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Abstract—The paper presents a theoretical introduction to

the cryptographic hash function theory and a statistical

experimental analysis of selected hash functions. The def-

inition of hash functions, differences between them, their

strengths and weaknesses are explained as well. Different hash

function types, classes and parameters are described. The fea-

tures of hash functions are analyzed by performing statistical

analysis. Experimental analysis is performed for three cer-

tified hash functions: SHA1-160, SHA2-512 and SHA3-512.

Such an analysis helps understand the behavior of crypto-

graphic hash functions and may be very helpful for compar-

ing the security level of the hashing method selected. The tests

may serve as a basis for examination of each newly proposed

hash function. Additionally, the analysis may be harness as

a method for comparing future proposals with the existing

functions.

Keywords—cryptographic hash function, hashing metod, secu-

rity.

1. Introduction

As they play an important role in ensuring the security

and confidentiality of information, identification and au-

thentication methods are approached with an ever greater

attention, both in civilian (personal information, passwords,

PIN codes) and military domains. Hashing is one of the

techniques enabling to meet some of the demands described

above. Practical applications of cryptographic hash func-

tions include message integrity checking, digital signatures,

authentication procedures and other information security-

related applications.

The paper is organized as follows. In Section 2 we describe

the properties of one way functions, as well as the prop-

erties and classes of hash functions. In Section 3, methods

of creating hashing functions are presented. In Section 4,

the strengths and weaknesses of hashing functions certifi-

cated by NIST are presented. Section 5 is devoted to statis-

tical tests involving SHA1-160, SHA-512 and SHA3-512,

with their results described. Section 6 summarizes the work

and offers conclusions.

2. Hash Functions: Properties,

Classes and Types

Let us start with the definition of a one way function, which

is given below [1]:

∀x ∈ X , f : x → y∧¬(∃g : y → x) . (1)

It means that for all function arguments x there exist

a value y, but it is impossible to identify a function which

will assume this value y as an argument and return x. Hash

functions belong to family of one way functions, but are

bound by an additional restriction. Formally, they are de-

fined as follows [2]:

h : {0,1}∗ → {0,1}n
,n ≥ 1 , (2)

where {0,1}∗ is an input set (formally its elements may be

of any length), and will be further denoted by M. Elements

from M will be denoted by m (m ∈ M). {0,1}n is an set

of output hashes, each with a fixed length and a finite

number of combinations, and will be further denoted by

H (note, that n is greater than or equal to 1) [2]. Hashes

from H will be denoted by h(m) (h(m) ∈ H).

In article [3] Carter and Wegman presented three basic hash

function classes.

2.1. Universal Hash Functions Classes

Class H1 is designated for computers which are capable of

fast multiplication of the input bit string. Hashes from this

class may become inconvenient when the input bit string

is too long to multiply it in a single machine instruction.

The basic formula of hashes from this group is: for 2 ele-

ments, let us call them m and n, the hash is calculated as

follows [3]:

hm,n(x) = (mx+n) mod p . (3)

In class H3, only simple linear transformations are used

instead of multiplication. Formally, the class is defined

as follows: if the hash function transforms elements from
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set A (each element is a binary number with length i) to

set B (each element is a binary number with length j),
M is an array of size i and contains elements from B, and

m are elements of M (m ∈ M) where m(k) is the k-th bit of

element m, then for any x ∈ A (with the same bit indexing

as m), the hash function is represented by [3]:

hm(x) = x1m(1)⊕ x2m(2)⊕·· ·⊕ xim(i). (4)

Then H3 is a set defined in the following manner [3]:

{ fm : m ∈ M} . (5)

Class H2 is very similar to class H3. The difference is

that hashing functions from this class require more space

for hash computation, but need less time. The key point

is to find a function g which maps an input bit string into

a longer input bit stream containing fewer less ‘1s’. Then,

H2 can be defined [3]:

{ f ∗g : f ∈ H3} . (6)

To define when a set of hashing functions becomes uni-

versal, we have to introduce a certain notation. Let us

consider hash function h which maps set A into set B. It

is always assumed that |A| > |B|. Then, it is possible to

define function δh in the following manner [3]:

δh(x,y) =

{

1 if x 6= y and h(x) = h(y)
0 otherwise

, (7)

where x,y ∈ A. We can say that collection of hashing func-

tions C is universal when for all x and y in A δC(x,y) ≤
|C|
|B| [3]. In practice, this means that no pair of distinct in-

puts from A collides under more than ( 1
|B|)−th of the func-

tions [3]. All three classes (H1, H2, and H3) are universal,

but H2 and H3 classes are the most popular ones [3].

2.2. Hash Function Types

Cryptographic hash functions may be divided into two

groups [2]:

• keyed hash functions – require a secret key and are

known as message authentication code (MAC) [2],

• un-keyed hash functions – do not require any secret

key and may be referred to as manipulation detection

code (MDC).

Generally, the term hash functions refer to un-keyed

hash functions [2].

In this paper, we will focus on un-keyed hash functions

which can be divided into three subgroups, based on their

additional properties:

1. One way hash functions (OWHF) – defined by

Merkle [4] and fulfilling the following requirements:

• hash function does not give any constraint on

input data size,

• output hash has constant length,

• output hash should be easy to compute,

• “given h and h(x), it is computationally infea-

sible to determine x” – a preimage resistance

feature,

• “given h and x, it is computationally infeasible

to find an x′ 6= x such feature that h(x) = h(x′)”
– the second preimage resistance.

2. Collision resistant hash functions (CRHF) – belong-

ing to the OWHF group and fulfilling an addi-

tional requirement: it is impossible to find a pair

(x,x′) where x 6= x′, which have the same hash value

(h(x) = h(x′)). This condition is known as collision

resistance. The difference between the second preim-

age resistance depends on the selection of arguments.

In the second preimage resistance condition, the at-

tacker has a given value x and has to find x′. In the

collision resistance condition, the selection of both:

x and x′ is a free choice of the attacker.

3. Universal one way hash functions – a family in which

the probability of finding a second preimage for a ran-

domly chosen hash function is negligible [2], [5].

These functions are faster than CRHF and allow

to omit trapdoors during digital signature creation.

They are used when it is impossible to make a de-

cision in which the hash function should be chosen

before computation starts.

3. MDC Construction Method

3.1. Hash Function Based on Block Ciphers

To describe the general concept of creation of hash func-

tions based on block ciphers, the following set have to be

defined [6], [7]:

S ∈ {Mi,Mi XOR Xi,Xi,C} , (8)

where Mi is one block of a message, Xi is a chaining value

from the previous step and C is a chosen constant value [7].

Note that all these values are given for i-th round of hash

computation, and that secure block cipher B was already

chosen. Then the construction of i-th round is:

1. Choose a private key P for B from set S.

2. Choose an input I from set S.

3. Pass I and P to the algorithm B and calculate cipher

value CV .

4. Choose value T from set S.

5. Calculate Xi+1 = T ⊕CV .

6. Update set S with values Xi+1 and Mi+1 (next block

of message) according to the formula (8). If it is

impossible, computation ends.

7. Go to step 1.
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The selection of variables depends on the algorithm design,

but at least one variable should be Mi. The output hash

should be as big as block size of B, or twice as big [6].

This is caused by the small size (mainly 64 bits) of the

block. Hash should be bigger to avoid collisions. The

speed of hash functions based on block ciphers is equal to

the number of encryptions to process r plaintext bits, where

r is defined as block size [6].

Most hash functions constructed in this way suffer from nu-

merous security vulnerabilities [7] and cannot be used in

practice. However, an opposite situation may occur when

the block cipher construction is based on the hash func-

tion, for example in SHACAL and SHACAL-2, with both

being based on the SHA-1 cryptographic hash function [2].

A good example of a hash function with its length equal

to the size of the block is described by Meyer and Oseas

in [8]. More examples may be found in [6].

3.2. Hash Functions Based on Cellular Automata

Cellular automata (CA) can be used for ciphers generations

and for hash functions design [7], since Wolfram [9] de-

veloped a pseudorandom generator based on CA rule 30.

Cellhas, as described in [10], is a good example of a hash-

ing function based on CA.

3.3. Hash Functions Based on Math

There are three ways of creating of hashing functions based

on mathematical constructions:

1. Hashing function based on mathematical primitives

is based on modular arithmetic, discrete logarithm

problem and factorization problem [11].

• Factorization problem is based on the difficulty

of finding two factors, for any positive integer,

which, when multiplied, will give these inte-

gers. This problem can be also described by

the following formula: for a given integer I it

is hard to find a and b such that ab = I.

• Discrete logarithm problem, such as that for a

given abelian group O, generator of this group o
and an element e which belongs to O, finding (if

it is possible) x such that ox = e. The difficulty

of the discrete logarithm problem depends on

group O.

2. Hashing function based on Knapsack NP-complete

problem. From a cryptographic point of view its

formula may be formulated as [6]:

n

∑
i=1

ai · xi = S , (9)

where each ai is a m bit integers: {a1,a2, . . . ,an},

S is a p bit integer and p ≈ m + log2 n, and X is a

vector of elements xi ∈ {0,1}, [6], [7] and [11].

3. Hashing function based on algebraic matrices, de-

veloped by Harari [12]. Here, the key K is a n× n
random matrix and M is the 1 × n message ma-

trix. Then the digest D is: MT KM or equivalently

KT MK [7], [12]:

D = MT KM. (10)

or

D = KT MK. (11)

Unfortunately, collisions appeared in the Harari hash

function proposition [7].

3.4. Dedicated Hash Functions

Dedicated hash functions created only for hashing opera-

tion. Their security can be proved mainly in an empiri-

cal way, because they very often do not base on any hard

problem, like factorization or discrete logarithm problem.

Examples are MD4, MD5, SHA1, SHA2 or SHA3. Based

on them algorithms were designed to be as fast as possible

in software implementations rather than hardware [11].

3.5. Standardization of Hashing Functions

After the first collision for MD5 was discovered, the Na-

tional Institute of Standard and Technology, USA, created

a hashing standard – Secure Hash Algorithm (SHA). The

first version of SHA, known as SHA-0, was published in

1993. In 1995 SHA-0 was replaced by a new version –

SHA-1. In 2005 vulnerabilities were identified in SHA-1

and NIST introduced SHA-2, which is used currently. In

2007 an open competition for the next generation SHA-3

was announced. The evaluation criteria are as follows [13]:

• applications of the hash functions – the wider va-

riety of cryptographic usage, the better. The new

standard should be useful for the creation of hashed

message authentication code (HMAC), as well as for

the creation of digital signatures or random bit gen-

erators [14].

• specific requirements when hash functions are used

to support HMAC, pseudo-random functions (PRFs),

or randomized hashing – each algorithm had to have

at least one scheme to support HMAC as PRFs [14].

These PRFs have to be secure against known attacks

which require less than 2
n
2 queries or which require

less computation then the preimage attack [14]. If the

hashing function is capable of randomized hashing, it

has to have n security bits against attacks mentioned

in [14].

• additional security requirements of hash functions –

for a digest with size n: n
2 bits of collision resistance,

n bits of preimage resistance and n−k bits second

preimage resistance for any message shorter than 2k

bits [14]. All these rules should be fulfilled with

m replacing n for any m size subset taken from the

digest [14].

127



Jacek Tchórzewski and Agnieszka Jakóbik

• evaluation of attack resistance- hashing functions

were attacked with well-known and popular meth-

ods discovered during the security evaluation phase.

Other validation methods were based on statistical

and behavioral tests, such randomness of hash cre-

ation [14].

• other consideration factors – for example quality of

security proofs, proper analysis, documentation and

simplicity of the algorithm, as well as opinions by

NIST and the cryptographic community.

The remaining criteria included speed of the algorithm,

code size, memory and hardware implementation require-

ments, flexibility and simplicity [13]. The final report an-

nouncing the winner (the Keccak algorithm) was published

in 2012 [15].

4. Theoretical Analysis of Security

Parameters

In this section, we will present the results of an analysis of

the dependence between the length of the digested messages

and the security parameters of hashing functions.

The security level of a cryptographic primitive is expressed

in bits, where n-bit security means that the attacker would

have to perform 2n operations to break it. The security level

of a cryptographic hash function has been defined using the

following properties:

• collision resistance bits of security,

• preimage attacks bits of security,

• second preimage resistance bits of security.

To compromise collision resistance using the brute force

method, the attacker needs to hash a huge number of

variants of the message m, and hash a huge number of

variants m′, go through the lists and see if there are values

that are equal. For example, in a 160-bit hash output, the

attacker needs 280 inputs to test in both lists. Therefore, in

the case of this hash function, the number of bits of secu-

rity against this attack is equal to 80, due to the Birthday

Paradox.

While breaking preimage and second preimage resis-

tance, the attacker cannot apply the Birthday Paradox. For

a mbox160-bit hash output, the attacker needs to examine

2160 input messages, which means that 160 bits of security

are achieved.

In Table 1, security parameters of selected hashing func-

tions, as accepted by NIST, are presented [16]. In Table 1,

function L(M) is defined as:

L(M) =

⌈

log2
len(M)

B

⌉

. (12)

where M is the input message, B is the block size of the

hash function and d.e denotes the least integer not strictly

lower than the argument in the brackets.

Table 1

NIST-approved security parameters of hash functions

Bits of security

Function
Output

Collision
Pre- Second

size image preimage

SHA-1 160 < 80 160 160-L(M)

SHA-224 224 112 224 min [224, 256-L(M)]

SHA-256 256 128 256 256-L(M)

SHA-384 384 192 384 384

SHA-512 512 256 512 512-L(M)

SHA3-224 224 112 224 224

SHA3-256 256 128 256 256

SHA3-384 384 192 384 384

SHA3-512 512 256 512 512

Using the brute force method, there always exists a generic

attack comprising 2
n
2 , 2n and 2n steps, respectively, where

n is the hash length [17]. This is the maximum (ideal) se-

curity level which can be achieved for any hash function.

As it can be seen in Table 1, SHA-1 has a lower-than-

ideal security level in terms of collision attacks and second

preimage attacks. SHA-1 offers the maximum potential

strength in terms of second preimage attacks, when the

message size (in bits) is up to 160. With bigger message

sizes, Eq. (12) is growing up to 1 (Fig. 1).

Fig. 1. SHA-160 second preimage attack bits of security.

Fig. 2. SHA-256 second preimage attack bits of security.

The SHA-2 family is collision resistant but in every case

(except for SHA-384), the security bit parameter of the

second preimage attack cannot be ideal when the length
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of M is greater than the block size B. Dependencies be-

tween the number of bits of security and the message length

for SHA-256 and SHA-512 are presented in Figs. 2 and 3.

For SHA-256, resistance to second preimage attacks is not

perfect when the message size is over 256 bits. the max-

imum message size was measured in the same way as in

the case of SHA-1.

Fig. 3. SHA-512 second preimage attack bits of security.

Fig. 4. SHA-224 second preimage attack bits of security.

The case of SHA-512 is similar to that of SHA-256, but

this time the maximum secure message size is 512 bits. It

is so because Eq. (12) is greater than or equal to 1 only

when log2
len(M)

B is greater than 0. log2
len(M)

B is greater

than 0 only when the message length is greater than the

block size. SHA-224 is different than its predecessors. As

can be seen in Fig. 4 the dependence between the number

of bits of security and the message size is constant, but ac-

cording to NIST (Table 1), SHA-224 is not totally resistant

against second preimage attacks. This is because the secu-

rity bits are defined in this case by min[224, 256−L(M)].
A vulnerability appears when L(M) = 33 (56−33 = 223).

This situation may occur when
⌈

len(M)
512

⌉

= 233. Thus,
len(M)

512

should be in the range of (233−1, 233). len(M)
512 = 233−1

when len(M) = 4398046510592 bits. It means that SHA-

224 becomes insecure against second preimage attacks

when the size of M is about 512 GB.

The SHA3 function family currently offers perfect security

against all three attacks: collision, preimage and second

preimage.

5. Experimental Analysis for Selected

NIST Hash Functions

For statistical analysis, we have chosen the strongest (the

longest) hash function from the SHA1, SHA2 and SHA3

families, i.e. SHA-512, SHA3-512 and SHA1-160, respec-

tively. A data sample consisting of 10,000 messages was

considered. All tests were implemented in the JAVA pro-

gramming language (JDK 1.8) and hashes were generated

with the use of the Bouncy Castle library [18].

All 10000 random messages were binary strings. Each

input had the same length as the output digest size (160 bit

inputs for SHA1 function and 512 bit inputs for SHA-512

and SHA3-512 functions). All input data was generated

one by one, separately for SHA1, SHA-512 and SHA3-

512, with the use of SecureRandom Java class [19].

By hashing those inputs, we have received the same number

pairs: (input, digest) for every hash function.

Three statistical tests were performed: hamming distance

test, bits probability test and series test. The details, results,

conclusions and comparisons are described in the following

subsections.

5.1. Hamming Distance Test

The idea of this test was to measure how small (or even

micro) changes in input data influence the output hash.

Hash function is passing the test when the statistic |Z| from

T-Student test (13) is within the (0,1.96) interval. The ex-

pected value is equal to Hashsize
2 (50%). Significance level

α was set to 5%. The T-Student formula is:

|Z|=
∣

∣

∣

∣

Average value−Expected value
Standard deviation

√

Sample size
∣

∣

∣

∣

. (13)

Firstly, we generated, for each of the pairs (input,hash),
another pair (input ′, hash′), where input ′ was the original

input with one random bit changed to the opposite (1 into 0

or 0 into 1), and hash′ was a digest calculated from input′.

We have received two very similar inputs and two hashes.

The aim of the experiment was to measure the Hamming

distance [20] between these hashes and to repeat this pro-

cedure for all inputs generated and for all hashing functions

chosen. The hamming distance may be defined as follows.

If S1 is the first bit string, S2 is the second bit string and

len(S1) = len(S2), the Hamming distance between S1 and

S2 is the number of 1s in the string S3 = S1⊕ S2. It is

the number of positions in which S1 have different values

than S2, which can be interpreted as the distance between

S1 and S2.

Results of the experiment for the SHA1 hashing function

are presented in Fig. 5 and in Table 2. The horizontal black

line is set to 80 because it is the expected value (distance).

4673 out of 10, 000 values were over the black line, but

the score is close to 50%. The critical values presented in

Table 2 indicate that the average is almost 50%. The |Z|
statistic was equal to 1.17, so the T-Student test had been

passed. The conclusion is that micro changes in input data
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Fig. 5. SHA1 Hamming distance test.

make SHA1 hashes at least 50% different, so the Hamming

distance test has been passed.

Results of the experiment for the SHA-512 hashing function

are presented in Fig. 6 and Table 2.

Fig. 6. SHA-512 Hamming distance test.

Table 2

Comparison of Hamming distance critical values

Hamming distance [% values]

Function Max Min AVG SD

SHA-1 66.25 33.75 50.04 ±4.02

SHA-512 58.40 41.41 50.00 ±2.21

SHA3-512 59.38 41.99 50.00 ±2.22

The black line is equal to 256, because it is the expected

value (distance). In 4836 out of 10,000 cases, the dif-

ference between hashes was lower than 50%, but in some

case it was also close to 50%. The average distance be-

tween hash and hash′ is equal to 50% and the |Z| value

Fig. 7. SHA3-512 Hamming distance test.

was 0.148. T-Student test was also passed, but the score

achieved was much better than in the SHA1 case. SHA-512

has also passed the Hamming distance test.

The research results for SHA3-512 hashing function are

presented in Fig. 7 and in Table 2.

The black line is equal to 256, because it is the expected

value. In 4799 out of 10,000 cases, the difference between

hashes was lower than 50%. The critical values are very

similar to SHA-512 (average, standard deviation). |Z| statis-

tic was equal to 0.44, thus SHA3-512 has also passed the

Hamming distance test.

All three hashing functions passed the Hamming distance

test, however, statistically, the SHA-512 is the best, SHA3-

512 ranks second and SHA1 ranks third.

5.2. Bits Probability Test

This time, the aim was to check whether bits in the digest

may be predicted or not. To measure it, we had to estimate

the probability of 1s in every bit position. The ideal situa-

tion is when every bit has a 50% probability of being a 1,

and a 50% probability of being a 0:

P1(i) = 50%, i = 1, . . . , l , (14)

where i denotes the bit position and l is the hash length. For

each hashing function, we used 10,000 generated digests to

estimate the probability of ‘1’:

P1(i) =

10000
∑
j=1

hashes[ j][i]

10000
, i = 1, . . . , l , (15)

where hashes is a table of generated digests, j denotes j-th
hash from hashes. We used Eq. (13) to calculate the |Z|
statistic. The test is passed when |Z| < 1.96 (significance

level of α = 5%). The expected value is 50%.

Results of the experiment for the SHA1 hashing function

are presented in Fig. (8) and in Table 3.

Fig. 8. SHA1 bits prediction.

As one can see, the average value is very close to 50% and

the standard deviation is low. Despite the fact that none

of the bits have the probability that is equal to 50%, the

fluctuations are very small. The |Z| statistic is equal to 1.04,

so the conclusion is that none of 160 SHA1 bits can be

predicted.
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Table 3

Comparison of bits prediction test values

Probability of 1

Function Max Min AVG SD

SHA1 51.35 48.20 50.04 ±0.52

SHA-512 51.46 48.49 49.99 ±0.53

SHA3-512 51.74 48.76 49.99 ±0.51

Results of the test for the SHA-512 hashing function are

presented in Table 3 and in Fig. 9.

Fig. 9. SHA-512 bits prediction.

Performance of SHA-512 is a similar to that of SHA1 in the

context of bits prediction. 510 of the bits have a P1(i) value

that is different than 50%. However, despite small fluctua-

tions, the average value and |Z| equal to 0.863 clearly prove

that none of the 512 bits of SHA-512 can be predicted.

Results of the experiment results for the SHA3-512 hashing

function are presented in Table 3 and in Fig. 10.

Fig. 10. SHA3-512 bits prediction.

The results for SHA3-512 are similar to those for SHA-512.

506 out of 512 bits fail to satisfy P1(i) = 50%, but the dif-

ferences are small. |Z| is equal to 0.317, so the conclusion

is that none of 512 bits of the SHA3-512 hashing function

may be predicted.

All tested functions pass the bits probability test. This

test shows that in every bit position its value is random

(ones and zeroes are equally probable). The best score

was achieved by SHA3-512, SHA-512 ranked second and

SHA1 third.

5.3. Series Test

This test allows to measure whether all hashes were gener-

ated in a random manner. Previously, in the bits prediction

test, we considered each bit of digest separately, but in the

context of all generated hashes. This time the existence of

internal dependencies of each hash of each chosen hash-

ing function was measured. To do this, we performed the

Wald-Wolfowitz series test [21].

This measure is the subsequence taken from a sequence

consisting of the same values only (0 or 1). The number of

all series found in one hash will be further denoted by R.

n1 is the number of subsequences consisting only of 1s, and

n0 is the number of subsequences consisting only of 0s.

For example, in the 00101101 sequence, the parameters

are: R = 6, n1 = 3 and n0 = 3. The null hypothesis H0
claims that the investigated sequence (in this case digest) is

random. The alternative hypothesis Ha claims that the in-

vestigated sequence was not produced in a random manner.

To decide whether H0 is true or not, a proper test statis-

tic value has to be calculated. Because every generated

hash has n0 > 20 and n1 > 20, test statistics tend to have

normal distribution N(0,1) (when H0 is true) and will be

denoted by Z. Test statistic Z for each hash was calculated

from [21]:

Z =
R−R

SD
, (16)

where R is the expected number of all series, such as:

R =
2n0n1

n0 +n1
+1 , (17)

and SD is the standard deviation:

SD =

√

2n0n1(2n0n1 −n0−n1)

(n0 +n1)2(n0 +n1−1)
. (18)

We have chosen significance level of α = 5%. Thus when

|Z| > Z0.975 the H0 is true and the hash investigated was

created randomly. Parameter Z0.975 is equal to 1.96.

Results of the experiment for the SHA1 hashing function

are presented in Table 4 and Fig. 11.

Table 4

Comparison of series test critical values

Z statistic values

Function Max Min AVG SD

SHA1 4.23 0̃ 0.79 ±0.60

SHA-512 4.04 0̃ 0.80 ±0.61

SHA3-512 4.39 0̃ 0.79 ±0.59

The black horizontal line is indicating Z = 1.96 (α = 5%).

The average value and the standard deviation show that,

generally, SHA1 passes the series test, but one may notice
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Fig. 11. SHA1 series test.

in the chart that definitely not all digests do so. 480 out of

10,000 samples (4.8%) are considered to have failed.

Results of the test for the SHA-512 hashing function are

presented in Table 4 and Fig. 12.

Fig. 12. SHA-512 series test.

In the case of SHA-512, the test was failed in the case of

498 out of 10,000 samples (4.98%). The value is higher

than in the case of SHA1 and SHA3-512. The average Z
value is the highest, however it is still far from the critical

region. We can say that SHA-512 passes the series test

with the worst results achieved.

Research results for the SHA3-512 hashing function are

shown in Table 4 and Fig. 13.

Fig. 13. SHA3-512 series test.

In contrast to SHA-512, SHA3-512 achieved the best test

results. Only 417 out of 10,000 samples failed (4.17%),

which is the lowest value among all hashing functions

tested. The average Z value is also closest to 0. SHA3-512

definitely passes the test.

All three hashing functions have passed our last test. The

best score was achieved by SHA3-512 and the worst by

SHA-512. In all cases, the test was not passed by less than

5% of samples, so it may be stated that, statistically (with

a significance level set to 5%), all hashes were generated

randomly.

6. Summary

The aim of this paper was to describe the types, classes

and main characteristics of cryptographic hash functions.

The formal definition of a hash function was presented and

universal hash function classes were described. Then, sev-

eral methods for the construction of hash functions were

disclosed. Standardization procedures for hash functions,

as drawn up by NIST, USA, finalize the theoretical part of

this paper.

In the research-related sections, we provided an analysis on

the influence of the hashed message length on the theoret-

ical security of hash functions, described as the number of

bits of security.

The paper describes numerous experiments evaluating the

basic features of SHA1, SHA-512 and SHA3-512. The

randomness of such functions in terms of input spreading,

single bit prediction ability and randomness inside each

single bit output, were illustrated. Three tests were per-

formed. The first was based on the Hamming distance

measurement, the second examined the frequency of zeros

and ones in a large sample, and the third was a series test.

Numerous experiments proved that the features of certified

hash functions differ, but they all offer very good character-

istics in terms of collision resistance, preimage resistance

and second preimage resistance attacks.

The analysis provided may be very useful for testing new

or proprietary hash functions.
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damgård’s one-way function based on a cellular automaton”, in Ad-

vances in Cryptology ASIACRYPT 91, H. Imai, R. L. Rivest, and

T. Matsumoto, Eds. LNCS, vol. 739, pp. 82–96. Berlin Heidelberg:

Springer, 1993 (doi: 10.1007/3-540-57332-1 7).

[11] B. Preneel, “The first 30 years of cryptographic hash functions and

the nist SHA-3 competition”, in Topics in Cryptology – CT-RSA

2010. The Cryptographers’ Track at the RSA Conference 2010, San

Francisco, CA, USA, March 1-5, 2010. Proceedings, J. Pieprzyk,

Ed. LNCS, vol. 5985, pp. 1–14. Berlin, Heidelberg, 2010

(doi: 10.1007/978-3-642-11925-5 1).

[12] S. Harari, “Non linear non commutative functions for data integrity”,

in Advances in Cryptology, T. Beth, N. Cot, and I. Ingemarsson, Eds.

LNCS, vol. 209, pp. 25–32. Berlin Heidelberg: Springer, 1985

(doi: 10.1007/3-540-39757-4 4).

[13] M. S. Turan et al., “NISTIR 7764: Status report on the second round

of the sha-3 cryptographic hash algorithm competition”, Tech. Rep.,

NIST, 2011 (doi: 10.6028/NIST.IR.7764).

[14] “Announcing request for candidate algorithm nominations for a new

cryptographic hash algorithm (SHA-3) family”, Tech. Rep., NIST,

2007.

[15] S. J. Chang et al., “NISTIR 7896: Third-round report of the SHA-3

cryptographic hash algorithm competition”, Tech. Rep., NIST, 2012

(doi: 10.6028/NIST.IR.7896).

[16] Fips pub 202: M. J. Dworkin, “SHA-3 standard: Permutation-based

hash and extendable-output functions”, Tech. Rep. no. 202, NIST,

2015 (doi: 10.6028/NIST.FIPS.202).

[17] A. K. Lenstra, “Key lengths. Contribution to the handbook of infor-

mation security”, 2004 [Online]. Available:

http://plan9.bell-labs.co/who/akl/key lengths.pdf

[18] Bouncy Castle library [Online]. Available:

https://www.bouncycastle.org (accessed: 08.2018).

[19] Class SecureRandom [Online]. Available: https://docs.oracle.com/

javase/7/docs/api/java/security/SecureRandom.html

(accessed: 08.2018).

[20] “Hamming Distance and Error Correcting Codes”, Hamming Dis-

tance [Online]. Available: http://www.oxfordmathcenter.com/

drupal7/node/525 (accessed: 08.2018).

[21] Wald-Wolfowitz series test [Online]. Available:

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm

(accessed: 08.2018).

Jacek Tchórzewski received

his B.Sc. and M.Sc. degrees in

Computer Science, with distinc-

tions, from the Cracow Uni-

versity of Technology, Poland,

in 2016 and 2017, respectively.

Currently, he is a Research and

Teaching Assistant at the Cra-

cow University of Technology

and a Ph.D. student at AGH

Cracow University of Science

and Technology.

https://orcid.org/0000-0002-0188-4253

E-mail: jacek.tchorzewski@onet.pl

AGH University of Science and Technology

30 Mickiewicza Av.

30-059 Kraków, Poland

Cracow University of Technology

24 Warszawska St

31-155 Kraków, Poland

Agnieszka Jakóbik (Krok) re-

ceived her M.Sc. in Stochastic

Processes from the Jagiellonian

University, Cracow, Poland and

the Ph.D. degree in Neural

Networks from the Tadeusz

Kosciuszko Cracow University

of Technology, Poland, in 2003

and 2007, respectively. From

2009 she has been an Assis-

tant Professor at the Faculty of

Physics, Mathematics and Computer Science, Tadeusz

Kosciuszko Cracow University of Technology. Her main

scientific and didactic interests are focused mainly on cloud

computing security, artificial neural networks, genetic algo-

rithms, and additionally on cryptography.

https://orcid.org/0000-0003-4568-3944

E-mail: agneskrok@gmail.com

Cracow University of Technology

24 Warszawska St

31-155 Kraków, Poland

133


