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Abstract  In this paper, we propose a multi-operator differen-
tial evolution variant that incorporates three diverse mutation
strategies in MOEA/D. Instead of exploiting the local region,
the proposed approach continues to search for optimal solutions
in the entire objective space. It explicitly maintains diversity of
the population by relying on the benefit of clustering. To pro-
mote convergence, the solutions close to the ideal position, in the
objective space are given preference in the evolutionary process.
The core idea is to ensure diversity of the population by applying
multiple mutation schemes and a faster convergence rate, giv-
ing preference to solutions based on their proximity to the ideal
position in the MOEA/D paradigm. The performance of the
proposed algorithm is evaluated by two popular test suites. The
experimental results demonstrate that the proposed approach
outperforms other MOEA/D algorithms.

Keywords  differential evolution, multi-objective, mutation-
operators, weighted-aggregation

1. Introduction

Multi-objective evolutionary algorithms (MOEAs) are ap-
plied for decoding various multi-objective optimization prob-
lems (MOP) [1]–[3]. To develop an effective and efficient
MOEA, one cannot overlook some serious concerns such as
the selection of solution for the offspring in order to evolve
the population. Another concern is related to how diversity
of the population may be maintained while choosing the so-
lutions for the successive generations. And finally, it is very
hard to balance the diversification-intensification relationship
in MOP, since the objectives might be conflicting in na-
ture. Depending upon the selection criteria for new solutions,
MOEAs are broadly classified into three categories: Pareto-
dominance-based MOEAs [4]–[7], performance indicator-
based approaches [8]–[11], and decomposition-based algo-
rithms [12]–[15]. However, a general approach is to transform
the MOP into multiple single-objective problems, i.e. to trans-
form a decision-space into an objective space for developing
MOP frameworks.

In recent years, the decomposition-based MOEA technique
(MOEA/D) has gained attention for solving MOP [16]. The
popular examples are MOEA/D-DE [17] and MOEA/D-
CMA [18], utilizing the single-search mutation operator
of differential evolution (DE) to converge the entire pop-

ulation towards the Pareto front. Likewise, MOEA/D with
a distance update strategy (MOEA/D-DU) [19] motivates
researchers to measure the distance between the value of
weighted-aggregation function and its corresponding vector
in MOEA/D. Despite their valuable results, the aforemen-
tioned frameworks suffer from the following disadvantages:
– the solutions are selected either randomly or from the local

region. In MOEA/D-DE, the parent vector is either chosen
from the neighbor or randomly from the entire population.
This type of selection is likely to mislead the search process
and confine it to a certain area of the Pareto front;

– similarly, in MOEA/D-CMA, few solutions are mutated
through CMA-ES [20]–[22] and most of them are expected
to converge through DE. This study may enhance diversity
of the population, but lacks in faster convergence towards
the Pareto front;

– in the existing studies, offspring is generated by means
of conventional approaches (either by DE or GA [19]).
These are not capable of producing reliable results for all
the sub-problems and, hence, may be stuck in the local
minima.

To cope with this, we propose a multi-operator based dif-
ferential evolution with MOEA/D (MOEA/D-MODE) that
alleviates, to certain extent, the shortcomings in the area of
diversity-preservation and convergence rate.

This paper relies on the clustering-based MOEA/D that has
the advantages of multiple-mutation strategies of the estab-
lished evolutionary approach (DE), to ensure the equilibrium
between exploration and exploitation. Furthermore, the diffi-
culty to pull the solutions to the Pareto front is taken care of
to some extent as well. Our contribution is described below:
– a novel multi-operator DE variant (MOEA/D-MODE) is

proposed for ensuring a better trade-off between diversity
and convergence in the MOEA/D multi-objective optimizer.
To implement this idea, three diverse mutation strategies
of DE are employed;

– clustering-based evolution is emphasized which can ex-
plicitly facilitate better diversification. The clusters are of
varying sizes and each cluster is operated with a distinct
mutation operator;

– contemporary ideas are combined in order to select the
solution vector for the generating mutant solution;
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– to ensure maximum diversity, we have incorporated poly-
nomial mutation followed by standard crossover techniques
to yield novel solutions in the sub-population. Then, we
compared the proposed algorithm with three existing solu-
tions: MOEA/D-CMA, MOEA/D-DE, and MOEA/D-DU,
and also discussed potential reasons behind the failure of
these methods proposed in MOP.

The remaining sections of the paper are organized as follows.
Section 2 illustrates the fundamentals of MOP and is fol-
lowed by a presentation of the related work in Section 3. In
Section 4, the crucial components of MOEA/D-MODE are
discussed. In Section 5 comprehensive implementation of the
proposed algorithm with the aim to solve MOP is present-
ed. Section 6 describes the experimental studies in terms of
benchmark functions, parameter settings, and evaluation met-
rics for comparison purposes. In Section 7, performance of
the improved MOEA/D-MODE algorithm is analyzed (with
respect to two aspects) and statistical results comparing the
solution with, other algorithms are verified. Finally, the paper
is concluded in Section 8.

2. Background

Any MOP can be defined as:

minimize : F (x) = f1(x), . . . , fm(x) subject to : x ∈ Ω, (1)

where Ω represents the decision (solution) space of a d-
dimensional vector x = (x1, x2, . . . , xd), and F : Ω→ Rm
containsm continuous objective values in the Rm objective
space. Moreover, if Ω is a connected and closed region in the
objective space Rm and the corresponding objective solutions
are continuous of x, Eq. (1) is referred to as a continuous
MOP.
Let u = (u1, . . . , um) and v = (v1, . . . , vm) ∈ Rm be two
solutions, u dominates v if and only if:

ui ¬ vi, for all i = 1, . . . ,m,

ui < vi, for any i ∈ 1, . . . ,m.

Solution x∗ ∈ Ω is said to be a Pareto optimal solution if
there does not exist x ∈ Ω such that f(x) dominates f(x∗).
All the reliable Pareto solutions together form a set, known
as a Pareto set (PS):

PS = {x ∈ Ω|x is Pareto optimal}. (2)

The set of all the Pareto objective vectors, known as the Pareto
front (PF), is given as:

PF = {f(x) ∈ R∗m,x ∈ PS}. (3)

For a given MOP, the ideal solution z∗ is the best solution
vector z∗ = z∗1 , z∗2 , . . . , z∗m, where z∗i represents the best
solution (here the minimum value) of fi, for every i =
1, 2, . . . ,m.
The prime objective of any MOP technique is to guide the
population of worthwhile solutions toward the PF, ensuring
convergence and, simultaneously, maximum distribution over
the PF for diversity related purposes.

3. Related Works

Three categories of MOEAs may by used in MOP. So, this
section is devoted to discussing the literature based on the
aforementioned categories. In the majority of literature focus-
ing on MOEAs assistance of the Pareto dominance is relied
upon [4]–[7], [23], [24]. In these studies, the effectiveness
of a solution is measured by the Pareto dominance relations
with the remaining solutions encountered in the last search. It
is an iterative process that runs for each individual element in
the objective-space. Since the dominance feature alone could
hamper the diversity of the solutions, some alternatives may
be combined in MOEAs, such as crowding and fitness shar-
ing [24], [25]. One of the most popular Pareto-dominance
MOAE schemes is NSGA-II [6]. The crucial characteristic
of NSGA-II is its rapid nondominated sorting to rank the
solutions for further selection.
Indicator-driven MOEAs are another category, as they endeav-
or to optimize performance metrics as an indicator [8], [9].
They ensure the desired ordering sequence of the optimal sets
that will be used to approximate the Pareto front. The most
widely adopted performance indicator is hypervolume (HV),
which possess significant theoretical characteristics. In the lit-
erature, we have few canonical performance indicator-based
MOEAs [8], [9] that disguise HV as the selection factor. One
of the suggestions is to rank the solutions yielded by the HV
indicator rather than estimating their exact values [9]. An-
other alternative strategy is to find other indicators that are
computationally less expensive and offer fair theoretical char-
acteristics, e.g. Λp [28]. Such an approach has been embraced
in a few MOEAs.
The category of decomposition-based MOEAs exploits the
aggregation function in which the objectives of a MOP
are aggregated using randomly distributed weight-vectors.
This set of weight-vectors will eventually create multiple
weighted-aggregation functions, each of them representing
a single-objective problem. Diversity of the population is
maintained by ensuring fair distribution of the weight-vectors
in the objective space. MOEA based on the decomposition
(MOEA/D) [16] is a scheme that is most widely adopted in
the domain of multi-objective optimization. New frameworks
based on MOEA/D and relevant to the study performed in
this paper are reviewed in the following subsections.

3.1. MOEA/D with DE

The general practice in MOEA/D is to decompose PF approx-
imations of a problem (1) into several scalar-optimization
functions. Li and Zhang in [17] extended the work by im-
plementing DE and polynomial mutation for maintaining the
diversity of the population in MOEA/D. In such an approach,
three parent solutions are selected having a low probabili-
ty of 1− δ. In such a way, a wide range of offspring could
be produced and, thus, the exploration capability was en-
hanced. Furthermore, there is a restriction on replacing the
maximum number of solutions with a new child solution. In-
stead of relying upon the neighborhood of size T , parameter
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nr is introduced. It limits the size of the solution-vector to be
replaced by the new offspring.
The differences between MOEA/D-MODE and MOEA/D-DE
can be summarized in the following manner:
– in MOEA/D-DE, a single mutation strategy is incorporated

that utilizes three parent solutions only. The standard DE
technique is used to produce new offspring. Multi-operator
DE often outperforms single mutation DE in the case
of single-objective problems. However, to enhance the
search capabilities of MOP, multiple mutation strategies
are ensembled in MOEA/D-MODE;

– the extra measure taken in MOEA/D-MODE is the imple-
mentation of the crossover technique after the polynomial
mutation. The crossover technique is useful for exploiting
regions formed by mutant vectors. This allows to strengthen
the trade-off between exploration and exploitation.

3.2. MOEA/D with CMA-ES

Working on MOEA/D frameworks, Li et al. [18] introduced
the covariance matrix adaptation evolution strategy (CMA-
ES) into MOP in order to balance CMA-ES and DE efficiently.
CMA-ES is an evolutionary approach which allows to gen-
erate novel solutions using the Gaussian distribution model.
To lower the cost of computation, the problem domain is
organized into a group of sub-problems where only one sub-
problem is optimized through CMA-ES and others are evolved
by applying the DE approach. The best solutions optimized
by CMA-ES are always carried forward in the distribution
mean update. This leads to faster convergence.
The differences between MOEA/D-MODE and MOEA/D-
CMA are such that MOEA/D-CMA involves clustering of
sub-problems, with only a few of them being optimized by
the Gaussian distribution model of CMA-ES. It seems the
algorithm is more focused on DE, as the majority of sub-
problems are evolved by means of the DE mutation strategy.
Unlike MOEA/D-CMA, MOEA/D-MODE allows different
mutation strategies to be applied in the clusters of the sub-
problems, thus maintaining diversity and working in a single
flow.

3.3. MOEA/D with Distance Update Strategy

Another MOEA variant based on the decomposition tech-
nique, as proposed by Yuan et al. in [19], uses the aggregation
function to speed up the convergence in multiple-objective
optimization. As the number of objectives increases expo-
nentially, it becomes difficult to maintain diversity and to
approach the PF uniformly. To cope with this challenge, re-
searchers have performed extensive analyses on the aggrega-
tion functions by estimating the perpendicular distance from
the weight-vector of the solution in the high-dimension ob-
jective space. The performance of such an approach in the
case of a 2-objective optimization problem, (and with more
than 2 objectives) has been analyzed as well. The differences
between our approach and MOEA/D with the distance update
strategy include the following:

– in MOEA/D-MODE, the worst neighbor is used as the
solution according to its distance from the weight-vector
and the best solution according to the better aggregation
function value corresponding to the sub-population;

– DE generally offers better results compared with the ge-
netic operators in the case of single-optimization problem.
The Cr parameter sets the number of new solutions to
be exploited. With the low value of Cr, a wide range of
child solutions will by covered, while a high value of Cr
is focused on the parent vector only. Due to the above-
mentioned reasons, DE search operators are incorporated
in MOEA/D-MODE to solve MOP.

4. Pivotal Components of
MOEA/D-MODE

The single-mutation strategy is incorporated into decom-
position-based multi-objective optimization for population
evolution-related purposes. In the proposed algorithm, we
adopt a novel approach involving multiple-mutation oper-
ators. Each of them is applied uniquely to evolve the sub-
populations, leading to stronger exploration and better conver-
gence. As illustrated in Fig. 1, the dashed lines represent the
contour of the sub-problems decomposed by Eq. (5). The clus-
ters are organized based on the weight vectors λ1, λ2, . . . , λ8.
In each generation, one solution at a time is taken from the
cluster and the assigned mutation strategy is applied.

Fig. 1. Illustration on the clusters of the sub-problems decomposed
by Eq. (5). Each cluster is assigned a unique mutation operator
for generating novel solutions. Here, there are three clusters: 1 =
{1, 2, 3}, 2 = {4, 5, 6} and 3 = {7, 8}.

4.1. Neighbor Selection and Clustering

The common practice in decomposition-based MOEAs is
to transform the MOP into many single-objective problems,
with each objective being a weighted combination of different
objectives. This is achieved by initializing the weight-vectors
in the objective-space.
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Let λi = (λi,1, λi,2, . . . ., λi,m)T , for i = 1, 2, . . . , N , be
uniformly distributed weight-vectors for N solutions, such
that
∑m
j=1 λi,j = 1. Under such an assumption, the neighbors

of each unique solution are identified according to their
similarity. This is achieved by computing theN×N Euclidean
distance metric:

dist(u, v) =

√√√√ m∑
i=1

(λui − λvi)2, (4)

where dist(u, v) represents the Euclidean distance between
two solutions u and v. The closer the distance, the higher the
neighborhood relationship. Therefore, in MOEA/D-MODE,
we construct a best-neighbors vector B of size T for further
processing such that B = {x1, x2, . . . , xT }.
To achieve maximum diversity even in the later stages of the
population, the objective is to initially disintegrate the entire
population and cluster the solutions based on the assigned
weight vectors. All sub-populations have different sizes. In
conjunction, multiple-mutation techniques of DE have been
applied that ensure better coverage of the search space. This
practice is likely to explicitly maintain the diversity of solution
during evolution of the population.

To accomplish the task k-means clustering [29] is applied with
k = 3, since three diverse mutant operators are considered in
this algorithm to process three sub-populations.

4.2. Parent Selection and Offspring Generation

Another major concern is the selection of parent solutions
for offspring generation. It is important that the selection
criteria be driven not only by the distant vector λi but also
by proximity to the ideal position in the objective space, i.e.
using the aggregation-function value Gi(x) given in Eq. (5).
Such an approach is driven by the likelihood that, a solution
which is inferior in terms of the λj may contribute to a better
Gi(x) value.

Therefore, in this paper, we consider the weighted-aggregation
function value Gi(x) which underlines the best solution in
the sub-population, while selecting the parent solutions for
the respective mutation operators.

In the proposed algorithm, three diverse mutation opera-
tors are applied to turn on the novel solutions. Additionally,
polynomial mutation and crossover techniques have been
incorporated that are rarely applied in existing MOEA/D
variants. The crossover techniques employ either a binomial
crossover or an exponential crossover for the new solution u.

4.3. Updating Solutions in the Sub-population

The most common scheme for using aggregation functions
in updating neighbors of the solution is the Tchebycheff
function [30]. In this function, the scalar optimization sub-
problem is given by:

Gi(x) = max
1¬i¬m

{λi|fi(x)− z∗i |} subject to x ∈ Ω, (5)

wherem denotes the number of objectives, λ is a uniform-
ly distributed weight vector across each objective, and z∗i
represents best the solution found so far for each objective i.
The problem of converging the entire solution-set towards
PF is remodeled into N scalar sub-problems requiring opti-
mization. Eventually, the spread of the final solutions could
be evenly distributed if G(x) and λ are appropriately deter-
mined. Once the new offspring u is achieved, the solutions in
the sub-population get updated if:

G(x) > G(u), (6)

where x denotes the solution-vector in the cluster (i.e. sub-
population). Otherwise, the same parent solution will be
carried forward to the next generation. Table 1 summarizes
the concepts exploited in the proposed MOEA/D-MODE
algorithm.
Tab. 1. MOEA/D-MODE concept.

No. Stages Technique used in
MOEA/D-MODE

1 Selection of neighbors for
each solution Led by the distant vector λ

2 Solution clustering 3-means clustering based
on factor λ

3 Parent solutions are se-
lected for offspring

According to the best
Gi(x) Eq. (5) in the
sub-population

4 Offspring generation
Three diverse muta-
tion strategies have been
incorporated

5 Maximal diversity
Enhanced by polynomi-
al mutation and crossover
techniques

6 Update solutions in the
sub-population Using Eq. (6)

5. MOEA/D-MODE Algorithm

This section focuses on the mathematical model of multi-
operator DE for solving MOP. Additionally, we describe
our approach consisting in exploiting three diverse mutation
operators along with a polynomial mutation and standard
crossover techniques.
Initially, the population is initialized randomly withN number
of candidate solutions as:

xi,j = xi,j
lower + (xi,j

upper − xi,j lower)× rand

i ∈ N and j = 1, 2, . . . , D, (7)

where rand is a function that generates random numbers
between [0 . . . 1] [31]. The terms lower and upper represent
lower and upper boundaries of variable x in theD-dimension.
After generating the sub-populations, solutions in the sub-
populations are evolved via multi-mutation operators, where
each sub-population is assigned a unique mutation operator.
This allows to maintain diversity of the internal population.
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Algorithm 1. MOEA/D-MODE
Parameter initialization:
MAXFES, N ,K, T , FES← 0
Controlling parameters initialization:
F, pm, η
Weight vectors Λ:
initialize a set of weight vectors Λ = {λ1, λ2, . . . , λN}
Population initialization:
random population X of size N as {x1, x2, . . . , xN}
instantiate a ideal point z∗ = z∗1 , z∗2 , . . . , z∗m
T -neighbors initialization:
for i← 1 to N do
B(i)← {i1, i2, . . . , iT }

end
Clustering:
C ← k-means(Λ,K)
while FES ¬ MAXFES do

for s← 1 to N do
P ← B(s)
if s ∈ any C then

Generate mutant vector from three defined
mutation operators as:

ys =


Eq. (8) if s ∈ C(1)
Eq. (9) if s ∈ C(2)
Eq. (10) if s ∈ C(3)

ys ← PolynomialMutation(xs, ys)
us ← Crossover(xs, ys)
z∗ = min(z∗, z(us)∗)
UpdateSubPopulation(us, z∗, C)

end
end
FES← FES+N

end

For each unique solution xs chosen from the respective sub-
population, a mutant vector ys is generated as follows:
– sub-population 1: DE/parent-to-worst/1

ys = x
s + F × (xp1 − xs + xr1 − xworst), (8)

– sub-population 2: DE/parent-to-worst/1

ys = x
s + F × (xp2 − xs + xr2 − xworst), (9)

– sub-population 3: DE/weighted-rand-to-worst/1

ys = x
s + F × (xr3 + xp3 − xworst). (10)

xs denotes the target vector, xp1, xp2, and xp3 are 40%, 16%
and 25% of the best solutions chosen from sub-populations
1, 2, and 3, respectively. Additionally, the topmost solutions
are extracted from the respective clusters and marked as
xr1, xr2, and xr3, respectively. In the propounded multi-
operator DE for MOP, the objective is to filter the solu-
tions that cannot be converged to PF and, hence, main-
tain the maximum distance from the Pareto optimal so-
lutions. This is implemented as xworst ∈ B which is the
worst neighbor of xs since their distance λs − λxworst differs
significantly.

The three mutation strategies presented above have their own
advantages, such as:
– sub-population-based evolution is used where each of them

holds a variable number of solutions. This practice is likely
to explicitly maintain population diversity throughout the
evolution;

– the solutions that achieve significantly close proximity to
the ideal position are exploited to improve the selection
procedures not only from the neighborhood, but that paves
the way for the maximum space coverage;

– each mutant operator tries to maintain the maximum dis-
tance from the solution that seems less promising at the
time. Hence, it brings all the solutions close to the PF.

Polynomial mutation is adopted widely in evolutionary ap-
proaches in order to allow variation in the solutions. The above
mutation strategies are followed by polynomial mutation in
which y is generated from y in the following manner:

yk =

{
yk + σk × (upperk − lowerk) pm
yk 1− pm

, (11)

where

σk =

{
(2× rand)

1
η+1 − 1 if rand < 0.5

1− (2− 2× rand)
1
η+1 otherwise

. (12)

The rand function produces a random number between
[0 . . . 1]. There are two controlling parameters: pm which
defines the expectation of the number of mutated variables
and η representing the distribution index of the polynomial
mutation. The terms upperk and lowerk are the upper and
lower boundaries of the k-th decision variable of solution s,
respectively.
In order to find Pareto optimal solutions, a crossover technique
is employed. In this approach, maximum exploitation could
be maintained along with the evolution of new solutions u
yielded from y. Either binomial or exponential crossover is
applied according to:

uk =



if rand < 0.4
xsk

otherwise (13){
yk for k = ⟨l⟩D, ⟨l + 1⟩D, . . . ., ⟨l + L− 1⟩D,
xsk for rest of k ∈ [1, D]

where ⟨⟩ is a modulo operator in the exponential crossover.
After evolving the solutions in a sub-population, the ide-
al position is changed. Therefore, we get a new z∗ =
min[z(x)∗, z(u)∗]. Subsequently, G(u) is computed as:

Gi(u) = max
1¬i¬m

{λi|fi(u)− z∗i |}. (14)

Once the weighted functionG(u) has been obtained, next gen-
eration solutions are decided. To ensure the better solutions,
the solutions in the sub-population are updated as:

xk =

{
uk if G(x) > G(u)
xk otherwise

. (15)
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where x is the target solution in the sub-population, u depicts
a new solution corresponding to x, for each component k ∈
1, . . . , D. Similarly, the entire mechanism is implemented for
the solutions in the remaining sub-populations. Algorithm 2
shows the sub-population updating criteria in the propounded
variant of DE for multi-objective optimization.

Algorithm 2. UpdateSubPopulation(us, z∗, C)
Compute G(xC) according to Eq. (5)
Compute G(us) according to Eq. (14)
if G(xC) > G(us) then

Update the solutions x of cluster C where s ∈ C
end

6. Experimental Setup

The implementation of MOEA/D-MODE is executed with
Matlab R using the PlatEMO framework [32]. Its perfor-
mance is evaluated with the use of two test suites, with respect
to three well-known decomposition-based MOEAs frame-
works for solving MOP: MOEA/D-CMA, MOEA/D-DE, and
MOEA/D-DU.
First, MOP benchmark functions are tethered with the bias
difficulties as well as BT1-BT9 instances [18] included. For
BT1 to BT8, there are two objectives, whereas BT9 alone
is a many-objective problem defined with the use of three
objectives.
In the second step, the behavior of MOEA/D-MODE on the
ZDT series [33] is evaluated. Such a method is conceived
purely for two-objective test problems. However, ZDT5 is
excluded from the experimental study, since it involves binary
computations. Both of the test suites having diverse function
problems of dimension D ∈ {10, 30} and objectivesM ∈
{2, 3}.
The control parameters and other relevant data of proposed
algorithm MOEA/D-MODE are provided in Table 2. The
other common parameters are:
– number of runs and MAXFES. MOEA/D-MODE and

the remaining competing algorithms participating in the
comparison are run 30 times, independently in each of the
test suites. The termination criterion for all the algorithms
is set to 10,000 for all test problems;

– weight-vector Λ. Weight-vector Λ = {λ1, . . . , λN} is
a set of uniformly distributed random values and has the
size of N ×M , where N shows the population size and
M denotes the total number of objectives;

– population size N . To promote a fair comparison, the
MOEA/D-MODE framework, and other algorithms assume
the population size to be 100 for each test problem;

– neighborhood size T . In the proposed MOEA/D-MODE
framework, and in other algorithms (MOEA/D-CMA,
MOEA/D-DE, and MOEA/D-DU), T is initialized to 10;

– mutation parameters (pm and η). All respective algo-
rithms rely on polynomial mutations for introducing new

Tab. 2. Parameters settings of MOEA/D-MODE.

Parameter Symbol Value
Maximum function evaluations MAXFES 10,000
Population size N 100
Neighbors size T 10
Number of clusters C 3
Scaling factor F 0.5
Crossover probability Cr 1
Expectation of the mutated variables pm 1
Distribution index η 20

solutions. Mutation probability pm is set to 1 with a large
distribution index (with its value equaling 20) is used for
mutation η.

Some algorithms are characterized by particular parameter
settings. In MOEA/D-DE and MOEA/D-DU, δ is the proba-
bility of selecting parents from local regions, and is set to 0.9.
nr is used by MOEA/D-DE to determine the maximum num-
ber of solutions replaced by the offspring. The value chosen
is 2. On the other hand, parameterK holds different mean-
ings in MOEA/D-DU and MOEA/D-CMA respectively. In
MOEA/D-DU,K denotes the number of the nearest weight
vectors, whereas in MOEA/D-CMA,K represents the number
of groups. Both algorithms assume that this value equals 5.

6.1. Evaluation Metrics

Inverted generational distance (IGD) [34] is used as a per-
formance evaluation metric. IGD is a metric that is widely
adopted in the multi-objective domain and it allows to obtain
collective information on the convergence and distribution of
solutions. In the objective-space, we need a significant num-
ber of uniformly distributed variables that converge to PF in
order to efficiently estimate IGD.

Along with IGD, we incorporate another well-known metric,
namely hyper-volume (HV) [11], as the predominant com-
parison factor. HV is crucially cooperative to PF, and its
encouraging theoretical characteristics turn it into a fair met-
ric [35]. It can represent both convergence and distribution of
the solutions. The larger the HV value, the better the level fo
quality.

Selection of the reference point is the main concern encoun-
tered while computing HV. In this paper, following the recom-
mendation from [36] and [37], we assumed the reference point
to be 1.1znad, where znad is analytically computed against each
function instance. Besides, according to the setup used in [38]
and [39], the solutions that do not converge to the reference
point are ignored for HV computation.

To understand the difference for statistical significance of
function instances, we performed the Wilcoxon Rank-Sum
test [40] with normal approximation, tie-breaking, and with
the significance level set to 1%. It was performed on the HV
metric scores yielded by algorithms other than the proposed
solution.
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Tab. 3. Comparison of algorithms based on HV results, for an average and standard deviation (in brackets). The best results are highlighted in
bold print.

Function M D MOEA/D-MODE MOEA/D-CMA MOEA/D-DE MOEA/D-DU

BT1 2 30 0 (0) 0 (0) 0 (0) 0 (0)

BT2 2 30 0 (0) 0 (0) 0 (0) 0 (0)

BT3 2 30 0 (0) 0 (0) 0 (0) 0 (0)

BT4 2 30 0 (0) 0 (0) 0 (0) 0 (0)

BT5 2 30 0 (0) 0 (0) 0 (0) 0 (0)

BT6 2 30 0.121 (0.040) 0 (0) 0 (0) 0 (0)

BT7 2 30 0.092 (7.25× 10−3) 0 (0) 0.013 (0.027) 6.659 10−3 (0.015)

BT8 2 30 0.096 (0.021) 0 (0) 0 (0) 0 (0)

BT9 3 30 0 (0) 0 (0) 0 (0) 0 (0)

ZDT1 2 30 0.532 (0.062) 0.516 (0.03) 0.26 (0.075) 0.264 (0.103)

ZDT2 2 30 0.238 (0.075) 0.224 (0.034) 0.017 (0.06) 0 (0)

ZDT3 2 30 0.605 (0.127) 0.423 (0.057) 0.288 (0.091) 0.462 (0.052)

ZDT4 2 10 0.38 (0.106) 0 (0) 0 (0) 0 (0)

ZDT6 2 10 0.271 (0.033) 0.371 (0.048) 3.595 (0.053) 0 (0)

7. Result Analysis

First the convergence and distribution of MOEA/D-MODE
solutions obtained with the use of the two test suites, i.e. BT
and ZDT, are analyzed (Table 3). The set of non-dominated
solutions found by the proposed algorithm in 30 independent
runs is depicted in Fig. 2 and 3. Based on these illustrations,
the following observations may be made.

In the BT test suite, BT6-BT8, Fig. 2f–h, shows the conver-
gence of the solutions to the PF across the objective space.
Only a few of the candidate solutions try to reach the PF.
This indicates that the embedded mutation strategy requires a
greater ability to deal with the variations in MOP.

From BT1-BT8 (Fig. 2a–g), one may conclude that the so-
lution set is distributed in the objective space, but does not
converge to the optimal PF. This may be due to the early ter-
mination of the algorithm. Further iterations are needed for
the evolution, so that it may converge very well, since the
optimization problem involves tough biases.

The result of the only function problem based on 3-objectives
is depicted in Fig. 2i. It illustrates the distribution of the solu-
tions along the PF but the results shown are not encouraging.
It seems that the normal population size, taken for MOP, e.g.
100, is not suitable for a problem that involves more than
2-objectives.

As far as the analysis of the ZDT series (Fig. 3) is concerned,
the proposed algorithm shows far better results. It is clear-
ly seen that the solution-set becomes converged to the PF
(Fig. 3a–e). MOEA/D-MODE shows a better convergence
rate in ZDT3 (Fig. 3c). However, there is still some room for
improvement in the convergence rate in order to optimize
different classes of problems.

7.1. Statistical Analysis

Table 4 shows a statistical comparison between MOEA/D-
MODE and of other algorithms. Table 5, in turn, contains the
IGD results.W+ stands for the number of test instances in
the case of which MOEA/D-MODE is significantly superior.
W= means there are no significant differences between the
obtained scores, andW− is the number of instances for which
existing solutions perform significantly better than MOEA/D-
MODE.

The comments concerning MOEA/D-MODE and covering
all 14 test instances are as follows:
In the BT test suite, MOEA/D-MODE shows a certain ad-
vantage over MOEA/D variants, i.e. MOEA/DE, MOEA/D-
CMA and MOEA/D-DU. In the majority of test problems,
MOEA/D-MODE achieves results that are comparable with
those of the three remaining algorithms. However, it also
shows an improvement in three function instances that are
overlooked by the other alternatives.

When comparing results for the ZDT test series, one may
clearly observe that MOEA/D-MODE remains competitive
in the majority of test instances. It has shown that the multi-

Tab. 4. Summary of statistical results on HV metrics between
MOEA/D-MODE and the rival algorithms.

Test suite Algorithm W+ W= W−

BT
MOEA/D-CMA 3 6 0
MOEA/D-DE 3 6 0
MOEA/D-DU 3 6 0

ZDT
MOEA/D-CMA 4 0 1
MOEA/D-DE 4 0 1
MOEA/D-DU 5 0 0
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Fig. 2. Pareto front of BT-test suite. The axes are the objective values for BT1-BT8 test problems that are defined based on 2-objectives. Since
BT9 is a 3-objective problem, the Pareto front has a 3-dimensional geometry. The solid curve represents the Pareto optimal front whereas the
solid points depict the regions estimated by MOEA/D-MODE.

operator procedure in MOEA/D-MODE is superior or equiv-
alent to state-of-the-art MOEA/D methods.
The proposed MOEA/D-MODE is specifically competitive
when compared with two MOEA/D variants, i.e. MOEA/D-
CMA and MOEA/D-DE. Test results verify that the crucial
components of MOEA/D-MODE, i.e. multi-operator DE and
parent selection schemes, facilitate reliable results to a greater
extent than in other DE variants. However, the proposed algo-
rithm has some room for improvement in handling functions
with bias difficulties.

7.2. Further Discussion

The first concern is why the existing algorithms, i.e.
MOEA/D-DE and MOEA/D-CMA are outperformed by
MOEA/D-MODE. In fact, they fail to exhibit performance
that would be on par with the proposed MOEA/D variant. We

suspect two potential reasons. Firstly, both state-of-the-art
methods overly, emphasize the weight vectors that may be
confined by only one solution or particular region. So it is
likely to mislead from the corresponding area of PF and fail
to preserve diversity. Secondly, normal parent selection crite-
ria are applied. The procedures are biased towards preferring
solutions from the local area in order to produce offspring.
It is more likely that other regions in the objective-space may
by overlooked. On the other hand, MOEA/D-MODE achieves
better results in terms of selecting those solutions that have
a fair aggregation score, but may be far from the weight vector.
This has been even experimentally verified by using multiple
mutation strategies during the evolutionary task.

The second concern is why MOEA/D-MODE fails to be bet-
ter than the other solution when dealing with 3-objective
optimization. Population size may be one of the critical rea-
sons here. In the analysis, a normal population size of 100 is
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Fig. 3. Pareto front of ZDT-test suite. The axes are the objective values for test problems confined to a 2-dimensional space. The solid curve
represents the Pareto optimal front whereas the solid points depict the regions estimated by MOEA/D-MODE.

Tab. 5. Summary of average IGD results and standard deviation (in brackets) compared between the MOEA/D-MODE algorithm and other
algorithms. The best results are highlighted in bold print.

Function M D MOEA/D-MODE MOEA/D-CMA MOEA/D-DE MOEA/D-DU

BT1 2 30 3.955 (0.158) 3.851 (0.023) 3.894 (0.052) 3.996 (0.128)

BT2 2 30 2.262 (0.603) 1.61 (0.05) 1.73 (0.127) 1.405 (0.097)

BT3 2 30 3.844 (0.342) 3.939 (0.064) 3.957 (0.091) 3.947 (0.136)

BT4 2 30 3.913 (0.225) 3.796 (0.08) 3.845 (0.108) 3.715 (0.137)

BT5 2 30 3.929 (0.15) 3.87 (0.042) 3.929 (0.069) 3.97 (0.13)

BT6 2 30 0.676 (0.219) 2.341 (0.372) 1.844 (0.174) 2.041 (0.386)

BT7 2 30 0.819 (0.056) 1.555 (0.262) 1.023 (0.24) 1.323 (0.464)

BT8 2 30 0.81 (0.115) 5.254 (0.457) 4.32 (0.378) 3.834 (0.413)

BT9 3 30 3.711 (0.292) 3.085 (0.074) 3.43 (0.162) 3.206 (0.074)

ZDT1 2 30 0.226 (0.112) 0.152 (0.024) 0.419 (0.088) 0.405 (0.133)

ZDT2 2 30 0.274 (0.128) 0.173 (0.035) 0.697 (0.181) 1.087 (0.172)

ZDT3 2 30 0.194 (0.119) 0.299 (0.055) 0.459 (0.097) 0.219 (0.048)

ZDT4 2 10 0.513 (0.196) 6.035 (1.94) 3.941 (1.33) 42.143 (13.0)

ZDT6 2 10 0.161 (0.071) 0.023 (0.056) 0.029 (0.052) 3.7 (0.739)

used to converge the solutions to the PF. Perceptively, more
solutions are required to bring the entire population to the PF
in a higher-dimensional space. A smaller population size dis-
tributes the solutions sparsely in a high-order objective space.
Thus, the sparse solutions fail to capture some areas from the
entire PF, and this leads to a slow population convergence rate.

Poor performance of MOEA/D-MODE in ensuring faster
convergence in the case of biased optimization problems,
i.e. in the BT test suite, is the third concern. Despite its
encouraging results concerning the evaluation of metrics (HV
and IGD), it fails to show any superiority in terms of the
convergence rate in BT test functions. We suspect that an
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early termination of the algorithm is the reason here. As biases
may cause large-scale changes objective vectors, the search
operators need to remain strong. To achieve this, MAXFES
must be greater than 10,000, so that enough time is ensured
for better exploitation of the regions. Apart from this, normal
function problems, such as ZDT, have shown successful
convergence with the standard procedures, as shown in Fig. 3.

8. Conclusion and Future Work

In this paper, a MOEA/D-MODE algorithm is proposed for
solving multi-objective optimization problems and for im-
proving the exploration-exploitation equilibrium. The con-
cept is to put forth a multi-operator DE variant with com-
plicated MOEA/D that ensures the distribution of the solu-
tions throughout the evolutionary process. Specifically, in
MOEA/D-MODE, the entire population is divided into mul-
tiple sub-populations, which are thereafter evolved by the
assigned mutant operators of DE. In MOEA/D-MODE, we
argue that the solution involves in the preference with respect
to the proximity to the ideal position in the objective-space
could improve the optimal results rather than relying upon
the weight-vectors only.

We have analyzed the influence of multiple operators on
the quality of MOEA/D-MODE, and several discussions
have been conducted. We have shown that MOEA/D-MODE
outperforms MOEA/D alternatives in terms of maintaining the
convergence rate and distribution of solutions while solving
MOP. Well-known test suites (BT and ZDT) with a total
of 14 function instances have been employed to evaluate
the algorithm’s superiority. The results show that multiple
mutation may achieve unprecedented results when coupled
with MOEA/D.

In the future, we would extend our work to the high-dimension
objective space. It would be interesting to address the prob-
lem of multiple-objective optimization with the concern of
multi-operator evolutionary approach. We also would like to
improve the outcomes of studies concerned with optimization
problems involving bias difficulties.
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