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Abstract—Image enhancement is becoming increasingly im-

portant with the advancement of space exploration techniques

and the technological development of more durable and sci-

entifically sound observatories equipped with more powerful

telescopes. The enhancement of images helps astronomers an-

alyze the results and act toward determining the dates of

religious festivals. This work describes a technique known

as contrast-limited adaptive histogram equalization (CLAHE)

with grayscale contrast enhancement and bilateral filtering.

We apply CLAHE on the L component of the CIE-Lab color

space to adjust lightness contrast. Subsequently, grayscale

contrast enhancement is performed to increase the visibility

of the moon crescent. Noise caused by grayscale contrast en-

hancement is reduced using bilateral filtering. Two quantita-

tive measures are selected (PSNR and MSE) to show the visual

improvement achieved by the proposed algorithm.

Keywords— bilateral filtering, CIE-Lab, CLAHE, image en-

hancement, moon crescent.

1. Introduction

Image enhancement is an essential step in image process-

ing. It improves an image’s quality and visual appearance,

so that the output is best suited for a specific goal [1].

Image enhancement techniques are used in different appli-

cations, such as face [2] and fingerprint recognition [3], wa-

termarking [4], medical image processing [5]–[9] and many

others [10], [11]. The aim is to achieve the finest image

quality possible, since it influences the accuracy of infor-

mation retrieval and interpretation process. Because each

situation may necessitate a different approach, we should

choose an enhancement technique based on the problems at

hand and the properties of the image. Therefore, numerous

enhancement methods have been proposed.

Medical imaging principles, for example, differ from gen-

eral imaging principles. According to [8], many factors,

such as the system used, random noise, sensor sensitivity,

analogue-to-digital conversion and so on, may impact the

quality of medical imaging. Blurred edges and low con-

trast are experienced frequently, necessitating the need to

enhance and highlight the image’s detailed features in or-

der to diagnose the disease. Some of the medical image

enhancement methods have been proposed in recent years

by [5]–[8]. Paper [5] proposed a generalized training ap-

proach that integrates previous anatomical information into

CNNs via a new end-to-end regularization model. The

new framework encourages models to adopt the underly-

ing anatomy, referred to as image priors, through learnt

nonlinear representations of the shape. Article [6] used an

adaptive threshold and an improved fuzzy set based on the

nonsubsampled contourlet transform (NSCT). The authors

divided the original image into the NSCT domain using

a low-frequency sub-band and multiple high-frequency sub-

bands before applying a linear transformation to the coef-

ficients of the low frequency component. They utilized

an adaptive threshold technique to remove high-frequency

image noise, and increased the global contrast level and en-

hanced image details by using an improved fuzzy set and

the Laplace operator.

Enhancement techniques for satellite images are a promis-

ing trend, and there are several possibilities for improving

the visual quality of remotely sensed images. Paper [12]

reviewed several hyperspectral image enhancement meth-

ods and categorized them as non-fusion-based and fusion-

based. Non-fusion-based enhancement methods concen-

trate on the spatial resolution of hyperspectral imaging sys-

tems. Meanwhile, their fusion-based counterparts combine

a low spatial resolution hyperspectral image with auxiliary

information to generate a high spatial resolution scene. Ex-

amples of non-fusion-based methods include the one pro-

posed by [13]. Its authors trained BPNN relying on the

learning-based technique and using low-resolution images

and down-sampled versions. Then, they performed a super-

resolution by taking into account the spatial correlation of

various materials in hyperspectral images. These hyperspec-
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tral images were used as training data for enhancing the

coherence of the improved and original hyperspectral im-

ages. Satellite images are also prone to suffer from uneven

illumination. To solve this problem, paper [14] proposed

a spatially-adaptive gamma correction (SAGC) method that

used relative total variation (RTV). With this method, its

authors obtained two types of images with strong and weak

structures. The one with strong structures is the base im-

age, and the other one with weak structures, is the detailed

image. They used an adaptive gamma correction method to

enhance the base image, while an enhancement factor was

relied upon to correct the detailed image. Subsequently, by

combining these two images, they produced a high-contrast

optical remote sensing image. The authors of [15] devel-

oped an enhancement method to identify both spatial and

spectral response operators using multispectral and hyper-

spectral fusion models. This method yielded colors and

brightness that were more akin to a low-resolution hyper-

spectral image.

In [16], the authors conducted an in-depth review of more

than 120 underwater image enhancement and restoration

studies. Remarkable progress that took place in underwater

image visual quality in recent years was observed. The au-

thors grouped the underwater enhancement methods into

filtering-based methods, color correction-based methods,

image fusion-based methods and deep learning-based meth-

ods. Article [17] proposed utilizing a turbid image to pro-

duce a color-corrected image and a contrast-enhanced im-

age using the fusion technique. These two images were

combined using four weight maps: Laplacian contrast, lo-

cal contrast, saliency, and exposedness. The authors of [18]

used a convolutional neural network-based image enhance-

ment model to train a synthetic underwater image database.

Their model relied on an automated end-to-end and data-

driven training process to reconstruct a clear latent under-

water image.

To the best of our knowledge, there is currently a lack

of studies on enhancing telescopic images over medical,

remote sensing, or underwater images. However, the im-

portance of the analysis of telescope-obtained images is the

same as for other types of images. In this paper, we start

by analyzing the importance of studying the visibility of

the moon crescent in astronomy. There are many methods

for determining when the holy months of Ramadan (fast-

ing), Syawal (Hari Raya), and Zulhijjah (pilgrimage) be-

gin. Several countries, such as Malaysia, Brunei, Indonesia,

and Singapore, use the Imkanurrukyah (Rukyah and Hisab)

technique. The crescent is defined as the moon crescent

after the ijtimak that first appears or visibles after sunset.

Physically, the current phase of the moon is small in size

and is close to the position of the setting sun. In addition,

the appearance of the crescent is influenced by several other

factors, such as the position of the crescent, sunlight refrac-

tion, sky brightness and the rate of atmospheric extinction.

Therefore, it is quite difficult to notice it. The appearance

of the moon crescent is discussed, from a scientific point of

view, in physical terms. Physical knowledge is used to per-

form calculations on the movement of the moon, the earth

and the sun and to ensure that the following Imkanurrukyah

criteria have been met [19]:

• the moon’s altitude at sunset must be at least 2 de-

grees, and the elongation between the moon and the

sun must be at least 3 degrees, or

• the moon’s age after conjunction is at least 8 hours

when the moon sets.

However, MABIMS agreed to use new criteria: moon’s

altitude at sunset must be at least 3 degrees and the elon-

gation between the moon and the sun must be at least 6.4

degrees [20].

Various methods have been developed to determine the vis-

ibility limit of the youngest moon crescent that can be seen

and observed in essence [21]. In the Rukyah method, new

tools are used, such as a large telescope attached to a digital

camera, for imaging the new moon crescent [22]. The use

of large telescopes ensures a high degree of magnification

and enhances the ability to identify the moon crescent. But

the high amplification rate results also in high noise levels

[23]. Moreover, no significant differences exist between the

crescent and its background, making it indistinguishable

[24]. Therefore, this paper aims at increasing visibility of

the moon crescent through a method that is not new, but

still relevant, namely by relying on CLAHE and bilateral

filtering. We organize the remainder of the paper as fol-

lows. Section 2 presents some related works using CLAHE.

Section 3 contains a description of the proposed work. The

results are discussed in Section 4. Finally, Section 5 con-

cludes the paper.

2. Related Works

Histogram equalization (HE) is a relatively simple image

processing method used for adjusting contrast based on the

image’s histogram. In article [25], a comprehensive study

of HE-based contrast enhancement methods was conducted.

HE typically improves the global contrast of images with

poor lighting. It re-maps the image’s grayscale, so that

the distribution of the resulting histogram is as close as

possible to being uniform. With this adjustment, the in-

tensities on the histogram can be dispersed more evenly.

It improves contrast in areas with low local contrast. Al-

though this approach is very straightforward to apply as it

is less computationally demanding, it has the disadvantage

of increasing the contrast of background noise while dimin-

ishing the usable sign. The adaptive histogram equalization

(AHE) technique, as opposed to the standard approach,

is capable of providing significantly better results in this

situation.

AHE, which was independently developed by [26]–[28],

differs from conventional HE. The adaptive method com-

putes a histogram for each distinct section of the image.

These histograms are used to redistribute the image’s light-

ness values. Consequently, AHE is suitable for enhancing
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edge definitions and improving local contrast in each re-

gion of the image. AHE has the disadvantage of being

computationally slow. In addition, it tends to overamplify

noise in the homogenous regions of the image. Conse-

quently, paper [29] proposed a variation of AHE called

contrast limited adaptive histogram equalization (CLAHE)

in order to increase its speed and improve the enhanced im-

age. Paper [29] showed the great success of their CLAHE

algorithm applied to a computer tomography (CT) image

of the chest, surface coil MRI of the spine and an X-ray an-

giogram. CLAHE has been widely applied to improve im-

age contrast in various computer vision and pattern recog-

nition applications [30]–[33].

With the current global pandemic, COVID-19 detection is

a crucial challenge for medical practitioners. Medical prac-

titioners have utilized a variety of tools and strategies to de-

tect and prevent COVID-19 transmission. Paper [34] intro-

duced the COVIDLite technique in which the white balance

method is followed by CLAHE. Then, an analysis is per-

formed by a depth-wise separable convolutional neural net-

work in order to help radiologists detect COVID-19 patients

based on CXR images. The authors of [35] used CLAHE

to detect COVID-19 infections using CT lung scans. Ad-

ditionally, they classified the images using a convolutional

neural network (CNN). In [36], a pretty similar approach as

that adopted by [35] is used to classify a total of 100 X-Ray

chest images of COVID-19 patients as well as 100 X-Ray

chest images of healthy individuals. Paper [37] improved

the sensitivity of chest X-rays utilizing the pipeline for ad-

vanced contrast enhancement (PACE) method. This non-

linear post-processing approach combines adequately fast

and adaptive bidimensional empirical mode decomposition

(FABEMD) and CLAHE. Based on this highlight, CLAHE

is still being adopted and is increasingly important in im-

proving image quality.

3. Proposed Work

To solve the issues discussed in Section 1, we adopt the

CLAHE method to increase the visibility of the moon cres-

cent in an image. Our enhancement approach consists of

several steps. CLAHE is applied to the L component of the

Lab color space to adjust the lightness contrast in the first

step. After that, we convert the transformed image back to

an RGB image. Then, we perform contrast enhancement

Fig. 1. The approach proposed to enhance the visibility of the

moon crescent.

on a selected component of the transformed RGB image.

Finally, we utilize the image denoising step, using bilateral

filtering, to reduce noise caused by the contrast enhance-

ment process. Figure 1 illustrates the proposed enhance-

ment approach for improving the visibility of the moon

crescent.

3.1. CLAHE on Lab Image

Paper [29] proposed CLAHE to overcome contrast over-

amplification introduced by AHE. CLAHE clips the his-

togram using a contrast factor, called a clip limit, that pre-

vents over-saturation of the image, especially in homoge-

neous areas. A variation of the contrast-limited technique,

called adaptive histogram clip (AHC), can also be used

to moderate the over-enhancement of background regions

of images. It works by adjusting the clipping level. The

Rayleigh distribution is one of the AHC that normally used,

producing a bell-shaped histogram. The function is defined

as follows:

Rayleighg = gmin +

[

2(α2) ln
(

1
1−Pf

)]0.5

. (1)

In this function, gmin denotes a minimum pixel value. Cu-

mulative probability distribution is written as P( f ), and α
is a positive real scalar specifying the distribution parame-

ter. The clip limit in this study is set to equal 0.005 and α
value in the Rayleigh distribution function is set to 0.04.

The Lab color space mathematically defines all perceptible

colors in three dimensions: L for lightness, a and b for the

four color components of human visions: red, green, blue

and yellow. The name “lab” comes from the Hunter 1948

color space. L*, a*, and b* values are typically absolute

and have a predetermined range. L* = 0 yields the dark-

est black, and L* = 100 indicates the brightest white. In

contrast to the RGB and CMYK color models, Lab color

is intended to simulate human perception. It strives for

perceptual consistency, and its L component closely corre-

sponds to the human experience of lightness. Therefore,

we modify the lightness contrast using the L component,

as illustrated in Fig. 2.

Fig. 2. L component of Lab image.
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Fig. 3. CLAHE applied on L component of Lab color space.

The CLAHE algorithm, as presented in Fig. 3, is composed

of three major parts:

1. Tile generation. The input image L is scaled into

a range of [0–1] by dividing the L component by

100. As shown in Fig. 3a, it is first divided into

8×8 sections called tiles.

2. Histogram equalization. This part consists of five

steps:

• Histogram computation. On each tile, calculate

the histogram as a set of bins.

• Excess calculation. Accumulate the histogram

bin values that exceed the clip limit.

• Excess distribution. Then, distribute them into

other bins.

• Excess redistribution. The redistribution will

push specific bins back over the clip limit, al-

lowing for an efficient clip limit that is more

considerable than the specified limit, with its

exact value depending on the image. If this is

undesirable, recursively perform the redistribu-

tion procedure until the excess is negligible.

• Scaling and mapping. Calculate the cumulative

distribution function (CDF) for the histogram

values. Then, scale and map the CDF values of

each tile using the input image pixel values.

3. Bilinear interpolation. The resulting tiles are stitched

using bilinear interpolation to improve the image con-

trast.

To convert again into RGB, we rescale the L component

in the range of [0–100] by multiplying it by 100. In short,

Fig. 4. Result of CLAHE on Lab color space.

given an input image, a desire output image generated from

CLAHE on Lab image is shown in Fig. 4. As per Fig. 4b,

the image after CLAHE contains more detailed informa-

tion, especially around the reddish-orange color part of the

cloud.

To show that CLAHE is better than its counterpart in en-

hancing image quality, Fig. 5 presents images and their
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Fig. 5. Comparison between CLAHE and other enhancement techniques.

histogram distributions obtained with the use of three dif-

ferent methods. The left-most image is the original image.

The second image is obtained by contrast adjustment (CA),

while the third and the last images are obtained by using

histogram equalization (HE) and CLAHE, respectively. It

may be noticed in Fig. 5 that the original image consists

primarily of grey color and a little bit of reddish-orange

color, meaning that the middle bins show higher frequen-

cies than the left and the right bins. When the CA process

is applied, it saturates the bottom 1% and the top 1% of

all pixel values, making the grey colors look darker and

the reddish-orange color looks brighter than the original.

HE distributes pixels equally at all levels, producing a uni-

form distribution of grey levels for the resulting image,

but eventually, much noise is produced with this technique.

Meanwhile, the result of CLAHE shows that it is clearly

superior in preserving details and enhances the quality of

the image significantly.

3.2. Grayscale Contrast Enhancement

The resulting image obtained from the previous process is

used to select a component that is characterized by good

moon crescent visibility. To do this, we calculate image

histograms for the separated components. For each com-

ponent, the histograms are distributed into three bins: 0,

0.5 and 1. The selection of components is based on the

highest number of the middle bin (0.5 value), as compared

to the left (0 value) and right (1 value) bins. This compo-

nent is considered to be our grayscale image and is denoted

by G(x,y).

Fig. 6. Example of a result obtained with the grayscale con-

trast enhancement technique (bottom image). The upper CLAHE

image is cropped to create the image at the bottom.

Next, we perform an auto-cropping process on the image

to select the region of interest, I(x,y). Based on the avail-

able data we know, that the moon is normally located in

the center of the image. Therefore, the cropping process is

performed by estimating the moon area from the center of

the image with 40% of the original size (see Fig. 6). Us-

ing this cropped image, we further perform grayscale con-

trast enhancement by adjusting the image histogram based

on the image’s standard deviation. It is simply estimated

using the following familiar expressions for mean, m and

standard deviation, σ :
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m =
1

MN

M−1

∑
x=0

N−1

∑
y=0

I(x,y) (2)

and

σ =

√

√

√

√

1
MN

M−1

∑
x=0

N−1

∑
y=0

[

I(x,y)−m
]2

. (3)

For x = 0,1,2 . . . ,M−1 and y = 0,1,2, . . . ,N−1. The his-

togram is stretched in the range between [m−2σ ,m+2σ ].

3.3. Bilateral Filtering

The backgrounds of images with high magnification rates

are characterized by high noise levels, similar to the well-

known salt and pepper noise. We perform a bilateral filter-

ing process to denoise and smooth the region’s boundaries,

since it is both an edge-preserving and noise reduction non-

linear smoothing filter. The name of the bilateral filtering

procedure was assigned by [38]. It replaces each pixel’s in-

tensity with a weighted average of intensity values from the

neighboring pixels. The algorithm starts with an inspection

of a patch from the sky portion of the image. Then, we

compute the variance of the patch to approximate noise

variance.

σ 2
p =

1
ST

S−1

∑
x=0

T−1

∑
y=0

[

P(x,y)−m
]2

, (4)

with m being calculated using Eq. (2). The bilateral filter,

BF is formulated as follows:

BF [I]p =
1

Wp
∑
q∈s

Gσs(p−q)Gσr(Ip− Iq)Iq , (5)

where Wp is a normalization factor:

Wp = ∑
q∈s

Gσs(p−q)Gσr(Ip− Iq) (6)

and Gσ (x) denotes the two-dimensional Gaussian kernel:

Gσ (x) =
1

2πσ 2 e
−

x2

2σ 2
. (7)

Parameters σs and σr in Eq. (5) will be used to calculate

the amount of filtering applied to image I. Equation (6) is

a normalized weighted average in which Gσs is a spatial

Gaussian that reduces the effect of distant pixels and Gσr

is a range Gaussian that reduces the influence of pixels q

with an intensity value different from Ip. It is worth noting

that the term “range” refers to amounts relative to pixel

values, as opposed to space, which refers to pixel location.

Figure 7 depicts an example of the output of the bilateral

filter.

Fig. 7. Result before and after bilateral filtering of the cropped

image.

4. Results and Discussion

The enhancement algorithm seeks to increase image quality

by generating a processed image that is superior to the orig-

inal image, for further processing. Such an improvement

might be evaluated subjectively through a visual assessment

of the image, or objectively through statistical measure-

ments. In this paper, fifteen images are tested and analyzed

with the proposed method. The images were obtained from

Jabatan Kemajuan Islam Malaysia (JAKIM), Teluk Kemang

Observatory and Pejabat Mufti Negeri Terengganu. All im-

ages were captured at different times using different types

of equipment and were saved in jpeg and png formats. In

Fig. 8, we present four examples of telescope-obtained im-

ages used in this study. As shown in Fig. 8c and Fig. 8d,

the moon is invisible to the naked eye. Noise is present in

Fig. 8a and Fig. 8b, hindering further processing.

The results obtained from the experiment are presented in

Fig. 9. As demonstrated in the figure, the proposed method

performed successfully for all images, proving its useful-

ness. The combination of CLAHE and grayscale contrast

enhancement successfully increases the visibility of the

moon crescent, even when it is invisible to the naked eye.

Bilateral filtering (BF) was performed by smoothing the

region concerned. The results were obtained with the bi-

lateral filter using the same variance, σr of the range Gaus-

sian kernel, which is set to double the variance of noise,

σ 2
p obtained from Eq. (3). However, we set σs to differ-

ent values. The leftmost images are the results of CLAHE
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Fig. 8. Telescope-obtained images.

Fig. 9. Results obtained with the contrast enhancement and bilateral filtering methods, using different σs on the cropped CLAHE

images.
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Table 1

Comparison of PSNR and MSE values between contrast enhancement and bilateral filtering (BF) of different σs

Image CL CE
CL BF

CL CE
CL BF

– 3 5 7 – 3 5 7

1 58.12 59.66 60.21 60.28 60.31 0.05 0.03 0.02 0.01 0.01

2 57.17 58.23 58.45 58.47 58.47 0.12 0.10 0.09 0.09 0.09

3 60.70 63.51 66.27 67.00 67.28 0.05 0.03 0.02 0.01 0.01

4 60.07 61.42 62.30 62.45 62.50 0.06 0.05 0.04 0.04 0.04

5 61.78 64.67 65.83 66.24 66.56 0.04 0.02 0.02 0.02 0.01

6 59.27 59.40 59.44 59.45 59.46 0.08 0.07 0.07 0.07 0.07

7 64.57 69.43 70.44 70.49 70.51 0.02 0.01 0.01 0.01 0.01

8 59.61 59.71 59.79 59.83 59.86 0.10 0.07 0.06 0.06 0.06

9 60.39 61.65 62.01 62.08 62.13 0.06 0.04 0.04 0.04 0.04

10 63.51 63.76 63.96 64.14 64.30 0.03 0.03 0.03 0.03 0.02

11 59.73 61.30 61.93 62.00 62.03 0.07 0.05 0.04 0.04 0.04

12 63.45 63.98 64.10 64.13 64.14 0.03 0.03 0.03 0.03 0.03

13 60.43 62.69 64.67 65.11 65.28 0.06 0.04 0.02 0.02 0.02

14 60.42 60.80 61.05 61.09 61.10 0.06 0.06 0.05 0.05 0.05

15 63.41 66.26 66.48 66.43 66.43 0.03 0.02 0.01 0.01 0.01

grayscale contrast enhancement (CL CE). Images presented

in column two are the results of CLAHE bilateral filtering

(CL BF) without σs, while those in columns three to five

are the results of CLAHE bilateral filtering with σs = 3,

σs = 5, and σs = 7, respectively. As can be observed from

the figure, as σs increases, the images become smoother.

However, the moon crescent becomes a little bit blurry.

This can be seen based on the example of images zoomed

around the moon crescent of bilateral filter with σs = 3 and

σs = 7, as presented in Fig. 9.

Based on Table 1, CL BF shows better PSNR values than

CL CE for all images. With CL BF, increasing the σs im-

prove the quality of enhanced image where PSNR for all

images with σs = 7 is higher than the PSNR with the lower

setting. However, for all enhanced images, the difference

of CL BF between σs = 7 and σs = 3 is less than 1.0 except

for image 3. Similar to the MSE, for all enhanced images,

changing the size of σs do not show much difference. Note

that increasing the σs is actually increase the neighborhood

size, which increases the filter execution time. So, using

a small size of σs is enough in this case.

5. Conclusion

This paper described how to improve moon crescent images

with the use of CLAHE, grayscale contrast enhancement,

and bilateral filtering methods. We began by converting an

RGB image into CIELab color space. CLAHE was applied

to the L component of the image in order to improve visi-

bility, before converting it back to an RGB image. The gray

image was then chosen based on the R, G, or B compo-

nent with the highest gray bin value (bin value = 0.5). After

that, we cropped the image to focus on the moon crescent,

before enhancing the contrast of the grayscale image. This

process was performed by adjusting the image’s histogram

based on the standard deviation of the image. In the last

step, the bilateral filtering process was performed to re-

move noise resulting from grayscale contrast enhancement.

The experiment conducted on fifteen moon crescent images

demonstrates that our method has acceptable practical re-

sults. The moon crescent that is invisible in the original

images may be seen after enhancing them with the use of

the proposed method.
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