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Abstract—Low peak sidelobe level (PSLL) and antenna arrays

with high directivity are needed nowadays for reliable wireless

communication systems. Controlling the PSLL is a major is-

sue in designing effective antenna array systems. In this paper,

a nature inspired technique, namely accelerating Gaussian

mutated cat swarm optimization (AGMCSO) that attributes

global search abilities, is proposed to control PSLL in the ra-

diation pattern. In AGM-SCO, Gaussian mutation with an

acceleration parameter is used in the position-updated equa-

tion, which allows the algorithm to search in a systematic way

to prevent premature convergence and to enhance the speed

of convergence. Experiments concerning several benchmark

multimodal problems have been conducted and the obtained

results illustrate that AGMCSO shows excellent performance

concerning evolutionary speed and accuracy. To validate the

overall efficacy of the algorithm, a sensitivity analysis was per-

formed for different AGMCSO parameters. AGMCSO was

researched on numerous linear, unequally spaced antenna ar-

rays and the results show that in terms of generating low PSLL

with a narrow first null beamwidth (FNBW), AGMCSO out-

performs conventional algorithms.

Keywords—Gaussian mutation, cat swarm optimization, linear

antenna array, PSLL.

1. Introduction

Numerous antenna arrays are used in mobile, satellite,

radar, and other wireless communication systems as they of-

fer good signal quality, enhanced directivity, extended spec-

trum efficiency and wide coverage. To avoid interference

with other communication systems operating nearby, there

is a need to maintain a low peak sidelobe level (PSLL). Be-

cause of the increasing electromagnetic deterioration, nulls

need to be kept at the desired directions with low sidelobes

and fixed first null beam width (FNBW).

There are many approaches to shaping side lobe power in

the radiation pattern. The designer may either alter the an-

tenna’s position or may use complex weights to obtain the

desired radiation pattern (low PSLL). The weights apply

to amplitude and phase inputs of each radiation element in

the antenna array. Implementation of non-uniform ampli-

tude and phase weights in uniformly placed antenna arrays

is a complex problem. Instead, unequally spaced antenna

arrays with uniform feeding provide greater flexibility in

shaping side lobe power in the radiation pattern [1].

In this paper, we rely on aperiodic antenna array synthe-

sis due to its simple feed network. An illustration of an

unequally spaced array is shown in Fig. 1. It may be de-

signed by altering the distance between the antenna’s ele-

ments. The problem of unequally spaced antenna array

synthesis involves non-linear and non-convex optimization

using a set of classical gradient-based algorithms deployed

in nature-inspired optimization techniques. Several nature-

inspired optimization techniques, namely genetic algorithm

(GA) [2]–[6], differential evolution (DE) [7]–[12], particle

swarm optimization (PSO) [13]–[22], ant colony optimiza-

tion (ACO) [23]–[25], cat swarm optimization [26]–[32],

grey wolf optimization (GWO) [33]–[34], and bee colony

optimization (BCO) [35]–[36] have been implemented

while synthetizing unequally spaced antenna arrays.

Fig. 1. A linear antenna array with non-uniform spacing.

Some of the important algorithms relied upon in antenna

array synthesis have been discussed in detail in the litera-

ture. Yan et al. [2] proposed a simple and versatile GA

for antenna array pattern synthesis and the approach in-

volves array excitation weighting vectors used as complex

number chromosomes. GA has been applied to synthesize

linear and circular arrays to achieve –20 dB PSLL levels.

Chen KS et al. proposed, in paper [4], a modified real

genetic algorithm (MGA) for the synthesis of sparse lin-

ear arrays by optimizing the elements’ positions to reduce

peak sidelobe level. The result of the synthesis showed that

MGA achieved a PSLL of −20.562 dB with 37 elements.

Numerical simulations demonstrated superb efficiency and

robustness of this algorithm. The improved genetic algo-
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rithm (IGA) was proposed by Cen et al. [5]. It simul-

taneously changes the weight coefficients and inter-sensor

spacings of a linear aperiodic array. The authors extended

the research to include the impact of steering angles on the

sidelobe level with fixed main beamwidth. The results have

shown superiority of PSLL compared to other GA variants.

A computationally efficient global optimization method of

differential evolution (DE) was proposed for the synthesis

of uniform amplitude arrays by Kurup et al. [7]. Phase-

only synthesis and position-only syntheses were discussed

to achieve low sidelobe levels by Lin et al. [9].

Goudos et al. [11] proposed a design technique based on a

self-adaptive DE (SADE) algorithm which has been ap-

plied to real-valued microwave design problems includ-

ing linear-array synthesis, patch-antenna design, and mi-

crostrip filter design. The authors compared the SADE

strategy with popular PSO and DE variants and proved

its effectiveness. Zhang et al. [17] enhanced search di-

versity by integrating a parameter selection strategy into

classical differential evolution. In this research, a modi-

fied DE based on a harmony search algorithm known as

HSDEA was developed to optimize linear aperiodic arrays

by ensuring a minimum peak sidelobe level. Simulations

showed that a PSLL of −22.631 dB had been achieved

for a 32-elements array. HSDEA converges faster and re-

quires fewer calculations for synthetizing a linear aperiodic

array, compared with other methods. PSO [13] is a re-

cently developed high-performance optimizer. It is similar

to GA or evolutionary algorithms, but requires fewer com-

putational resources. Boeringer et al. [13] proposed PSO to

synthetize antenna arrays using amplitude-only, phase-only,

and complex tapering. Several comparative studies were

conducted by comparing PSO with GA and ACO. Khodier

et al. [14] proposed PSO for a synthesis of linear antenna

arrays and formulated the objective function for PSLL and

null placement. Rajo-Iglesias et al. [23] proposed ACO

using real numbers for synthesizing linear antenna arrays.

They synthesized 10- and 32-element array systems. For a

32-element linear array, ACO gives a PSLL of −17.5 dB

and a 7.7◦ beamwidth.

To increase the efficiency of antenna arrays by ensuring

high directivity and low sidelobe levels, CSO was pro-

posed for synthesizing linear antenna arrays by Pappula

et al. [31]. CSO is used to optimize the distance between

the antenna’s parts in order to generate a radiation pat-

tern with low PSLL and deep nulls in the desired direc-

tions. CSO has shown superiority over GA and PSO.

Li et al. [34] proposed the GWO algorithm, which mim-

ics the social behavior of grey wolves, to synthesize lin-

ear arrays. The objective is to suppress peak sidelobe

level under various constraints. Performance is further ver-

ified while optimizing the design of a dual-band E-shaped

patch antenna and a wideband magnetoelectric dipole

antenna.

All these techniques have demonstrated at alternatives to

traditional gradient-based algorithms exist and may be re-

lied upon while searching for the global solution. But in

the synthesis of antenna arrays, the feasible range of so-

lutions is extremely wide and the search for an optimal

solution with a fast convergence rate poses a major chal-

lenge. Algorithms that incorporate an exhaustive search

function are needed to seek the optimal solution with a fast

convergence rate.

Cat swarm optimization (CSO) [26] is a newly developed

technique that mimics the original behavior of cats. Chu

and Tsai introduced this technique in [37]. It has been im-

plemented while dealing with numerous engineering prob-

lems in the real world [37] and has shown improved per-

formance over GA and PSO.

However, while solving complex non-linear problems, con-

ventional CSO suffers from premature convergence and

locks in local minima. In a position-updated equation of

CSO, due to the random mutation process, this leads to the

aforementioned problems. This issue is restricted to a wide

range of applications of the traditional CSO.

In this paper, we have introduced Gaussian mutation with

an accelerating parameter in the position-updated equa-

tion – a solution offering fast convergence that may be

accurately compared with CSO. The proposed AGMCSO

is applied while synthesizing unequally spaced antenna ar-

rays to suppress PSLL, while simultaneously maintaining

narrow FNBW. Then, a detailed comparison of AGMCSO

with state-of-the-art algorithms is presented.

This article is organized as follows: details of the traditional

CSO approach are discussed in Section 2 and are followed

by the introduction of AGMCSO in Section 3. Section 4

presents the test functions on which AGMCSO is being

implemented and a comparison of numerical outcomes for

30-dimensional problems between AGMCSO, CSO, PSO

is obtained. Section 5 addresses the application of AGM-

CSO in complex EM design problems.

2. Modified Cat Swarm Optimization

CSO is modeled by observing the hunting skills of a cat.

The algorithm is classified into two modes of operation:

seeking mode and tracing mode. Cats are assigned to the

mode depending on the mixture ratio (MR).

In the seeking mode (SM), by observing the surroundings,

a cat being in its rest position will always be on alert. The

cat’s movements are very slow. The relevant model uses

the following [32]:

• seeking range of the selected dimension (SRD),

which determines the amount of available range,

• counts of dimensions to change (CDC) – this pa-

rameter determines the number of dimensions to be

mutated.,

• seeking memory pool (SMP) – determining the num-

ber of copies of cats to be created for mutation.

The following are the phases observed in the SM:
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• build K copies of i-th cat based on SMP;

• (K − 1) copies are subject to the mutation mecha-

nism. All dimensions are randomly mutated accord-

ing to CDC and SRD, either by adding SRD to or

subtracting it from the parent location;

• the fitness values of newly updated copies are ana-

lyzed;

• choose the best value from the K copies is chosen

and replaced with the cat’s position.

In the tracing mode (TM), cats attempt to change their lo-

cations rapidly by tracking the targets. The shift in the

location is statistically inferred by following the cat’s trac-

ing actions. In this mode, the algorithm’s steps are:

• in the D-dimensional solution space the position and

velocity of the m-th cat is:

Pg
m = [Pmn] where n = 1, . . . , D , (1)

Velg
m = [Velmn] where n = 1, . . . ,D , (2)

• for each dimension the position and velocity of m-th

cat is updated as:

Velg+1
m = [Velm,n] = ω.Velg

m,n +C.r.(Pgbest −Pg
m,n) ,

(3)

Pg+1
m,n = Pg

m,n +Velg+1
m,n , (4)

where g represents the generation number, m is the

cat’s index in a swarm, n represents the cat’s posi-

tion index, Velg
m,n is the velocity of the m-th particle,

C represents the acceleration coefficient, r is the ar-

bitrary number between 0 and 1, P is the weight of

the inertia, and Pgbest is the best cat’s position.

The fitness values are assessed after the tracing mode. If

the required solution is not attained based on the mixture

ratio, the adjusted cats are dispersed to SM and TM. This is

repeated until the desired solution is acquired. However, it

has been observed that in SM mode, the random mutation

process leads to a poor and premature convergence rate.

3. Accelerating Gaussian Mutation

Based CSO

The probability of sensing range is steadily decreased as the

cat is in a resting position. It resembles a Gaussian distribu-

tion curve with a zero mean. The sensing range is focused

around the cat’s rest position and gradually becomes low as

it moves far from the cat’s position, i.e. compared to large

mutations, the probability of developing lower mutations is

higher. The Gaussian distribution curve resembles the cat’s

behavior in the seeking mode, as illustrated in Fig. 2.

It may be observed that there is a higher likelihood of mi-

nor mutations which lead to a more rigorous local search

Fig. 2. Gaussian density function with three standard deviations.

along with a global search. The standard deviation σ and

the mean µ of Gaussian distribution density function is:

fnormal(p; µ ,σ) =
1√

2πσ 2
e−

(p−µ)2

2σ2
. (5)

According Eq. (5), the Gaussian random number G is:

G(µ,σ 2) = µ +σG(0,1) . (6)

Here G(0,1) is the Gaussian random number normally dis-

tributed with a standard deviation of 1 and a zero mean.

From Fig. 2 it is evident that both large and small mutation

values can be produced from the standard deviation value

of 1. The method is modified with the help of Gaussian

mutation to improve solution accuracy and convergence.

A mutant individual xm
i is generated by Gaussian mutation

which is:

xm
i = xi +G(0,σ 2) = xi +σ ·G(0,1) , (7)

where xi is the unmutated individual, and σ is conveyed

as the selected dimension’s mutated value. Therefore, the

position of each dimension of i-th cat is:

xm
i = xi +

[

SRD ·
(

1− g
gen

)

· xi ·G(0,1)
]

. (8)

To enhance the local convergence properties, we have

adopted an accelerating component in the xm
i .

3.1. Time Complexity of AGMCSO

The SM time complexity is considered as O[Nn · log(Nn)],
where Nn is Sn ·Dim · (SMP−1) [32], and Sn is the num-

ber of cats in SM, Dim is the number of dimensions, the

SMP pool searching for a memory. The process time com-

plexity of TM may be mentioned as O(Nn), where Nn is

Tn ·Dim, and Tn is tracing the number of cats. The number

of cats in TM is to be smaller than the number of cats in

SM. The worst-case time complexity of the tracing mode

process is dominated by SM worst-case time complexity.

The suggested method’s total worst-case time complexity

is considered as O[Nn · log(Nn)]. Time complexity of the

proposed AGMCSO approach and of the conventional CSO

algorithm is the same, as we did not introduce any compli-

cated variants in the proposed AGMCSO.
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Fig. 3. Steps of the modified CSO algorithm.

3.2. Description of AGMCSO Algorithm

Figure 3 demonstrates the 7 phases of the modified CSO

algorithm, which are:

1. in the D-dimensional solution space, a finite amount

of cats is initialized randomly;

2. the velocity of the cats is initialized;

3. the fitness value of each cat is calculated, the cat with

the highest fitness value is picked and the appropriate

position of the cat is stored in the memory as Xgbest ;

4. the cats are shifted to the SM and TM depending

on their flags, according to MR. In turn, if the cat’s

flag is set to SM, the cat will be directed to SM.

Otherwise, the cat will move to the TM process;

5. the fitness of each altered cat is calculated after two

modes have been completed and the cat’s best posi-

tion is stored as Xi, j;

6. Xgbest and Xi, j fitness values are compared and the

best position is updated as Xgbest ;

7. the program ends, if the required solution is obtained

or else steps from 4–7 are repeated.

4. Benchmark Functions

In order to estimate the efficiency of techniques influenced

by nature, common benchmark issues are used. They are

classified into a few different categories and are consid-

ered to be multimodal or unimodal. Table 1 presents the

characteristics of such benchmark problems. The global

optimum x∗, global solution f (x∗), acceptable solution and

Table 1

Benchmark test functions

Name Symbol Description x∗ f (x∗) Search range

Sphere f1(x)
D
∑

i=1
x2

i 0, . . . ,0 0 [−5.12,5.12]D

Zakharov f2(x)
E
∑

i=1
x2

i +

[

D
∑

i=1
0.5ixi

]2

+

[

D
∑

i=1
0.5ixi

]4

0, . . . ,0 0 [−5,10]D

Rosenbrock f3(x)
D−1
∑

i=1

[

100(xi+1− x2
i
)2

+(xi−1)2
]

1, . . . ,1 0 [−5,10]D

Levy fe(x)
sin2(πω1)+

D−1
∑

i=1
(ωi−1)[1+10sin2(πωi +1)]+

1, . . . ,1 0 [−10,10]D

(ωd−1)2[1+ sin2(2πωd)]

Ackley f5(x) −20e
−b

√

1
d

D
∑

i=1
x2

i − e
1
d

D
∑

i=1

√
cos(cxi)

+a+ e1 0, . . . ,0 0 [−32,32]D

Rastrigin f6(x) 10d +
D
∑

i=1

[

x2
i −10cos(2πxi)

]

0, . . . ,0 0 [−5,10]D

Griewank f7(x)
D
∑

i=1

x2
i

4000 −
D
∏
i=1

cos
(

xi√
i

)

+1 0, . . . ,0 0 [−600,600]D
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search range of the benchmark problems have been listed.

Problems f1− f4 are unimodal and f5− f7 are multimodal.

For all cases the acceptable solution is set at 10−6.

Numerous trials have been performed using seven bench-

mark functions to compare the proposed AGMCSO using

Table 2

AGMCSO, CSO and PSO parameters

AGMCSO CSO PSO

Factor Amount Factor Amount Factor Amount

Primary 50 Primary 50 Swarm 135
cats cats size

SRD 0.8 (80%) SRD 0.3 (30%) r1, r2 [0, 1]

CDC 80% CDC 80% c1 2

SMP 5 SMP 5 ω 0.2–0.9

MR 0.8 MR 0.8 – –

r [0, 1] r [0, 1] – –

ω 0.2–09 ω 0.2–0.9 – –

c1 2 c1 2 – –

Table 3

Comparison of average CPU time, convergence speed

and SR

Function AGMCSO PSO CSO

FEA 1360 – 47450

f1 Time 0.0877 s – 3.45 s

SR 100% 0 100%

FEA 2108 – –

f2 Time 0.104 s – –

SR 100% 0 0

FEA 340 – 38090

f3 Time 0.058 s – 7.24 s

SR 100% 0 100%

FEA 2006 – –

f4 Time 0.0757 s – –

SR 100% 0 0

FEA 2380 145800 38480

f5 Time 0.1254 s 10.12 4.53 s

SR 100% 34 100%

FEA 2312 – 69550

f6 Time 0.0726 s – 4.64 s

SR 100% 9 199%

FEA 1394 – 194740

f7 Time 0.1143 s – 82.42 s

SR 100% 0 100%

Notes:

Bold figures indicate the best results obtained (with

all algorithms taken into consideration).

“–” means no runs performed by the algorithm have

achieved the acceptable solution.

FEA is calculated to achieve the adequate solution

over the number of successful runs.

SR shows the percentage of independent runs that

have efficiently found the adequate solution.

a 30-dimensional problem with the classic PSO and CSO

approaches. The simulation parameters are listed in Ta-

ble 2. For all the experiments the average value, the average

standard deviation and the number of function evaluations

needed to achieve the acceptable solution (FEA) are listed

in Table 3. The accuracy of solutions obtained using the

proposed AGMCSO, CSO and PSO approaches for a 30-

dimensional problem is presented in Table 4.

Table 4

Comparison of solution accuracy for 30-D problems

between AGMCSO, CSO, PSO (bold figures mean

the best result)

AGMCSO CSO PSO

f1 7.77 ·10−291±0 3.41 ·10−40

±1.99 ·10−41 30.6±19

f2 7.8 ·10−268±0 2.72 ·10−52

±0.24 ·10−23 5 ·1020±15

f3 50±0 29.6±2.1 168±6.7

f4 0±0 3.1 ·10−24

±0.15 ·10−40 18.1±23

f5 8.88 ·10−16±0 4.68 ·10−5

±3.05 ·10−5 1±0.6

f6 0±0 3.18 ·10−14±0.169 3.5±8.9

f7 0±0 1.23 ·10−4

±2.5 ·10−4 5.1±1.8

Computational complexity is the main performance metric

for evaluating performance of an algorithm. It may be

measured by the average CPU time or by the average FEA

required to reach an acceptable solution. The success rate

(SR) indicator is specified as the percentage of independent

runs that have effectively achieved the desired solution.

The results obtained illustrate that AGMCSO outperforms

CSO and PSO in terms of convergence rate and solution

Fig. 4. Evolutionary process of fitness functions f1, f2, and f4– f6
for 30 dimensions.
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Fig. 5. Evolutionary process of fitness function f3.

accuracy. AGMCSO achieved global solutions for all 30-

dimensional multi-modal problems with minimum function

evaluations. AGMCSO achieves acceptable solutions faster

than CSO and PSO. For example, if we consider the 30-D

multimodal Griewank function f7 AGMCSO requires, on

average, 1394 function evaluations vs. a 194740 needed by

CSI in order to reach adequate solution accuracy of 10−6.

Table 3 shows that for all the benchmark functions, the SR

for AGMCSO is 100% for all the dimensions whereas the

PSO and CSO fails to reach 100% of SR.

Figure 4 shows the convergence plots between the number

of generations and the fitness function for f1, f2, f4– f6. A

similar convergence plot for f3 is shown in Fig. 5.

4.1. Comparisons with Other Evolutionary Algorithms

Table 5 presents a comparison of the proposed AGMCSO

solution with a few existing 30-D algorithms. The algo-

rithms include fast evolutionary algorithm (FEP), adaptive

differential evaluation with optional archive (JADE), com-

prehensive learning PSO (CLPSO), orthogonal learning

particle swarm optimization (OLPSO-L), detecting, shrink-

ing and local learning strategy PSO (DSLPSO), enhanced

parallel cat swarm optimization (EPCSO), and cat swarm

optimization with adaptive parameter control (NCSO). Ex-

cept for the Rosenbrock function f3, AGMCSO offers the

best accuracy and also outperforms the current updated

CSO algorithms. The average number of FEAs needed

to achieve the suitable solution is also smaller.

5. AGMCSO Applications

Here, two examples of the AGMCSO algorithm are pre-

sented based on linear array designs selected from the lit-

erature.

5.1. Linear Antenna Array

Consider an M-element, uniformly illuminated linear an-

tenna array positioned on the x axis (Fig. 6). The antenna

array factor in the azimuth plane of M = 2N is:

AF(X ,θ) = 2
N

∑
n=1

cos[kXn cos(θ)] M = 2N , (9)

where the azimuthal angle is given as θ , the n-th element

position is given as Xn, the wavenumber is given by k = 2π
λ

and the wavelength by λ .

Selection of the distance between the antenna’s elements

is crucial. The positioning of adjacent elements too far

apart leads to grating lobes, and positioning the too close

to each other leads to mutual coupling. Thus, the constraint

of adjacent element spacing has to be considered during

the optimization process. The distance between antenna

elements within the array is constrained as |xi−x j| ≥ 0.25λ .

With the parameter configuration for AGMCSO, CSO and

PSO algorithms retrieved from Table 2, the algorithm is

executed 10 times to show the efficacy of the suggested

method.

Table 5

Comparison of AGMCSO with evolutionary algorithms (bold print = best result)

Func- FEP JADE CLPSO OLPSO-L DSL-PSO EPCSO NCSO
AGMCSO

tion [38] [8] [15] [18] [20] [27] [29]

f1
5.7 ·10−4 1.3 ·10−54 4.4 ·10−14 1.1 ·10−38 1.3 ·10−49

0±0 1.68 ·10−21 7.77 ·10−291

±1.3 ·10−4 ±9.2 ·10−54 ±1.71 ·10−14 ±1.21 ·10−38 ±7.31 ·10−49 ±0

f2 – – – – – – –
7.8 ·10−291

±0
f3 5.0±5.8 0.3±1.1 21±2.9 1.2±1.4 51±42 N/A 23.5 −1.019
f4 – – – – – – – 0±0

f5 180±2100
4.4 ·10−15

0±0
4.14 ·10−14 1.2 ·10−14 6.40 ·10−15

6.54 ·10−12 8.88 ·10−16

±0 ±0 ±4.6 ·10−15 ±3.7 ·10−15 ±0

f6 460±1200
0±0 4.85 ·10−10

0±0
4.7 ·10−16

86±10 76.6 0±0±0.361 ±9.71 ·10−17

f7 1600±2200
2.0 ·10−4

31±0.46 0±0
170 3.50 ·10−3

0 0±0±1.4 ·10−3 ±2.21 ·10−3 ±7.10 ·10−3
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Fig. 6. Illustration of linear antenna array with non-uniform

spacing.

In the design process, the aim is to minimize the peak side-

lobe level in the sidelobe region by optimizing the spacings

between the antenna’s elements using the proposed AGM-

CSO method. The objective function can be modeled as:

Ob j(X) = max
( |AF(X ,θ0)|

|AFmax|

)

, (10)

where X = (X1,X2, . . . ,XN) is the element position vector,

θ0 is defined as the angular region excluding the main lobe,

the main peak of the pattern is AFmax.

Table 6

Positions of a 20-element array optimized

using AGMCSO and CSO

Element (n)
Position xn

λ
AGMCSO CSO

1 0.2642 0.2504

2 0.5288 0.7625

3 0.7920 1.2441

4 1.0920 1.7153

5 1.3470 2.3773

6 1.7122 2.8824

7 2.0428 3.5296

8 2.4654 4.3169

9 2.9505 5.2229

10 3.5994 6.0549

In the first example, a 20-element array is synthesized using

the proposed AGMCSO and CSO approaches to minimize

PSLL in the sidelobe region. Table 6 shows AGMCSO-

and CSO-optimized element positions relative to Z. The

array patterns obtained using the AGMCSO algorithm

along with the CSO-optimized array and uniformly illumi-

nated periodic array (UIPA) are shown in Fig. 7. Conver-

gence characteristics for 10 independent runs are shown in

Fig. 8. The comparison of convergence characteristics of

AGMCSO and CSO is shown in Fig. 9. The comparison of

PSLL obtained using CSO, fully informed particle swarm

optimization (FIPSO) [17], perturbation particle swarm

optimization (PPSO) [17] and AGMCSO is presented in

Table 7.

Fig. 7. Radiation pattern of the 20-element array using AGM-

CSO, CSO and UIPA.

Fig. 8. Evolutionary process of the fitness value of a 20-element

array using AGMCSO.

Fig. 9. Evolutionary process of the fitness value of a 20-element

linear array using CSO and AGMCSO.
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Table 7

Comparative results for the synthesis of a 20-element

linear unequally spaced array

Number of
Algorithm

PSLL Aperiodic UIPA

elements [dB] FNBW FNBW

20

CSO −21.60

10 3.5
FIPSO −20.58
PPSO −16.85

AGMCSO −23.64

AGMCSO generate the value of −23.64 dB, whereas CSO,

DE, FIPSO and PPSO −21.29 dB, −18.42 dB, −20.58 dB,

and −16.84 dB, respectively. AGMCSO shows a low PSLL

level that is by −2 dB lower compared with CSO. It can be

seen from Fig. 9 that AGMCSO outperforms CSO in terms

of the convergence rate. AGMCSO takes 24310 FEAs to

reach the final solution with CSO of −21.29 dB. The suc-

cess rate of achieving a similar final value of AGMCSO is

evident from Fig. 8.

5.2. 32-element Linear Array

In the second example, a 32-element array is synthesized

to achieve the minimum PSLL. Table 8 shows the po-

sitions of ele-ments optimized by using AGMCSO and

CSO. A comparison of the PSLL obtained using CSO, DE,

CLPSO and AGMCSO is shown in Table 9. The best PSLL

for a 32-element linear array in 10 runs was found to be

−20.69 dB for CSO, −22.65 dB for DE [7], −22.75 dB

Table 8

Positions of a 32-element array optimized using

AGMCSO and CSO

Element (n)
Position xn

λ
AGMCSO CSO

1 0.3934 0.2952
2 0.6988 0.9181

3 1.0263 1.5182

4 1.3399 2.1504

5 1.7294 2.8029

6 2.1038 3.4503

7 2.3565 4.1665

8 2.8756 4.8664

9 3.2624 5.5887

10 3.7256 6.3456

11 4.1031 7.0395

12 4.7333 7.8415

13 5.2702 8.6343

14 5.8879 9.7310

15 6.7224 11.4967

16 7.4994 12.2483

Table 9

Comparative results for the synthesis of a 32-element

linear unequally spaced array

Number of
Algorithm

PSLL Aperiodic UIPA

elements [dB] FNBW FNBW

32

CSO −20.69

5 3.5
DE −22.65

CLPSO −22.75
AGMCSO −23.40

Fig. 10. Radiation pattern of the 32 elements array using AGM-

CSO, CSO, and UIPA.

Fig. 11. Evolutionary process of the fitness value of the 32

elements array using AGMCSO.

for CLPSO [15] and −23.4076 dB for AGMCSO. The ra-

diation pattern achieved using AGMCSO, along with UIPA

and CSO, is shown in Fig. 10. The convergence character-
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istics for a 32-element linear array using AGMCSO for 10

independent runs are shown in Fig. 11. The convergence

plots of AGMCSO and CSO are shown in Fig. 12.

Fig. 12. Evolutionary process of the fitness value of a 32-element

linear array using CSO and AGMCSO.

AGMCSO produces a PSLL that is by −2.71 dB lower

compared with CSO (Table 9). CSO takes 170000 FEAs to

reach its final solution. AGMCSO requires 24310 FEAs to

reach the final solution of CSO (Fig. 12) and the deviation

in achieving the final solution is low for several independent

runs and shows the reliability of the proposed AGMCSO

method (Fig. 11).

Overall, AGMCSO outperforms the traditional CSO ap-

proach in terms of low PSLL and convergence speed. Ac-

celerated Gaussian mutation leads to defining positions lo-

cated at better locations, by preventing premature conver-

gence. AGMCSO had shown superior results compared

to the classic CSO approach, in terms of solution accuracy

and offers a PSLL value that is by -2 dB lower compared to

CSO. Computational speed is greatly enhanced by the pro-

posed AGMCSO methods. AGMCSO outperforms CSO in

terms of convergence speed and requires 15% of the CSO’s

FEAs to reach the final solution of CSO.

6. Conclusion

In this paper, unequally spaced arrays with low PSLL have

been designed using a modified AGMCSO optimization al-

gorithm. The Gaussian mutation with an acceleration pa-

rameter has been introduced in the position-updated equa-

tion of the traditional CSO approach to enhance solution

accuracy and convergence rate. The effectiveness of AGM-

CSO has been benchmarked using multimodal, 30-, 100-

and 1000-dimensional problems. The simulations show

that the proposed AGMCSO algorithm outperforms pop-

ular optimization techniques in terms of solution accuracy

and convergence rate. A detailed analysis of the impact

of all AGMCSO parameters on its overall performance has

been carried out. We have applied AGMCSO in the synthe-

sis of unequally spaced antenna arrays to suppress PSLL.

20- and 32-element linear arrays have been synthesized and

the numerical results illustrate that AGMCSO outperforms

the conventional and modified algorithm in terms of low

PSLL with narrow FNBW.
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