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Abstract—In this paper, a new method for segmenting speech

at the phoneme level is presented. For this purpose, author

uses the short-time Fourier transform of the speech signal.

The goal is to identify the locations of main energy changes

in frequency over time, which can be described as phoneme

boundaries. A frequency range analysis and search for en-

ergy changes in individual area is applied to obtain further

precision to identify speech segments that carry out vowel

and consonant segment confined in small number of narrow

spectral areas. This method merely utilizes the power spec-

trum of the signal for segmentation. There is no need for any

adaptation of the parameters or training for different speak-

ers in advance. In addition, no transcript information, neither

any prior linguistic knowledge about the phonemes is needed,

or voiced/unvoiced decision making is required. Segmenta-

tion results with proposed method have been compared with

a manual segmentation, and compared with three same kinds

of segmentation methods. These results show that 81% of the

boundaries are successfully identified. This research aims to

improve the acoustic parameters for all the processing systems

of the Arab speech.

Keywords—band frequencies, energy changes, formant analysis,

phoneme segmentation.

1. Introduction

Phonetic segmentation is the action of dividing the

speech signal into its basic language functional units:

the phonemes. The accurate segmentation and labeling of

speech into phoneme units is useful for diverse purposes,

as for example the initialization of speech recognizers, the

creation of databases for concatenated text-to-speech sys-

tems, the evaluation of the performance of speech recog-

nition tasks, and the health related assessment of speech.

In this last point, there are special topics in cognitive com-

munication information that require the segmentation of

speech signal into phoneme sized units in the process-

ing of continuous speech. There are many types of ap-

plications, where the precise knowledge of phoneme is not

important, just the type of the given sound, like vowel,

nasal, voiced/unvoiced fricative, stop, etc. In these ap-

plications, the linguistic content is not important, just the

acoustic characteristics are needed. This kind of segmen-

tation is necessary, when the desired behavior depends on

speech timing, like rhythm or the place of voiced sounds.

Moreover, such segmentation technique is useful for the

visualization of the acoustical parameters of speech in an

audio-visual pronunciation training system [1]–[3].

In these issues, automatic alignment tools have been devel-

oped (e.g. EasyAlign [4], SPPAS [5]). They offer a con-

sistent and reproducible alignment at reduced cost. The

task they perform is known as “linguistically constrained

segmentation” or “forced alignment”. In these systems,

only the time boundaries of the phonemes have to be de-

termined. For this purpose, acoustic modeling based on

Hidden Markov Models (HMMs), relying on speech seg-

mentation techniques, has been shown to achieve the best

results [6].

As described for example in [7], freely spoken language

consists of sequences of various phonemes. Such phonemes

can be classified into both voiced and unvoiced sounds. De-

pending on the manner how these sounds are produced, two

different cases can be distinguished. First, voiced sounds

such as normal vowels are characterized by a set of sev-

eral characteristic frequencies that are called formants of

the respective phoneme. Second, unvoiced phonemes also

show characteristic formants. However, due to the fact that

these sounds do not dominantly come from an associated

vibration of the vocal folds (rather turbulent and irregu-

lar air flows are involved in the corresponding sound pro-

duction), these phonemes are characterized by broader fre-

quency ranges [8].

Analysis and presentation of the speech signal in the fre-

quency domain are of a great importance in studying the

nature of speech signal and its acoustic properties. The

prominent part of speech signal spectrum belongs to for-

mants that correspond to the vocal tract resonant frequen-

cies. These are usually referred to as F1 indicating the

first formant, F2 indicating the second formant, F3 indi-

cating the third formant, etc. The quality of some of the

most important systems for speech recognition and speech

identification as well as those for formant based speech

synthesis are dependent on how accurate the formant fre-

quencies are determined. The formant defines the range of

frequencies that is used for detecting the delimitations of

the phonemes in a speech signals. Hence it conduct to the

task of segmentation. There are many research works on

automatic speech segmentation to classify speech into pho-

netic classes, but in Arabic language, the segmentation has

not been well studied. Therefore, this paper proposes an ef-
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fective segmentation, suitable for Arabic automatic speech

recognition and related applications.

The purpose of this document is to identify segments of

phonemes on a frequency range limited to a narrow spectral

areas. Presented study is more relevant on the spectral

distribution of voice signals where six areas are used.

Using formant analysis of Arabic language, we attempt to

detect vowels and consonants that are spoken. Here a stan-

dard approach for detect the phonemes in continuous speech

is described based on three frequency formants: F1, F2

and F3 to define the range of area frequency. We have

investigated the correlations between formants in each

phoneme and developed an algorithm to segment speech

based on the overlap different vowels in F1 − F2 and

F2−F3 planes.

The results, have been compared with a manual segmenta-

tion in order to calculate the accuracy that shows the per-

formance, and have been compared with three same kinds

of segmentation methods.

2. Supervised and Unsupervised Speech

Segmentation

Automatic speech segmentation is the partitioning of a con-

tinuous speech signal into discrete, non-overlapping units.

Generally, automatic speech segmentation methods are di-

vided in two types.

2.1. Supervised Speech Segmentation

This methods require training on speech material and a pri-

ori knowledge [9], [10]. The segmentation algorithm relies

on the linguistic knowledge associated with the input speech

signal, such as its phonetic transcription or the knowl-

edge of its phoneme sequence as well as by the number

of phonemes present. This means that the representation

of the utterance in terms of discrete units is known, and

pretrained acoustic models of these units are needed for

the forced alignment. Thus, the system is only required to

locate optimally the boundary locations that best coincide

with the phoneme sequence given. The task of the segmen-

tation algorithm is then to locate optimally the phonemes

boundaries [11].

2.2. Unsupervised Speech Segmentation

These methods do not require training data to segment

speech signal [12], it uses a set of rules derived from the

decoding of human knowledge issued of the nature of the

floor to make the operation of segmentation. Indeed, the

segmentation algorithms are designed without any prior lin-

guistic knowledge about the phoneme sequence of the input

speech signal. The system blindly determines the best es-

timate of the number of phonemes along with their bound-

ary locations, based on the acoustic cues extracted from the

speech signal.

Acoustic (rate of) change (see [13] for early work on un-

supervised automatic speech segmentation and below for

more recent work) is an example of prior human knowledge

that is used to solve the speech segmentation task. The task

for an unsupervised segmentation algorithm is based in two

point. The number of segments in the speech signal needs

to be determined and the position of the boundaries deter-

mined on the basic characteristics of the acoustic signal.

The unsupervised methods yield a desirable and more flex-

ible framework for the automatic segmentation of speech

and their algorithms are generally simpler than used in su-

pervised methods [14].

2.3. Unsupervised Speech Segmentation Application

Some applications of the unsupervised speech segmentation

include:

• Speaker verification systems. To achieve a phoneme

level segmentation (without orthographic informa-

tion) of a user selectable password in a text-depen-

dent speaker verification systems.

• Speech recognition systems. To obtain phoneme level

segmentation (level modeling phoneme) in a low-

to-medium size vocabulary speech recognition sys-

tems, with user-defined vocabulary (such as, in voice

dialing applications).

• Language identification systems. To find a phoneme

level segmentation for multilingual un-transcribed

corpus applied to automatic language identification.

• Speech corpus segmentation and labeling. To obtain

a great level of phoneme segmentation of a speech

corpus. This can be used as seed values to aid the

subsequent manual process of phonetic transcription.

3. Modern Standard Arabic

The Arabic language has a standard pronunciation, which

basically is the one used to recite the Quran. The same

pronunciation is used in newscasts, discourses and formal

actuations of all types [15]. Spoken in the Middle East

and North Africa, Arabic has different dialects where some

letters are pronounced in different manner [16], [17]. How-

ever, the literary Arabic also called Modern Standard Ara-

bic (MSA) or Al-fus-ha. One of the differences between

the spoken and written Arabic is the presence of diacrit-

ics marks (spoken segments that not present in the written

form). The complexity of this language is due to the un-

usual morphology: words are formed using a “root and

pattern” scheme, where the root is composed of 3 conso-

nants, leading to several possibilities using one root.

3.1. Arabic Phonology

Phonetically, MSA has 34 basic phonemes of which six

are vowels (short vowels /i/, /u/, and /a/ and long vowels
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/i:/, /u:/, and /a:/), and 28 are consonants. The Arabic

alphabet only consists of letters for long vowels and con-

sonants. Other pronunciation phenomena, including short

vowels (harakat), nunation (tanwin) and consonant dou-

bling (shadda), are not typically written. However, they

can be explicitly indicated using diacritics. Vowel diacrit-

ics represent the three short vowels: a, i, and u (fatha, kasra

and damma) or the absence of a vowel (sukun).

Additionally, pharyngeal and emphatic phonemes comprise

two distinctive classes of phonemes in Arabic. These two

classes are found only in Semitic. These phonemes can be

grouped according to the articulation of the lips and tongue

during speech [18].

3.2. Arabic Syllables

The syllable types allowed in MSA are CV, CVC, and

CCV, where V indicates a (long or short) vowel and C

indicates a consonant. Arabic sentences must start with

a consonant [19], and all Arabic syllables must contain

at least one vowel. In addition, while such vowels can-

not occur in word initial position, they can occur between

two consonants or in word-final position. This is in con-

trast with other major languages, i.e. English, Japanese. In

Japanese language, vowel can occur at any position of a

word and most of the Japanese words end with vowel like

pronunciation. Arabic syllables can be classified as short

or long. The CV syllable type is a short syllable while all

others are long. Syllables can also be classified as open or

closed. An open syllable ends with a vowel, while a closed

syllable ends with a consonant. For Arabic, a vowel always

forms a syllable nucleus, and there are as many syllables

in a word, as there are vowels in it [20].

3.3. Formant Analysis in Arabic Speech

It has been noted that generally most of the energy of vowel

lies below 2 kHz and in case of voiced consonants lies

below 3 kHz as shown in Fig. 1 [21]. Vowels are lower-

Fig. 1. Normal hearing frequency distribution of human speech.

frequency components of speech and create the sound vol-

ume of speech.

Vowels are among the essential components of any spoken

language. The analyze and the study of vowels in Arabic

is very important designing reliable and robust speech pro-

cessing systems due to the fact that almost 60 to 70% of

Arabic speech is vowels [22].

Table 1

The relationship between the vocal tract characteristic

and the two formants F1, F2

Vocal tract
F1 F2

characteristic

Length of the pharyngeal Inversely Inversely

oral tract proportional proportional

Oral constriction
Inversely

No effectin the front half of the
proportional

vocal tract

Pharyngeal constriction Proportional No effect

Back tongue constriction No effect
Inversely

proportional

Front tongue constriction No effect Proportional

Lip rounding
Inversely Inversely

proportional proportional

Table 1 give F1 and F2 give indication about the constric-

tions of the vocal tract in generating vowels [23].

Fig. 2. The formant triangle of MSA vowel [15].

Based on the study [24], a formant-based analysis for the

six vowels of MSA language was carried out and the values

of the first three-formant frequencies were captured. Their

results were compared to some previously published ones

conducted on MSA and other Arabic dialects. The com-

parison was performed from geometric perspective using

the Euclidean distance. The comparison results were found

to be consistent with the visual inspection of the vowel

triangles as shown in Fig. 2.
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In Fig. 2, one can see that the vowels /i:/ and /i/ have low

frequencies in F1 and high frequencies in F2. Moreover,

the frequencies F1 and F2 are both low for the vowels /u:/

and /u/. In the case of /a:/ and /a/, both have F1 with high

frequency and F2 with an average frequency. Therefore,

when these vowels are plotted F1 to F2, they form two

triangles.

The results of the analysis of the first three formants

are summarized in Table 2 where speakers uttered per-

fectly Arabic phonemes without any influence by their local

dialects [24].

Table 2

Results of F1, F2 and F3

Vowels
F1 F2 F3

[Hz] [Hz] [Hz]

/a:/ 651.5 1588.1 3058.3

/i:/ 314.1 2549.8 3278.9

/u:/ 295.4 744.3 2560.2

/a/ 535.0 1635.0 5890.6

/i/ 307.5 1942.1 2702.7

/u/ 407.9 1520.3 2777.7

4. Methodology

This section outlines in detail the settings of band frequen-

cies, algorithm and computation conducted with references

to the research presented in this paper. The proposed strat-

egy based spectral analysis extracts phonemes from the raw

speech waveforms. It requires no learning and it is language

independent applied for Arabic speech.

4.1. Band Frequencies Definition

It is well known that an acoustic speech signal contains in-

formation beyond its linguistic content. This paralinguistic

information includes clues to a speaker’s accent and iden-

tity, which are exploited by automatic accent identification

(AID) and speaker identification (SID) systems. The rela-

tionship between AID and SID is asymmetric, since accent

information is relevant to SID but speaker information is

a distraction in the context of AID.

For instance, the speaker identification study in [25], per-

formed on the clean TIMIT corpus using mono Gaussian

modeling, showed that the frequency regions below 600 Hz

and above 3000 Hz provided better SID than the middle

frequency regions. However, no similar study has been

conducted for AID. In [26], the contrasting importance of

different frequency bands for AID and SID are investigated,

using contemporary GMM-based systems. These bands are

defined in center frequency shown in Table 3 [26].

According to [26], it is useful to divide the spectrum into

four areas: A (0 to 0.77 kHz), B (0.34 to 3.44 kHz), C (2.23

to 5.25 kHz) and D (3.40 to 11.02 kHz). The results sug-

gest that speaker information dominates in areas A and D.

The first area A, corresponding to primary vocal tract

resonance information, and the second area D, correspond-

ing to high-frequency sounds. These results are consistent

with [25]. In contrast, area B is most useful for AID, indi-

cating that the vocal tract resonance information in this

region is linguistic biased, rather than speaker informa-

tion. Area C contains both types of information, although

speaker information appears dominant.

Table 3

The center frequency for 31 Mel-spaced band-pass

filters [26]

Filter Center Filter Center

number frequency [Hz] number frequency [Hz]

1 129 17 2239

2 258 18 2497

3 344 19 2799

4 473 20 3100

5 559 21 3445

6 645 22 3832

7 775 23 4263

8 861 24 4737

9 990 25 5254

10 1076 26 5857

11 1205 27 6503

12 1335 28 7235

13 1464 29 8253

14 1636 30 8957

15 1808 31 9948

16 2024

Based on the assumption that the majority of phonemes

used in Spanish language are used in Arabic language, we

consider the study given in [27].

In [27], it is shown that for Portuguese language (or Span-

ish language) there are 48 different phonemes used for

the SID grouped into 11 classes. These classes are: si-

lence, voiced fricative and unvoiced fricative, voiced plo-

sive and unvoiced plosive, nasal consonants, nasal vowels,

front vowels, median vowels, back vowels and liquid con-

sonants.

For each class, a given set of representative parameters

is largely used for phoneme classification. The parameters

used for each class are as follows [28].

Silence – only the total energy of the analysis window is

used (threshold –35.8 dB). The boundary between the si-

lence and other classes is set up at the frame where the

total energy becomes greater than the threshold.

Vowels (median, front, back, nasal) – four parameters are

used: total energy of the analysis window, first (F1) and

second (F2) formant values and energy profile. The tran-

sition between vowels and the other classes is determined
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by using the total energy of the analysis windows (tran-

sition is set where the energy is below –28 dB). Energy

profile, F1 and F2 values are used to separate vowels in

diphthongs. F1 is used to separate median vowels from

back and front vowels, and the boundary is set up at the

frame where F1 is below 673 Hz. Energy profile and F2

value are used to separate front vowels from back vowels.

The transition is determined at the frame where F2 is below

1845 Hz and the energy profile is below 2106 Hz. Ener-

gy profile represents the frequency band carrying a given

percentage of the total energy and is calculated from the

Discrete Fourier Transform (DFT) of the windowed speech

signal.

Fricative (voiced and unvoiced) – two parameters are

used: Zero Crossing Rate [29] (thresholds 0.35 for voiced

fricatives and 0.62 for unvoiced fricatives) and gravity spec-

tral center (threshold 2500 Hz). The gravity spectral center

represents the frequencies where 50% of the total energy of

the windowed signal is concentrated. The transition from

fricatives to other classes is determined at the frame where

the parameters values are below the thresholds.

Plosive (voiced and unvoiced) – three parameters are

employed: energy in the frequency bands [0 − F3] and

[F3− fs/2] [30] and the first order derivative of F2, where

F2 and F3 represent the second and third formant frequen-

cies and fs is the sampling frequency. As the derivative of

F2 exhibits a peak at the transition from plosive to other

classes where the peak position represents the boundary.

Energy is combined with the derivative permit to avoid

spurious peaks. The energy in the frequency band [0−F3]
for voiced plosive is above of –5 dB and in the frequency

band [F3− fs/2] is above of –2 dB. For unvoiced plosive

the energy is above of 5 dB and 10 dB for the bands [0−F3]
and [F3− fs/2] respectively.

Nasal consonants – two parameters are used: F1 value

(threshold 280 Hz) and the ratio between the spectral energy

in the frequency bands [0−353] Hz and [358−5373] Hz

(threshold 0.87). When the F1 value is greater than 280 Hz

and the spectral energy ratio is below 0.87, a transition has

occurred from nasal consonant to another class.

Liquids – two parameters are employed: spectral energy

band [0− 2600] Hz (threshold above 6.5 dB) and its first

order derivative. Transition from liquid to another class

tends to exhibit a peak in the first derivative of the spec-

tral energy. The peak determines the transition and at this

frame, the spectral energy threshold must be below 6.5 dB.

Based the study in [26], [27] and the one of formant fre-

quencies defined in Arabic speech developed in Section 3,

one can see that if we divide all frequencies centers [26]

indicated in Table 3 into six zones (Table 4), we get closer

to the syntheses given above [28].

To investigate the effect of different frequencies areas, seg-

mentation experiments were conducted using frequency

band limited speech data comprising the outputs of ad-

jacent filters regions. For example in LF2 area, we consid-

ered k = 4 overlapping sub-bands, where the N-th sub-band

comprises the outputs of filters N to +3 (N = 1 . . . 4).

Table 4

Definition of the six region band frequencies

LF – low frequency

Band Center Band Center

LF1 frequency [Hz] LF2 frequency [Hz]

1 129 1 559

2 258 2 645

3 344 3 775

4 473 4 861

5 559 5 960

6 1071

MF – medium frequency

Band Center Band Center

MF1 frequency [Hz] MF2 frequency [Hz]

1 1076 1 1808

2 1205 2 2024

3 1335 3 2239

4 1464 4 2457

5 1636 5 2799

6 1808 6 3100

HF – high frequency

Band Center Band Center

HF1 frequency [Hz] HF2 frequency [Hz]

1 3100 1 5254

2 3445 2 5854

3 3832 3 6503

4 4263 4 7235

5 4737 5 8000

6 5254

4.2. Energy Computation over a Frequency Band

For the human ear perceiving speech along a nonlinear

scale in the frequency domain [31], one approach is to use

a uniformly space-warped frequency scale, such as the Mel

scale.

The relation between Mel-scale frequency and frequency

(Hz) is described by the following equation:

Mel = 2595log(1 + f/700) , (1)

where Mel is the Mel-frequency scale and f is in Hz. The

filter bank is then designed according to the Mel scale.

For example, we take 4 frequency bands in LF2 area (see

Table 4) that are approximated by simulating 4 triangu-

lar band-pass filters, (i,k) (1 ≤ i ≤ 4,11 ≤ k ≤ 21). Over

a frequency range of 559−1076 Hz, we consider that the

speech signal is sampled at 16 kHz windowed over 10 ms
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(each window of 10 ms has 160 point), and the spacing as

well as the bandwidth are determined by a constant Mel

frequency interval by Eq. 1. Considering a given time-

domain noisy speech signal, xtime(m,n), representing the

magnitude of the n-th point of the m-th frame, we first find

the spectrum, x f req(m,k), of this signal by 160-point DFT:

x f req(m,k) =
N−1

∑
n=0

xtime(m,n)W kn
N , (2)

0 ≤ k ≤ N −1, 0 ≤ m ≤ M−1 ,

WN = e
− j2π

N , (3)

where x f req(m,k) is the magnitude of the k-th point of the

spectrum of the m-th frame, N is 160 and M is the number

of frames of the speech signal for analysis. Then, we multi-

ply the spectrum x f req(m,k) by the weighting factors f (i,k)
on the Mel-scale frequency bank and sum the products for

all k to get the energy x(m, i) of each frequency band i of

the m-th frame:

x(m, i) =
N−1

∑
k=0

∣

∣x f req(m,k)
∣

∣ f (i,k) , (4)

0 ≤ m ≤ M, 1 ≤ i ≤ 20 ,

where i is the filter band index, k is the spectrum index,

m is the frame number, and M is the number of frames for

analysis.

In order to remove some undesired impulse noise in Eq. 4,

we further smooth it by using a three-point median filter to

get xs(m, i):

xs(m, i) =
x(m−1, i)+ x(m, i)+ x(m+ 1, i)

3
. (5)

Finally, the smoothed energy, xs(m, i), is normalized

by removing the frequency energy of background noise,

Noise f req, to get the energy of almost pure speech signal,

X(m, i). The smoothed and normalized frequency energies

of a clean speech signal, X(m, i) is described by Eq. 6.

The energy of background noise is estimated by averag-

ing the frequency energy of the first five frames of the

recording:

X(m, i) = xs(m, i)−Noise f req = xs(m, i)−

4

∑
n=0

xs(n, i)

5
. (6)

With the smoothed and normalized energy of the i-th band

of the m-th frame, X(m, i), we can calculate the total en-

ergy of the almost pure speech signal at the i-th band

as E(i):

E(i) =
M−1

∑
m=0

∣

∣X(m, i)
∣

∣ . (7)

The goal is to select some useful bands area having the

maximum word signal information. It is obvious that E(i)
in Eq. 7 is a good indicator since the band with higher E(i)
contains more pure speech information.

Based on this computation for each band area cited in

Table 4, the Fig. 3 shows the six energies computed of

the six areas frequencies that specify each vocal segment

of a speech Arabic signal for 2 s.

Fig. 3. Energies of six region bands in an Arabic speech sig-

nal frame. (See color pictures online at www.nit.eu/publications/

journal-jtit)

4.3. Segmentation Algorithm

In each frame of an Arabic speech signal, the segmentation

is based on three steps.

1. All closure and fricative phonemes for all point in

segment where HF1 energy signal is greater than the

sum of the energies signals LF1 and LF2 are selec-

ted (Fig. 4).

2. The vocalic segment for all point in segment where

the sum of the energies signals LF1 and LF2 is

greater than the mean of the energy signal HF2 is

selected (Fig. 5).

3. The vowels and other voiced consonant in vocalic

segment for all segment are selected (Fig. 6) where

we are:

– crossing between energy signal LF1 and energy

signal LF2,

– crossing between energy signal LF1 and the

sum of the energies signals MF1 and MF2,

– crossing between energy signal LF2 and the

sum of the energies signals MF1 and MF2.
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Fig. 4. Selection of a closure phoneme (first step).

Fig. 5. Selection of vocalic segment (second step).

Fig. 6. Selection of vowels and voiced consonant (third step).

5. Experimentation and Evaluation

5.1. Data Set

The speech was recorded at a sampling rate of 44.1 kHz

by means of a 16-bit mono analog-to-digital converter

(ADC) per sample and they were down sampled to 16 kHz.

Data are recorded with the help of a unidirectional mi-

crophone using Audacity recording tool in a normal room

with minimum external noise. Ten subjects (10 male) in the

22–35 age range were participated in the recording pro-

cess. All subjects were monodialectal speakers of MSA.

They were free of any speech or hearing disorders by self-

report based on a screening interview and as later judged by

the investigator during the recording session. Each subject

recorded twenty verses in Quranic recitation according to

the tajweed rules. Then, all the files recorded of the data

set are segmented into fixed size of 30 s. Additionally,

a silence period is added to the beginning and end of each

sample file. The input speech data are pre emphasized with

coefficient of 0.97 using a first order digital filter and then

window by a Hamming window. The resulting windowed

frames of 20 ms are used for the phoneme boundary de-

tection in our experiment. For comparison of boundaries

detection does with proposed algorithm, the task of tran-

scription of phonemes for our entire data set is done by an

expert phonetician.

5.2. Performance Measure

In order to evaluate the proposed algorithm, the metrics

required for speech segmentation performance evaluation

are used whose definitions are as follow:

• HR (hit rate): represents the rate of correctly detected

boundaries (
NH

NR

). It utilizes the number of correctly

detected boundaries (NH ) and the total number of

boundaries (NR);

• FA (false alarm rate): represents the rate of erro-

neously detected boundaries
(NT −NH)

NT

, which uti-

lizes the total number of detected boundaries NT and

the number of correctly detected boundaries NH ;

• OS (over segmentation rate): shows how much more

(or less) is total number of algorithm detections, com-

pared to the total number of reference boundaries

taken from the manual transcription
(NT −NR)

NR

;

• PCR (precision rate) =1 − FA: describes the like-

lihood of how often algorithm identifies a correct

boundary whenever a boundary is detected.

The overall quality of proposed algorithm is described by

computing Fmesure from precision rate and hit rate whose ex-

pression is Fmesure =
(2×PCR×HR)

(PCR + HR)
. Another global mea-

sure, referred to as the Rmesure, decreases as the distance

to the target grows, i.e. similarly as the Fmesure does, but
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is critical towards over-segmentation [32]. It calculated by

Rmesure = 1− (|r1|+ |r2|)
2

with r1 =
√

(1−HR)2 + OS2 and

r2 =
(HR−OS−1)√

2
.

5.3. Performance Evaluation

By observing the Figs. 7 and 8, the segmentation appears in

concordance with the spectrum. Compared to the manual

transcription showed in the two figures, segmentation gives

more information characteristic definition of the speaker

and the phonemes have better boundaries.

Fig. 7. Segmentation of Basmala (Surat Fatiha – Holy Coran).

Fig. 8. Segmentation Verset 02 of Fatiha (Holy Coran).

The above calculations (Subsection 4.3) were performed for

the analysis of the results obtained through the application

of aforementioned algorithm.

The methodology was repeated on 83 different files of

Quranic Arabic speech obtained from trained speakers.

Table 5

Segmentation performance

Files NH NR NT Fmeasure [%]

Speaker 01 87 109 105 81.31

Speaker 02 78 118 108 69.03

Speaker 03 76 105 98 74.88

Speaker 04 84 113 98 79.62

Speaker 05 83 109 101 79.05

Speaker 06 103 123 112 87.66

Speaker 07 105 127 118 85.71

Speaker 08 96 117 103 87.29

Speaker 09 107 124 115 89.54

Speaker 10 85 111 102 79.81

Mean measure 90 115 106 81.39

Speech signal was divided into different frames. For each

frame, the trends of the signal to find the number of con-

secutive boundaries specifying phonemes were checked. As

a result, each vowel or consonant detected, starting bound-

ary, ending boundary of each phoneme is transcript.

To illustrate this, the results generated algorithmically from

10 different files of various speakers are presented in

Table 5. The table shows the total number of different

limits and measuring performance during the application

of the proposed methodology.

5.4. Comparison Test

The proposed method was compared with the three same

kinds of segmentation methods using mean Fmeasure shown

in Table 6. The first method [33] uses average level crossing

rate (ALCR) and root-mean-square (RMS) energy to detect

the phonetic boundary between obstruent initial consonant

and preceding/following vowel. The second method [34]

uses frequency synchrony and average signal level as input

to a two-layered support vector machine based (SVM) sys-

tem to detect phoneme boundaries. The third method [35]

uses unsupervised phoneme boundary detection based on

band-energy tracing technique.

Table 6

Comparison of segmentation performance

Method PCR [%] HR [%] Fmeasure [%]

First method [33] 79.82 78.83 79.32

Second method [34] 81.12 78.91 79.99

Third method [34] 82.33 75.07 78.53

Proposed method 85.11 78.01 81.39

6. Conclusion

This work proves that it is possible to extract the informa-

tion of phonemes from the energy of the acoustic signal.

Following the formant technique, a study is done on Mod-

ern standard Arabic vowels. It shows that it has six basic

vowels included in the constricting of vocal tract that has

permit to the segmentation to be deployed in proposed sys-

tem. The system shows that the formants are very effective

for detecting phonemes correctly.

The experimentation shows that with this method, we can

detect a mean of 81% of all boundaries manually tran-

scribed of a speech raw file, and give better result than

other methods developed in the literature.
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