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Abstract—This paper considers several algorithms for paral-

lelizing the procedure of forward and back substitution for

high-order symmetric sparse matrices on multi-core com-

puters with shared memory. It compares the proposed ap-

proaches for various finite-element problems of structural me-

chanics which generate sparse matrices of different structures.

Keywords— finite element method, multithreaded paralleliza-
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1. Introduction

When dealing with problems of structural and solid me-

chanics by using finite element method, we have to

solve systems of high-order linear algebraic equations with

a sparse symmetric matrix. Direct methods are usually used

to solve this class of problems, because most design models

are poorly conditioned, which leads to slow convergence of

iterative solvers [1], [2].

The solution of a system of linear algebraic equations, re-

lying on the use of the direct method, consists of the fol-

lowing stages: matrix factorization and forward/back sub-

stitutions. Matrix factorization procedures have already

achieved a high level of performance, and are effectively

parallelized. Both multifrontal and supernodal solvers have

been developed for multi-core computers with shared mem-

ory and the symmetric multiprocessing (SMP) architec-

ture [3]–[6], etc. It seems that the factorization procedure

has a much greater computational complexity than forward

and back substitutions. Therefore, the computation time

practically does not depend on how quickly the latter will

be performed. However, in practice, problems are often

encountered where it is necessary to decompose the matrix

once, and then to perform forward and back substitutions

with one or several right-hand sides at each iteration. For

example, when integrating the equations of motion with the

use of the Newmark method or any other implicit method,

forward and back substitutions have to be performed once at

each time step [7]. This algorithm, as well as the procedure

for calculating the internal forces of the system, determine

the entire computation time, because all other procedures

contain a much smaller number of operations. Paralleliza-

tion of the procedure for calculating the internal forces is

given in [8]. Since it is necessary to perform many time

steps, the speed-up of the triangular solution algorithm is

one of the key points in improving the performance of the

implicit method.

The second scenario in which it is very important to per-

form forward and back substitutions quickly is the determi-

nation of first n eigenvalues and eigenvectors of the lower

part of the spectrum of an algebraic generalized eigen-

value problem with a sparse symmetric matrix by applying

the block Lanczos method [9] and the subspace iteration

method.

The third problem is the solution of a system of linear al-

gebraic equations by the conjugate gradient method with

preconditioning obtained on the basis of the incomplete

Cholesky factorization [1], [10]. When solving a system

of linear algebraic equations for preconditioning, it is nec-

essary to perform forward and back substitutions at each

iteration step.

This paper focuses on speeding up the forward and back

substitutions algorithm for high-order sparse triangular ma-

trices obtained as a result of factorization of a sparse sym-

metric stiffness matrix which, in turn, was obtained by ap-

plying the finite element method to structural mechanics

and solid mechanics problems. It is not by chance that we

consider the application range of the approaches proposed

in this paper, since the effectiveness of each of them largely

depends on the density and non-zero structure of a triangu-

lar sparse matrix, which parameters, in turn, are determined

by the class of problems characteristic of a given applica-

tion range. A method which is effective for one class of

problems may turn out to be ineffective for another.

We will mention a few previously published papers in order

to show the diversity of approaches applied to solving this

complex problem.
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The parallel triangular solution algorithms for dense and

band triangular matrices are presented in [11]. In addition,

approach [12] presents a parallel method for solving linear

algebraic equations with dense triangular matrices, too.

The algebraic multicolor ordering method for sparse ma-

trices, where the related unknowns are assigned the same

color, is considered in [13]. Thus, groups (blocks) of un-

knowns are formed and assigned different colors. Since

blocks with different colors have no data dependency, com-

putations regarding these blocks can be parallelized.

An algorithm implemented in CUDA (cuBLAS and cuS-

PARSE libraries) for computing performed on a graphics

card is presented in [14]. The method is based on the con-

struction of a directed acyclic graph (DAG), representing

the dependencies between variables in the original sparse

matrix. The algorithm requires separate storage of the up-

per and lower triangular matrices, which significantly re-

duces the maximum dimension of the problem that may be

stored in the memory of the graphics card. An assessment

of the effectiveness of this approach when solving problems

of structural mechanics for the design models of high-rise

buildings and structures is given in [15].

In [16], the DAG and the structure of levels are also created.

Then, independent branches of the solution are searched

for, providing the basis for parallelization. The algorithm

is used for computing on a GPU. Note that the duration

of the preprocessing stage is much longer than that of the

numerical phase.

The approach presented in [17] is also developed for usage

on a GPU. The method is effective only when the lower

triangular matrix is very sparse, so the authors recommend

using it for incomplete factorization of the original matrix.

The Jacobi method and “block-asynchronous” version of

incomplete LU (ILU) factorization are considered as pre-

conditioning.

The technique of dividing a sparse matrix into dense blocks

with a subsequent application of the BLAS dgemm, dgemv,

dtrsv procedure is described in [18]. This approach aims to

improve performance of the triangular solution procedure

due to a more efficient use of CPU cache memory and

vectorization of calculations. Multithreaded parallelization

is not considered.

The reasons behind an insignificant (or lacking) speed-up

when solving a sparse system of linear algebraic equations

with a sparse triangular matrix on multiprocessor comput-

ers with shared memory are described in [19]. It is believed

that the significant increase in data transfers from RAM

to the CPU cache, as the number of threads increases, is

the reason behind the insignificant increase in speed-up.

A number of measures are proposed to overcome these dif-

ficulties, including reordering the data so as to ensure their

space locality. Similar results have been obtained in [20].

The speed-up of the triangular solution procedure in [21]

is based on representing the unit lower triangular matrix as

a product L = Πi∈[1,n] (Li), where L is a lower triangular

matrix, and Li = I+ li jei is the i-th matrix factor, I is a unit

matrix, li j is an element of the lower triangular matrix L,

ei is the i-th coordinate vector with all components zero,

except for the j-th component which is equal to 1. Then, the

matrices Li are combined into groups, so that dense blocks

are formed. This makes it possible to apply an algorithm

for multiplying the matrix by a vector for dense matrices

for each combined matrix, and to perform parallelization.

DAG is constructed for a sparse triangular matrix in [22]

and level-sets are calculated using the breadth-first search

algorithm. Then, the system is permuted symmetrically, so

that the rows/columns are in order of the level-sets, while

the matrix remains triangular. Parallelization of this algo-

rithm is based on the absence of data dependencies within

a given level in the permuted matrix (i.e. there are no edges

connecting vertices within a level-set). A similar approach

is also used in [23].

Approach [24] is applied in distributed-memory computers

and groups the unknowns in such a way that the individual

blocks may be calculated independently, on parallel ma-

chines.

This analysis of existing studies shows a variety of differ-

ent approaches to solving the problem of speeding-up the

triangular solution algorithm, which can be explained by

the difficulty of the task at hand.

This paper proposes two parallel algorithms for calculating

forward and back substitutions, obtained as a result of block

factorization of a symmetric sparse matrix. The algorithms

are designed for the purpose of solving problems of struc-

tural and solid mechanics by the finite element method on

multicore desktops and multiprocessor workstations with

shared memory. The goal of this work is to implement ef-

ficient, multithreaded parallelization algorithms and cache

memory blocking, since all other high-performance tech-

niques related to vectorization of calculations, blocking

YMM registers and maximum support for CPU pipelining,

are already implemented in the dgemm and dtrsm proce-

dures from the Intel MKL library [25].

2. Problem Formulation

2.1. LSLT Block Factorization of a Symmetric Sparse

Matrix

The PARFES parallel supernodal solver, designed to solve

finite-element problems on multi-core computers with

shared memory, is used in this approach. It has been se-

lected because in the case of the finite element analysis, su-

pernodal solvers demonstrate better performance than mul-

tifrontal ones at the factorization stage on multi-core com-

puters with shared memory [4], [5]. Unlike the PARDISO

solver which is presented by the Intel MKL library and

has successfully proven itself on multi-core computers re-

lying on SMP architecture, PARFES uses disk memory

when RAM memory runs low. Therefore, it may be used

as the main finite element method solver. PARFES per-

forms block LSLT decomposition, where L is a block

sparse lower triangular matrix, and S is a sign diago-

nal, which allows applying the method not only to posi-
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tive definite matrices, but to their indefinite counterparts

as well.

In this article, we confine ourselves to the scenario in which

the factorized lower triangular matrix L is in the RAM, be-

cause when using a disk, the problem of optimized readout

of large amounts of data from the disk comes first, and

the efficiency of computation acceleration based on multi-

threading parallelization becomes much lower.

After completing the ordering procedure to reduce the num-

ber of fillings, PARFES creates an elimination tree and

makes the transition to the supernodal tree. Each supern-

ode in a sparse matrix corresponds to a block column with

a dense block at the main diagonal. As a result, the sparse

matrix is divided into block columns, and each block col-

umn consists of dense blocks. This allows us to pass

from scalar-vector procedures of low performance to high-

performance matrix procedures [4], [5].

The structure of a typical block-column is shown in Fig. 1.

Here, £ jb is the non-zero structure of the block-column jb,

defined by the position pointer Pos [ jb] of the first non-zero

block in the block-column jb, counting from the diagonal

block L jb, jb, which is always dense.

Fig. 1. Block-column jb updates vector V.

A Lib, jb block with at least one non-zero row is consid-

ered to be non-zero. Zero rows are not involved in the

calculations, and no memory is allocated for them. There

can be several submatrices with non-zero rows in a non-

zero block Lib, jb (penultimate block in Fig. 1). Details are

given in [4], [5].

2.2. Sequential Triangular Solution Algorithm

The Algorithm 1 presents the sequential forward substi-

tution procedure. To compactly record pseudo-code, the

increment ++ and decrement −− operators are used, sim-

ilar to the corresponding operators of the C programming

languages. The increment operator a++ or ++a means

a = a+1, and the decrement operator a−− or−−a means

a = a−1.

Algorithm 1 . Forward reduction for a sparse lower trian-

gular matrix. Sequential algorithm.

1: for jb = 1; jb≤ N;++ jb do

2: L jb, jb← Diag [ jb] .Lp;
3: L jb, jbV jb = V jb→ V jb;
4: for p = Pos [ jb] ; p < Pos [ jb+1] ;++ p do

5: ib = ind[p];
6: Lib, jb← Space [p] .Lp;
7: Vib = Vib−Lib, jbV jb;
8: end for

9: end for

The first for loop runs through the block-columns from left

to right. Here, Nb is the number of block-columns. A sys-

tem of linear algebraic equations with a dense lower trian-

gular matrix L jb, jb is solved for each current block-column,

and a vector block is determined (a matrix block if there

is more than one right-hand side) as V jb. Diagonal blocks

do not contain empty rows, and pointers containing the

addresses of the first elements of diagonal blocks are stored

in the Diag array. Expression L jb, jb←Diag[ jb].Lp returns

the pointer to the first element of the block L jb, jb. In the

second for loop, non-zero blocks of the block-column jb
are selected. Here, p is the position number of the cur-

rent block in a one-dimensional vector Space, which stores

pointers to non-zero off-diagonal blocks arranged column

by column. Expression Lib, jb ← Space[p].Lp returns the

pointer to the first element of the block Lib, jb. Array

ind stores the block-row number for the current non-zero

block Lib, jb.

2.3. Parallel Algorithm I

Algorithm 2 presents the first parallel approach (parallel

algorithm I) relied upon to perform the forward reduction.

Here, np is the number of threads and np queues Qip, ip∈
[0, np− 1] are created before entering the parallel region

for each block-column. Each queue element stores an in-

dex p and a number of the block-row ib. The procedure

Prepare Qip, ip∈ [0, np−1] uses algorithm 3 to improve

load balance over the threads. Each block Lib, jb is assigned

a weight weight p = M ·N ·NoRhs, where M is the number

of non-zero rows in the block, N is the number of columns,

NoRhs is the number of right-hand sides. The element of

the array sumweight[ip] contains the sum of weights of all

blocks mapped onto thread ip, ip ∈ [0, np−1]. A thread

min ip which currently has the minimum sum of weights

(Find min ip), is found for each non-zero block Lib, jb of

22



Parallel Algorithms for Forward and Back Substitution in Linear Algebraic Equations of Finite Element Method

Algorithm 2 . Forward reduction for a sparse lower trian-

gular matrix. Parallel algorithm I.

1: for jb = 1; jb≤ N;++ jb do

2: L jb, jb← Diag [ jb] .Lp;
3: L jb, jbV jb = V jb→ V jb;
4: Prepare Qip, ip ∈ [0, np−1];
5: parallel region

6: ip = omp get thread num();
7: while Qip is not empty do

8: (ib, p)← Qip, Qip← Qip/(ib, p)
9: Lib, jb← Space [p] .Lp;

10: Vib = Vib−Lib, jbV jb;
11: end while

12: end of parallel region

13: end for

the current block-column jb, and the given block is mapped

onto this thread. The sum of weights is corrected for the

given thread (sumweight[min ip]+ = weight p), and the el-

ement (ib, p) is added to the queue Qmin ip : (Qmin ip ←

(ib, p)).

Algorithm 3. Preparation of queues for block-column jb.

1: sumweight[ip]← 0, ip ∈ [0, np−1];
2: for p = Pos [ jb] ; p < Pos [ jb+1] ;++ p do

3: Find min ip;

4: ib = ind[p];
5: sumweight[min ip]+ = weight p;

6: Qmin ip← (ib, p);
7: end for

In the parallel region (Algorithm 2) each thread runs

a while loop until the Qip queue is empty. The nearest

element is selected from the Qip queue and removed at

each iteration: (ib, p) ← Qip, Qip ← Qip/(ib, p). Thus,

the ip thread gets access to the Lib, jb block. Since each

thread has access only to its individual queue, it can freely

select and delete the elements of this queue. The results

are written in the Vib vector block, and the values of the

indices ib are always different for different threads. No

synchronization is needed here, which is an advantage of

this algorithm. However, the columns of sparse matrices

have a relatively small number of non-zero blocks in the

given class of problems. Therefore, load balance is achieved

not for all block-columns, which is a disadvantage of this

algorithm.

2.4. Parallel Algorithm II

The idea behind algorithm II is probably close to that of

algorithms using DAG to determine independent blocks

of the solution vector V, which can be processed in paral-

lel. However, instead of forming and analyzing a complex

DAG structure, the proposed algorithm is based on the anal-

ysis of a dynamic data structure – a dependency vector.

As an example, let us consider the forward substitution

procedure with a lower triangular matrix, corresponding to

the example given in [5], Fig. 1:
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The solution procedure is as follows:

L11V1 = V1

L22V2 = V2−L21V1

L33V3 = V3

L44V4 = V4

L55V5 = V5 −L53V3

L66V6 = V6−L61V1−L62V2−L63V3−L64V4−L65V5 .

We can immediately find the blocks V1, V3, V4, therefore

the degree of dependency of these solution vector (matrix)

blocks on other blocks is zero. The degree of dependency

is 1 for blocks V2, V5, because V2 has to be corrected

by V1, and V5 has to be corrected by V3. The V6 block has

a degree of dependency of 5, because 5 blocks, V1 – V5,

are involved in its correction. Therefore, the dependency

vector is:

depend vect = (0 1 0 0 1 5)T . (2)

In order to be able to determine the block V jb, jb∈ [1, Nb],
from the solution of a system of equations with a lower

triangular matrix:

L jb, jbV jb = V jb , (3)

the element of the vector has to be depend vect[ jb] = 0,

and the corresponding element of the vector depend vect is

reduced by 1 at each correction. As soon as the V jb block is

determined from the solution of the system of equations (3),

it has to be used in the correction (removal of dependency)

of other blocks. After determining the V jb block from

Eq. (3) we set depend vect[ jb] = −1. By applying these

simple rules and modifying depend vect at each step, we

obtain the result given in Table 1 for this example.

Table 1

Evolution of dependency vector on each solution step

Step [1] [2] [3] [4] [5] [6]

0 0 1 0 0 1 5

1 –1 0 –1 –1 0 2

2 –1 –1 –1 –1 –1 0

3 –1 –1 –1 –1 –1 –1

The initial state of depend vect is shown at step 0, the

indices of its elements are denoted as [. . . ]. The num-
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bers of the blocks for which the degree of dependency is

0 are put in the queue Q: Q = 1,3,4. Each thread se-

lects the number jb from the queue Q, removes it and ad-

justs depend vect[ jb] = −1. The system of equations (3)

is solved for the given value of jb and the obtained block

Algorithm 4 . Forward reduction for a sparse lower trian-

gular matrix. Parallel algorithm II

1: Initialization: tot count = 0;depend vect[ib]← 0
2: for jb = 1; jb≤ Nb;++ jb do

3: for p = Pos [ jb] ; p < Pos [ jb+1] ;++ p do

4: Space[p].is produced = 0; depend vect[ jb]++;
5: end for

6: i f (depend vect[ jb] == 0)
Q← jb;

7: end for

8: parallel region

9: while tot count < Nb do

10: lock

11: jb← Q;Q← Q/ jb;
12: unlock

13: if depend vect[ jb] == 0 then

14: L jb, jb← Diag[ jb].Lp;
15: L jb, jbV jb = V jb→ V jb;
16: lock

17: depend vect[ jb] =−1; tot count ++;
18: unlock

19: end if

20: count post poned = 0;
21: for p = Pos [ jb] ; p < Pos [ jb+1] ;++ p do

22: if Space[p].is produced then

23: continue;

24: end if

25: ib = ind[p];
26: if ( f irst eqn ib÷ last eqn ib)!locked then

27: lock gate ( f irst eqn ib÷ last eqn ib);
28: else

29: Space[p].is produced = 0;
30: count post poned ++; continue;
31: end if

32: Lib, jb← Space[p].Lp;

33: Vib = Vib − Lib, jbV jb;

34: unlock gate( f irs eqn ib÷ last eqn ib);
35: lock

36: depend vect[ib]−−;
37: if depend vect[ib] == 0 then

38: Q← ib;

39: end if

40: unlock

41: Space[p].is produced = 1;
42: end for

43: if count post poned then

44: lock; Q← jb; unlock;

45: end if

46: end while

47: end of parallel region

V jb is used in the correction (removal of dependency) of

the blocks ib:

∀ib ∈ £ jb : Vib = Vib−Lib, jbV jb . (4)

Here, £ jb is a non-zero structure of the block-column jb
and depend vect[ib] – – is adjusted at each correction. As

soon as depend vect[ib] becomes zero, we put ib in the

queue Q – all dependencies are removed from this block,

and it can be obtained at the next step.

Following the given algorithm, we calculate the blocks V1,

V3, V4, for which the degree of dependency is 0, at the

first step. We correct V2, V5, V6 in (2). The degree of

dependency of blocks V2 and V5 becomes equal to zero,

and that of the block V6 becomes equal to 2. The num-

bers of block-columns 2 and 5 are added to the queue Q.

Blocks V2 and V5 are determined at the step 2 and are then

involved in the correction of the block V6. As a result, all

dependencies are removed from the block V6, and index 6

is put in the queue Q. Block V6 is obtained at the step 3.

The presented approach is described in Algorithm 4

(parallel algorithm II).

The number of obtained blocks V jb, jb ∈ [1,Nb] is set to

zero (tot count = 0) at the initialization stage (lines 1–7),

and each off-diagonal block of the lower triangular matrix is

assigned with the “not produced” status (is produced = 0) –

none of the blocks has performed its work on the correc-

tion of blocks of the vector V jb. The degree of dependency

of each block V jb – depend vect[ jb], jb ∈ [1,Nb] is deter-

mined. The numbers of all independent blocks are put in

the queue Q (i f (depend vect[ jb] == 0) Q← jb).

The number of while loops running in the parallel region

(lines 8–47) is equal to the number of threads it contains.

Each while loop runs until the number of found blocks

tot count is equal to Nb – while(tot count < Nb).
Then, the current thread in the critical section (lines 10–12)

selects the closest number jb and removes it from

the queue ( jb ← Q;Q ← Q/ jb) at each iteration. If

depend vect[ jb] == 0 (lines 13–19), the system of lin-

ear algebraic equations with a dense lower triangular ma-

trix is solved L jb, jbV jb = V jb → V jb – the dtrsm proce-

dure from the Intel MKL library [25] is used. The fol-

lowing value is set in the critical section (lines 16–18)

depend vect[ jb] =−1; tot count ++;. Off-diagonal blocks

which have not yet been involved in the correction of

the Vib block (lines 25–41) are selected in the for loop

(lines 21–42). Then, a check is performed of whether

the region [ f irst eqn ib, last eqn ib] is not occupied by

another thread, where f irst eqn ib and last eqn ib are

the first and last equations in the corrected block Vib,

respectively. If the specified region is free, the current

thread locks it (lines 26–27) and performs block correction

(lines 32–33). In this case the dgemm procedure from

the Intel MKL library is used. If the specified region is

occupied by another thread, then the Lib, jb block is as-

signed the “not produced” status, the pending tasks counter

count post poned is increased by one, and the next iteration

is started (lines 29–30).
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As soon as the Vib block is corrected, the current thread

unlocks the locked “synchronization gate” region (line 34)

and allows another thread to correct the same Vib block.

Then, in the critical section (lines 35–40), the dependency

of the Vib block is reduced by 1, and if all dependencies are

removed for this block (depend vect[ib] == 0), the number

of the block ib is put in the queue Q – Q← ib. The Lib, jb
block is assigned the “produced” status (is produced = 1)

and the for loop proceeds to the next iteration.

Once the for loop is over, the pending task counter

count post poned is checked. If there is at least one post-

poned task, the block-column jb is added to the queue Q
again (lines 43–45), and will later be able to perform its

work only for the blocks with the “not produced” status.

Thus, the proposed algorithm enables to perform parallel

processing of several block-columns at once if the matrix

structure allows it, but it requires synchronization. Firstly,

the extraction and removal of block-column numbers from

the Q queue, as well as the addition of new block-columns

to the Q queue, must be performed by each thread in the

critical section, bounded by the lock and unlock operations.

Secondly, the state depend vect state has to be changed in

the critical section as well. Thirdly, the correction of each

Vib block must be performed by each thread exclusively,

in order to eliminate the situation when several threads

correct the same Vib block simultaneously. The so-called

“synchronization gate” has been created for this purpose

(Fig. 1). As soon as the V jb block begins to correct the

Vib block, the numbers of the equations corresponding to

the corrected rows of the Vib block are locked (lock gate)

with the use of the interlocked functions running at the

atomic level, and all other competing threads are forced to

skip the correction of this block and proceed to correcting

the next block in the list ∀ib ∈ £ jb. Once the correction of

the Vib block by the given thread is finished, the “synchro-

nization gate”unlocks the corresponding equation numbers

(unlock gate), and another thread gets access to modifying

the Vib block. The threads for which the Lib, jb blocks do

not get access to correcting the Vib block do not pass to

idle but are used to select the next block-column jb from

the queue Q and perform other useful tasks.

Back substitution algorithms are not considered here,

because they are similar to their forward substitution coun-

terparts.

3. Numerical Results

Numerical results were obtained on a workstation with

a 16-core AMD Opteron 6276 processor 2.3/3.2 GHz,

64 GB DDR3 RAM, OS Windows Server 2008 R2 Enter-

prise SP1, 64-bit. Examples 2 and 3 were also solved on

a computer with a 4-core Intel Core i7 7700 CPU 3.60 GHz

(4 physical cores, 8 logical cores), 32 GB RAM, Windows

10 Pro OS, 64-bit. Example 1 exceeds the amount of RAM

on this computer. The speed-up for PARFES and PARDISO

solvers obtained on the second computer with an increase

in the number of threads within 4 cores does not practi-

cally differ from the results obtained on a computer with

the AMD processor, so we limited ourselves to presenting

the results obtained on the computer with a 16-core AMD

Opteron processor.

Microsoft Visual Studio 2017 IDE with the v141 platform

toolset has been applied. The compiler optimization option

in the release version is O2 – maximum performance. The

“Enable Enhanced Instruction Set” option was selected as

/arch:AVX2, which corresponds to vectorization of calcu-

lations with a vector length of 256 bytes (4 double words)

with supporting of FMA instruction set when compiling

the code. However, selection of this option does not exert

any significant impact on code performance, since all lead-

ing operations with double precision are performed by the

dtrsm and dgemm procedures from the Intel MKL library.

All problems are taken from the collection of real-life prob-

lems by SCAD Soft IT company.

3.1. Example 1

Let us consider a finite element model of a multi-

storey building with the dimension of 2,989,476 equations

(Fig. 2).

Fig. 2. Finite element model of a multi-storey building.

The soil prism is modeled by solid finite elements, which

generates submatrices of relatively high density in a sparse

stiffness matrix. The size of the factorized lower triangular

matrix is about 36 GB. 30 load cases (30 right-hand sides)

are considered, which is a typical number for static analysis

of multi-storey buildings.

Table 2 provides a comparison of the duration of forward-

back substitutions for different solvers. For comparison, we

have selected the PARDISO solver presented by the Intel

MKL library [25], which has successfully proven itself on

multi-core computers with shared memory, and a sparse, di-

rect looking-left Cholesky solver, which is taken from [26].

This solver ideally bypasses non-zero elements of the sparse

matrix, however, the saxpy algorithm related to the first

level BLAS is implemented in the inner loop. This method

is significantly inferior in performance to other methods
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Table 2

Forward – back substitutions [s]

Number of Sparse PARFES PARFES
PARDISOthreads direct alg. I alg. II

1 1670 193 203.5 131.7

2 1119 123.8 105.7 101.5

4 874 76.4 54.4 83.5

6 446.8 61.1 38.7 72.5

8 305.4 54.4 31.5 68.4

10 400.7 44.7 33.9 70.1

12 263.5 48.2 33.8 64.4

14 251 36.9 33.8 71.2

16 301 42.2 41.1 63.3

due to the lack of cache memory blocking, register block-

ing and vectorization of calculations. We have performed

multithreaded parallelization of this method. Algorithm 5

presents the sparse triangular solution algorithm for this

method.

The lower triangular sparse matrix is stored in the data

structure represented by the Diag array for storing diagonal

elements, the Space array for storing non-zero elements of

the lower triangular matrix arranged column by column,

Algorithm 5 . Parallel triangular solution algorithm for

a sparse direct solver

1: for j = 1; j ≤ Neq;++ j do

2: for parallel k = 0;k < NoRhs;++ k do

3: ip = omp get thread num();
4: rhs j = V[ j + k ·Neq]/Diag[ j];
5: V [ j + k ·Neq] = rhs j;
6: ipos = iPos[ j];
7: for ii = Pos[ j]; ii < Pos[ j +1];++ ii do

8: i = ind[ipos++];
9: V[i+ k ·Neq] = Space[ii] · rhs j;

10: end for

11: end for parallel

12: end for

Fig. 3. Example 1: forward and back substitutions – comparison

of performance for different solvers.

Sherman’s compressed array of the first index ind with the

position pointer iPos[ j] for the first index in the array ind
for the j column and the position pointer Pos[ j] in the

Space array for the first non-zero element in the j column.

Right-hand side vectors are arranged column by column in

the V array. Here, Neq is the number of equations, NoRhs
is the number of right-hand sides. The back substitution

algorithm is similar to Algorithm 5.

Figure 3 shows a comparison of performance of different

solvers with an increase in the number of threads. Each

solver has a different number of non-zero elements in the

lower triangular matrix due to different techniques of di-

viding a sparse matrix into dense blocks, despite the fact

that the same ordering method, METIS, was used for all

methods [27].

The user is interested in the computation time, but not in

the performance of the method itself. Therefore, to obtain

a more objective comparison, the use of parameter 1000/t
is proposed as a measure of performance, which is inversely

proportional to the computation time t, as a measure of per-

formance. The proportionality factor is assumed to be the

same for all methods, and its value is based on the readabil-

ity of results. The procedure provided by the Intel MKL

library for determining the number of CPU cores works

incorrectly on a computer with the AMD Opteron 6276

processor. Therefore, PARDISO treats this CPU as hav-

ing 8 cores and 16 logical processors in the hyperthreading

mode, and if the number of threads exceeds 8, limits the

number of threads to 8, and the task manager shows that

only 8 threads are running. In fact, this CPU has 16 phys-

ical cores and does not support hyper threading. In

Table 2, in the PARDISO column, the computing time

with the number of threads exceeding 8 does not decrease

almost at all.

Dividing the sparse matrix into dense blocks provides for

an efficient use of the processor cache and improves per-

formance of the triangular solution procedure by several

times. This may be seen from the comparison of curves

for solvers using cache blocking and for the sparse direct

solver, where the cache memory blocking is not performed.

The best result is achieved by the PARFES solver using al-

gorithm II on 8 threads. Further, as the number of threads

increases, performance decreases. Starting from 14 threads,

both PARFES algorithms show approximately the same per-

formance. The speed-up of forward and back substitutions

is much lower for PARDISO than for PARFES.

Since the performance and speed-up of I and II triangu-

lar solution algorithms implemented in the PARFES solver

turned out to be significantly higher than in PARDISO and

the sparse direct solver, in further examples we restrict our-

selves to considering only these algorithms.

3.2. Example 2

Let us consider a finite element model of a 5-span arch

bridge (Fig. 4).

To perform calculations related to the slow movement of

a load, an influence surface represented by a set of nodes
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Fig. 4. Finite element model of an arch bridge.

M of the finite element model enveloped by the moving

load is generated. A concentrated vertical unit force is

applied in each node, and the respective displacements are

determined xi, i ∈ [1,NoRhs], where NoRhs is the number

of nodes included in M. The displacement vector caused

by the moving load d(t), which occupies a certain position

at the current time t, is:

d(t) =
nrhs

∑
j=1

a j(t)x j , (5)

where t is the time parameter, a j(t) is the value of the nodal

load in the j-th node determined by the moving load, nrhs
is the number of nodes of the influence surface, covered by

the moving load at time t (nrhs≤ NoRhs).
This formulation of the problem leads to the single factor-

ization of a sparse matrix and to execution of forward and

back substitutions with the number of right-hand sides

equal to NoRhs. There are 162,603 equations and 12,797

right-hand sides in the considered example. Therefore, it

is critical to achieve high performance of the triangular

solution algorithm and to ensure stable speed-up with an

increase in the number of threads. Figure 5 shows a com-

Fig. 5. Example 2: PARFES forward and back substitutions.

parison of the speed-up of the two considered PARFES

solver algorithms. Due to the large number of right-hand

sides, each thread performs significant computational work

with relatively few instances of communication between the

threads during the forward and back substitutions. Algo-

rithm II turned out to be significantly more efficient than

algorithm I.

3.3. Example 3

Let us consider a FEM model of a multi-storey building

(Fig. 6), with three towers on a common podium.

Fig. 6. Finite element model of a multi-storey building with

three towers.

The dimension of the design model is 4,262,958 equations.

There are 15 right-hand sides, but the solution method per-

forms forward and back substitutions 15 times with only

one right-hand side. This sequential mode simulates algo-

rithms used for integrating motion equations or for solving

nonlinear problems. It is impossible to combine the right-

hand sides into one pack (packed mode) because a right-

hand side cannot be generated until the solution for the

previous right-hand side is obtained. The sequential mode

turns out to be the most unfavorable one, because if there

is only one right-hand side, each thread performs minimum

computational work, and the number of instances of com-

munication between the threads is the same as if there were

many right-hand sides. Moreover, the performance of the

dgemm procedure (Algorithm 4, line 33), as well as the ef-

ficiency of the use of CPU cache are significantly reduced

Fig. 7. Example 3: PARFES forward and back substitutions –

sequential mode.
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when there is one right-hand side only, while the load on

RAM memory increases, because the matrix multiplica-

tion algorithm (level 3 BLAS) turns into a matrix-vector

multiplication algorithm (level 2 BLAS). Figure 7 shows

the minimum speed-up with an increase in the number of

threads up to 4, and then the parallelization efficiency de-

creases.

Fig. 8. Example 3: PARFES forward and back substitutions –

packed mode.

In scenarios in which it is possible to pack all right-hand

sides into one block, the performance and speedup of the

triangular solution algorithm become much better than in

the case of sequential mode. Figure 8 shows the speed-up

with an increase in the number of threads for the packed

mode scenario. The transition from sequential mode to

packed mode (if possible) reduces the duration of forward-

back substitutions by several times (Table 3). Moreover, the

speed-up with an increase in the number of threads is sig-

nificantly greater in the packed mode than in its sequential

counterpart.

Table 3

Example 3: Duration of forward - back substitutions [s].

PARFES: algorithm II

Number PARFES, PARFES,
of threads sequential mode packed mode

1 200.4 64.10

2 132.3 33.35

4 123.1 16.79

6 166.5 13.07

8 211.6 12.03

10 259.3 12.12

12 – 13.21

14 – 14.43

16 – 17.43

4. Conclusions

Parallel algorithm 2 turned out to be more efficient than

parallel algorithm 1 in all tests. The maximum speed-up

for the most unfavorable sequential mode was obtained with

4 threads. The performance decreases with the further in-

crease in the number of threads. This means that in the case

of a single right-hand side, the number of threads has to be

limited to 4. For the most common engineering problems

with 5–80 right-hand sides, the maximum performance was

achieved with 8 threads. In the scenario involving gen-

eration of influence surfaces (several thousand right-hand

sides), the maximum performance was achieved, during the

tests, on a computer with a 16-core AMD Opteron 6276

processor with 16 threads.
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