate data within dataset. The differences between that

researches are how the centroid is extracted and how that

distances is used. Some methods use k-means by using the

previously defined number of clusters [7], [8], [14] and by

partitioning the dataset based on their label and by extract-

ing the centroids according to their average features in each

partition [10], [11], [13].

The research [7] and [8] are proposed in order to address

problems in [5]. Both methods have achieved a relatively

low false positive rate while maintaining its high detection

rate. Here, they employ feature transformation to extract

new features and to classify the data by using k-Nearest

Neighbor (kNN). For handling the dynamic nature of the

data stream, some research such as [15], [16] propose to

use the affinity propagation [17] for selecting exemplars.

This is to be applied to the on line clustering algorithms.

Some methods, which are often used for classification, are

described as follows.

2.1. TANN

Triangle Area and Nearest Neighbor (TANN) is proposed

in [8]. It works by assuming that the centroid of a dataset

can be used to differentiate data, and the distance of un-

Fig. 1. TANN workflow.

known data to centroid of other clusters can be used for

classification. This method generates features by using

data, which have been extracted, and by utilizing any 2

out of 5 centroids. This method requires a parameter k,

similar to that used in kNN. The overall framework of this

method can be observed in Fig. 1. Here, TANN works as

follows:

1. Extracting centroids – by using k-means, this

method extract 5 centroids. This number is chosen

by assuming that there are 5 classes: 1 normal and

4 type of attacks.

2. Generating new features – the transformed data are

generated by summing the area of all possible trian-

gles formed by using the old data and any two of

five centroids, which have been extracted in step 1.

Possible triangles, which are formed are depicted in

Fig. 2.

3. Training and testing kkkNN – the new data are divided

into training and testing sets. Next, the testing set is

classified by using kNN.

Fig. 2. TANN scheme.

A common problem of TANN is that it needs to use all

training data in order to classify the testing or other data.

Consequently, if the size of the training data is large, the

time needed to process rises significantly. To overcome

this problem, some applications use parallel searching by

using Graphic Processing Unit (GPU) such as [18] and [19].

However, not all computers have GPU, which is able to

do it. Therefore, reducing the search space is one of the

feasible solution for this problem.

2.2. Bisecting kkk-Means

This clustering method is proposed by [20] to classify doc-

uments. It works as follows:

1. Pick a cluster to split. In this case, they use the

largest cluster.

2. Split the selected cluster into two clusters by using

ordinary k-means.
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3. Repeat step 1 and 2 until the desired number of clus-

ters has been reached.

In [20], authors also propose to use the centroids, which

have been extracted from those steps as initial centroids for

basic k-means. In addition, they believe that their method

works better than simple agglomerative clustering. This

is because the agglomerative clustering sometimes merges

data from different classes, which may happen in the early

clustering step. If so, then this mistake cannot be fixed.

Divisive clustering on the other hand, may split clusters

whose members actually have same labels. Fortunately,

this mistake can be fixed in later phases.

A weakness of this method is, similar to that of k-means,

we need to know the number of required clusters. Unfor-

tunately, we may not have this information every time.

3. Proposed Method

The proposed method is inspired by TANN [8], CANN [7],

and comparison of clustering techniques [20]. Similar to

[8] and [7], the distance between the evaluated point and

the respective centroid is used to transform data while the

difference is on how the extraction of centroid is performed.

In more details, the proposed method differs in the extrac-

tion process and in treating the subcentroid to add differ-

entiating power to the classification method. The overall

proposed method is depicted in Fig. 3, where T is training

dataset, S is testing dataset and D = T ∪S.

The proposed method is developed based on authors’ pre-

vious research [9]. In this paper, the scope is extended as

follows.

1. The dataset used here is bigger than that in [9].

2. The use of entropy is explored as well as Gini im-

purity index. Additionally, their combination is also

investigated.

3. The use of bisecting k-means and logarithmic dis-

tance in the transformation process is investigated.

This is intended to evaluate their effect on the per-

formance.

As shown in Fig. 3, the first step is to divide the dataset

into testing and training. In the experiment, authors further

divide the data into 10 partitions. This is to carry out

cross validation with each partition whose composition is

proportional.

Next is to cluster the training data by using a modified

variant of bisecting k-means whose diagram is presented

in Fig. 4. This method works as follows:

1. Split the dataset to two clusters by using k-means.

2. If the impurity of any resulting cluster is higher than

the user defined threshold U , then split it by using

ordinary k-means into two clusters.

Fig. 3. L-SCANN workflow.

3. Repeat step 2 until there is no cluster whose impu-

rity is higher than U , or no more impurity can be

reduced. At this stage, the number of clusters n has

been obtained.

Fig. 4. Variant of bisecting ki-means used.

This step is intended to solve the problems experienced by

previous research, such as [7] and [8]. That is, the number
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of needed clusters to give decent performance is not always

available. In addition, data with a same label is not always

grouped into one cluster.

Different from other research, such as [21], which uses

a genetic algorithm to iteratively search the best centroid

in partially labeled data, a variant of bisecting k-means is

employed. Furthermore, they make use of Gini impurity

index, mean square error and combination of both for mea-

suring the quality of the generated clusters. Here, authors

take Gini impurity index, entropy and combination of them

as stopping criteria as previously described.

Let O and be m be the number of specified subcentroids in

each cluster whose value is obtained from an experiment,

and the number of members in a cluster, respectively. There

are three possibilities of subcentroids according to those O

and m values:

• m > O – subcentroids are extracted by using k-means

whose k is equal to O,

• m = O – each member of the clusters is treated as

subcentroid,

• m = O – in this paper, we assumed that the cluster

is homogeneous. So, there is no subcentroid, which

can be extracted.

The following step is transforming the data such that the

distance of the evaluated data can be collected. In authors’

previous works [9], the transformation of the data is done

by summing two types of distance: between the point and

centroids, and between the point and the subcentroids in the

same cluster. Let Di be the i-th data being evaluated, C j be

the j-th centroid of each cluster, Lk be the k-th subcentroid

of the respective cluster. It is shown in Fig. 5 that Di is

closer to C5 than to other centroids. Therefore, C5 is firstly

assigned as its centroid.

Fig. 5. L-SCANN scheme.

Let Dist1i be the distance between the i-th data and all cen-

troids in each cluster, n be the number of clusters extracted

from the clustering step, and ||C j −Di|| be the Euclidean

distance between Di and C j. This distance can be depicted

in Eq. (1). Next, the distance between the evaluated data

and its subcentroids, Dist2i, is presented in Eq. (2), where

||Di−Lk|| is the Euclidean distance between Di and Lk, and

O is the number of subcentroids in the respective cluster.

If the distance between Di and Lk is 0 (i.e. overlapping),

then the distance is reset. The new transformed data, D′
i is

then obtained by summing Dist1i and Dist2i, as provided

in Eq. (3). This transformation step is repeated until all Di

have been processed. That is, each data in training set T

will be transformed into new training data T ′ and each data

in testing set S will also be transformed into new testing

data S′. This is noted by red (×) and blue (•) arrows, re-

spectively in Fig. 3. Each new training data T ′ is then as-

signed to its respective cluster.

As an alternative, it is also possible to remove the loga-

rithmic calculation, as shown in Eq. (4) where D′′
i is the

transformation results. This is because logarithmic calcu-

lation may take a little bit longer.

The final step of proposed method is classifying the data

in testing set S. For this purpose, we classify the evaluated

point Di as member of the cluster whose centroid is the

nearest. Next, the three nearest transformed neighbor points

are selected, which Di is assigned a label similar to the

dominant label. That is, if most of those three are normal,

than Di is also normal. If most of those three are attack,

than Di is also attack.

An example of this classification process is presented in

Fig. 6, where new data Di is being classified. In Fig. 6a,

the centroid C j with the smallest distance to Di is looked for.

In this case, C5 is found in a cluster, whose subcentroids

are L1, L2 and L3. The respective cluster has T1, T2, T3, T4

and T5 as the members. By using Eq. 3, its transformation

value is calculated as depicted in Fig. 6b. Finally, the three

closest transformed members are selected, which are: T ′
3 ,

Fig. 6. Example of classification process.
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T ′
4 and T ′

5 , see Fig. 6c. The majority labels of them are

then assigned to Di:

Dist1i =
n

∑
j=1

||C j −Di|| , (1)

Dist2i =
O

∑
L=1







ln(||Di −Lk||), if Di 6= Lk

0, otherwise
, (2)

D′
i = Dist1i + Dist2i . (3)

D′′
i =

n

∑
j=1

||C j −Di||+
O

∑
L=1

||Di + Lk|| . (4)

4. Experimental Design

The experiment is carried out in Python 2.6 with scipy and

numpy package in 64-bit Ubuntu Linux using Intel Core

i5-2410M processor with 4 GB of RAM.

In the modified bisecting k-means, we use an impurity in-

dex as the stopping criteria in finding clusters. That is, Gini

impurity index, entropy, and their combination as provided

in Eqs. (5)–(7) respectively, where m is the number of class

labels and fi is the frequency of i-th label. Those first two

are common index while the third is our proposed combi-

nation method. The Eq. (7) is designed based on the facts

that gini index has a range between 0 to 0.5 in two label

cases, and the entropy index has a range between 0 to 1

in any case. In addition, we use two labels, normal and

attack. For a deeper analysis, the attack is further divided

into subclasses (sublables) for NSL-KDD.

IG = 1−
m

∑
i=1

f 2
i , (5)

H = −
m

∑
i=1

filog2 fi , (6)

Combined =
H + 2IG

2
. (7)

4.1. Dataset

In the experiment, we use NSL-KDD 20% [22] and a sub-

set of Kyoto 2006 [23] datasets. In NSL–KDD, we remove

protocol type, service and flag because those three are cat-

egorical types. In Kyoto 2006, we use a subset which was

taken in 20 July 2009 whose unused attributes are removed,

i.e. flag, start time, and duration. Additionally, redundant

records from Kyoto 2006 are then removed. At the end,

we have 25192 records in NSL-KDD and 107213 records

in Kyoto 2006. The composition of NSL-KDD and Kyoto

2006 is available in Table 1.

Table 1

Dataset composition

NSL-KDD

Label Sublabel Number

Attack

Dos 9234

11743
Probe 2289

U2R 11

R2L 209

Normal Normal 13449

Kyoto 2006

Label Number

Attack 52554

Normal 64659

4.2. Parameter Tested

The proposed method requires two parameters to work.

Those are the impurity index U , and the assumption num-

ber of subcentroids O. We define U ∈ {0.1,0.2,0.3} and

O ∈ {4,5,6}. In the experiment, we combine all possibil-

ities of those values, such that, we have 9 combinations.

The number of subclusters is not more than 6 in order to

ensure that the cluster with lower number members is ho-

mogeneous. The value of impurity index is not larger than

0.3 because it is over half of Gini impurity index, whose

range is between 0 and 0.5, for 2 labels. Here, three types

of impurity index as previously described are used.

4.3. Evaluation Criteria

The proposed method is evaluated in terms of accuracy,

sensitivity, and specificity as specified in Eqs. (8), (9), and

(10), respectively. In this case, TP is true positive (correctly

classified attack), TN is true negative (correctly classified

normal), FP is false positive (misclassified normal), and FN

is false negative (misclassified attack). Another evaluation

criterion is running time, to see how search-space reduction

affect the speed of the algorithm.

Accuracy =
T P+ TN

TP + TN + FP+ FN
, (8)

Sensivity =
T P

T P+ FN
, (9)

Specificity =
T N

T N + FP
. (10)

5. Experimental Results

The experiment results are provided in this section. These

comprise that of proposed method as well as TANN for

the comparison purpose. In this case, we firstly present the

results of TANN in order to make it easier to compare.
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5.1. TANN

Accuracy, sensitivity, and specificity of TANN on NSL-

KDD and Kyoto 2006 can be observed in Table 2, where

Acc, Sen and Spe represent accuracy, sensitivity and speci-

ficity respectively (in percent) and time depicts processing

time (in hour).

In NSL-KDD dataset, increasing the value k of kNN leads

to raising the value of accuracy and sensitivity but reducing

specificity. The table also shows that the processing time

is not affected by k. When it goes up from 3 to 5, the

processing time drops. However, when it then grows to 7,

the time also increases.

It is depicted that the best results is achieved by using k=5

where accuracy, sensitivity and specificity are 96.80%,

95.92% and 97.64%, respectively with processing time

9.15 hours. It is worth noting that the processing time

raises about 16 times when the dataset is 4 times larger

than the size of NSL-KDD.

Table 2

Performance of TANN on different dataset

NSL-KDD

k Acc [%] Sen [%] Spe [%] Time (hour)

3 93.08 94.85 91.53 0.47

5 93.36 95.86 91.17 0.39

7 93.51 96.32 91.05 0.56

9 93.56 96.48 91.02 0.42

11 93.60 96.60 90.99 0.50

13 93.61 96.66 90.95 0.53

15 93.54 96.62 90.86 0.53

Kyoto 2006

3 96.73 95.79 97.63 9.12

5 96.80 95.92 97.64 9.15

7 96.69 95.84 97.51 9.14

5.2. Proposed Method with Gini Impurity Index

The experimental results of the proposed method which

uses the gini impurity index on NSL-KDD can be observed

in Table 3, where Clu represents the average number of gen-

erated clusters. Based on this result, we find that the highest

accuracy, sensitivity and specificity level is achieved when

the impurity threshold and the number of subcentroids are

0.1 and 4, respectively. It is also shown that increasing the

impurity value results to decreasing those performances,

and raising the number of subcentroids may cause the per-

formances go up to some extent. It can be inferred that

smaller number of both impurity index and subcentroids

holds the best performance.

Compared to the performance of TANN, proposed method

produces significantly higher result in terms of accuracy

and specificity, but slightly lower in sensitivity. At the

same time, the time needed to process the whole dataset

goes down.

The experimental results which are obtain on Kyoto 2006

are depicted in Table 3. It shows that increasing the impu-

rity index leads to decreasing the performance. In addition,

higher number of clusters results to a little higher level of

accuracy and sensitivity. However, this causes the speci-

ficity slightly lower. As specified in Table 3, it also found

that proposed method is able to decrease the processing

time from 9 to 2 hours for 100,000 records.

This result represents the characteristics of dataset we used.

In this case, the average number of generated clusters

in NSL-KDD is much higher than that of Kyoto 2006.

It is very likely that NSL-KDD comprises heterogeneous

data, which are more sparsely distributed across the initial

clusters than that of Kyoto 2006. Furthermore, it is also

found that in NSL-KDD, most clusters (> 50%) are small

with 3 or lower members, while those in Kyoto 2006 mostly

(> 50%) have 6 or more members.

5.3. Proposed Method with Entropy Index

The experimental result of the proposed method by using

entropy index on NSL-KDD can be observed in Table 4.

It depicts that an increase of impurity threshold results to

a decrease of accuracy, sensitivity, and specificity; and rais-

ing the number of subcentroids, on the other hand, slightly

change the accuracy, sensitivity, and specificity.

Similar to the experiment on NSL-KDD, the use of entropy

on Kyoto 2006 dataset presents better results than that of

gini index, as shown in Table 4. Furthermore, it also gives

similar trends, that higher entropy values result in slightly

lower performance. In addition, the number of subcentroids

does not much affect the performance.

Based on this experimental result, it can be inferred that in

general, the use of entropy in the proposed method is more

appropriate to the performance than Gini impurity index.

This is because by using entropy, the number subcentroids

resulted from the clustering process is much higher than

that of Gini index. Furthermore, the overall performance

is also better than that of TANN.

5.4. Proposed Method with Combined Index

The experimental results with combination of Gini and en-

tropy indexes are in Table 5. Similar to the results with

either Gini or entropy indexes, that with their combina-

tion is, in general, down due to rising this index. Also,

an increase of the number of subcentroids leads to slightly

changes in the performances.

The overall performance resulted from the use of this com-

bination index in both NSL-KDD and Kyoto 2006 datasets

is lower than that of entropy, depending on the environment,

which is represented by the parameter values. It is possi-

ble that this performance is affected by the resulted cluster

numbers. That is, the accuracy, sensitivity and specificity

are more or less proportional to the the number of generated

clusters.
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Table 3

Results of proposed method using Gini impurity index on different dataset

NSL-KDD

Subcentroid

Gini impurity index

0.1 0.2 0.3

Acc Sen Spe
Clu

Time Acc Sen Spe
Clu

Time Acc Sen Spe
Clu

Time

[%] [%] [%] [h] [%] [%] [%] [h] [%] [%] [%] [h]

4 94.95 91.71 97.78 541.70 0.32 94.11 90.53 97.23 354.00 0.23 93.13 88.93 96.80 218.40 0.16

5 94.49 90.73 97.78 546.70 0.29 93.33 88.79 97.29 351.60 0.21 93.48 89.54 96.92 217.50 0.15

6 94.50 90.83 97.71 539.00 0.31 93.33 88.66 97.41 347.80 0.27 92.97 88.33 97.03 217.20 0.16

Kyoto 2006

4 98.40 98.09 98.70 58.40 1.975 98.28 98.03 98.52 42.1 2.031 97.45 97.52 97.38 24.8 2.08

5 98.41 98.13 98.69 58.50 1.956 98.29 98.07 98.07 42 2.036 97.49 97.62 97.36 24.8 2.105

6 98.43 98.16 98.69 58.40 2.001 98.31 98.07 98.53 41.9 2.04 97.51 97.67 97.35 24.8 2.061

Table 4

Results of proposed method using entropy index on different datasets

NSL-KDD

Subcentroid

Entropy

0.1 0.2 0.3

Acc Sen Spe
Clu

Time Acc Sen Spe
Clu

Time Acc Sen Spe
Clu

Time

[%] [%] [%] [h] [%] [%] [%] [h] [%] [%] [%] [h]

4 98.28 98.68 97.93 716.4 0.343 95.28 92.64 97.58 593.4 0.353 94.71 91.20 97.78 540.6 0.336

5 98.28 98.65 97.95 715.9 0.348 95.70 93.41 97.70 596 0.348 94.96 91.74 97.78 541.3 0.341

6 98.26 98.63 97.94 716 0.386 95.02 91.71 97.91 596.7 0.415 94.47 90.70 97.76 542.4 0.356

Kyoto 2006

4 98.93 98.64 99.21 199.7 1.525 98.65 98.50 98.80 68.5 1.7525 98.38 98.06 98.69 58.5 1.72

5 98.93 98.64 99.21 197.3 1.58 98.60 98.50 98.70 69.5 1.821 98.39 98.08 98.69 58.5 1.863

6 98.94 98.65 99.22 199.4 1.58 98.64 98.48 98.79 68.4 1.848 98.41 98.10 98.70 58.5 1.83

Table 5

Results of proposed method using combined index on different dataset

NSL-KDD

Subcentroid

0.1 0.2 0.3

Acc Sen Spe
Clu

Time Acc Sen Spe
Clu

Time Acc Sen Spe
Clu

Time

[%] [%] [%] [h] [%] [%] [%] [h] [%] [%] [%] [h]

4 98.31 98.57 98.09 705.1 0.361 94.37 90.45 97.80 569 0.348 94.57 91.08 97.62 507.7 0.331

5 98.30 98.69 97.96 704.2 0.36 94.23 90.21 97.75 565.2 0.366 94.08 89.94 97.69 512 0.331

6 98.28 98.63 97.98 703.2 0.293 94.53 90.85 97.74 565.8 0.278 94.84 91.55 97.70 510.8 0.261

Kyoto 2006

4 98.86 98.57 99.13 152.7 1.598 98.59 98.38 98.78 65 1.726 98.38 98.09 98.66 57.7 1.73

5 98.87 98.60 99.13 153 1.795 98.54 98.31 98.77 64.7 1.968 98.31 97.95 98.66 57.7 1.978

6 98.91 98.69 99.12 152.9 1.806 98.57 98.36 98.78 65.2 2.035 98.41 98.14 98.66 57.7 2.006

5.5. Proposed with kkk-Means

From the previous experiments we find that the best re-

sult is achieved when the number of subclusters is 705 and

200 for NSL-KDD and Kyoto 2006 datasets. Based on

these numbers and the previous cluster number of TANN

(i.e. 5), we perform experiments by using the common

k-means method whose result is provided in Table 6 for

NSL-KDD and Kyoto 2006, respectively. It is depicted

that the overall performance is lower than that of the pro-

posed method with Gini impurity index, entropy index and

their combination.
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Table 6

Results of proposed method using k-means

NSL-KDD

Cluster
Acc Sen Spe Time

[%] [%] [%] [h]

5 94.99 95.89 94.20 0.51

705 97.44 97.54 97.33 0.27

Kyoto 2006

5 97.70 97.49 97.91 8.84

200 98.39 97.83 98.93 2.01

5.6. Correlation between the Number of Clusters and

Performance

Correlation between the number of clusters and perfor-

mance (accuracy, sensitivity, and specificity) on NSL-KDD

and Kyoto 2006 datasets can be observed in Figs. 7–12. In

general, it is shown that the number of clusters is pro-

portional to the performance. In more details, NSL-KDD

Fig. 7. Correlation between number of cluster and accuracy on

NSL-KDD.

Fig. 8. Correlation between number of cluster and sensitivity on

NSL-KDD.

Fig. 9. Correlation between number of cluster and specificity on

NSL-KDD.

Fig. 10. Correlation between number of cluster and accuracy on

Kyoto 2006.

produces an exponential graph for accuracy and sensitivity,

and linear for specificity, as depicted in Figs. 7, 8 and 9,

respectively. For accuracy and sensitivity, the number of

4 subcentroids is better than others when the number of

clusters is less than 600, and 5 subcentroids is for more

than 600 clusters. Differently, 6 subcentroids is the best for

almost all numbers of clusters.

Slightly different from the experiment on NSL-KDD, that

on Kyoto 2006 generates logarithmic graphs, as presented

in Figs. 10–12. It also shows that increasing the number

of clusters means raising the performance, for the same

number of subcentroids.

Nevertheless, there is a drawback of this increasing number

of clusters. That is, more numbers of clusters need more

time to transform the data. This is because each distance

between the data and centroids must be calculated. An

advantage of this condition is that the time to classify the

data drops since the size of each cluster is very likely to be

smaller.

78



L-SCANN: Logarithmic Subcentroid and Nearest Neighbor

Fig. 11. Correlation between number of cluster and sensitivity

on Kyoto 2006.

Fig. 12. Correlation between number of cluster and specificity

on Kyoto 2006.

5.7. Classification Results

The classification results of our proposed method using

combined index = 0.1 and the number of subcentroids = 4

is presented in Table 7. These parameter values are se-

lected because we believe that this combination delivers

Table 7

Classification results of proposed method using combined

impurity index 0.1 and subcentroid 4

Actual

Detected

Attack
Normal

Dos Probe U2R R2L

Attack

Dos 8823 350 0 0 61

Probe 302 1907 0 1 79

U2R 0 1 0 2 8

R2L 0 0 0 189 20

Normal 60 134 1 61 13192

better results than others, as described in previous tables. In

addition, the results of the proposed method with k-means

whose number of clusters is 5 and 705 as previously spec-

ified are in Tables 8 and 9.

Table 8

Classification results of proposed method with 5 clusters

Actual

Detected

Attack
Normal

Dos Probe U2R R2L

Attack

Dos 8649 190 0 0 302

Probe 352 1780 0 0 123

U2R 0 1 0 0 10

R2L 3 2 0 155 47

Normal 568 149 0 43 12669

Table 9

Classification results of proposed method

with 705 clusters

Actual

Detected

Attack
Normal

Dos Probe U2R R2L

Attack

Dos 8933 191 0 0 95

Probe 305 1799 0 2 159

U2R 0 0 2 0 9

R2L 0 1 0 182 23

Normal 120 193 3 19 13091

The result shows that the U2R class can only be classi-

fied by using k-means with 705 clusters. Here, 2 out of

11 have been correctly classified. The classification result

of probe and normal classes, however, drops significantly.

This hard-classification of U2R class may happen because

their coordinate in the cluster is sparsely distributed. There-

fore, a relatively high number of clusters are required in

order to be able to classify the data correctly.

6. Conclusion

In this paper we have investigated the classification method

of data in an IDS. We propose the use of impurity indexes

such as the entropy. In addition, we also examine the ef-

fect of bisecting k-means and logarithmic distance. Based

on the experimental results, the use of those parameters

and methods gives better performance in terms of accu-

racy, sensitivity, and specificity than TANN. Overall, we

also find that there is correlation between the number of

clusters and the performance. That is, more numbers of

clusters may result to higher performance.

In the future, we would like to do further research in order

to increase the performance. This may be done by normal-

izing the data in the preprocessing step. Additionally, the
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parameter for deciding whether a cluster must be split or

not, is to be refined.
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