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Abstract  In this paper, the performance of a deep learning-
based multiple-input multiple-output (MIMO) non-orthogonal
multiple access (NOMA) system is investigated for 5G radio
communication networks. We consider independent and identi-
cally distributed (i.i.d.) Nakagami-m fading links to prove that
when using MIMO with the NOMA system, the outage probabil-
ity (OP) and end-to-end symbol error rate (SER) improve, even
in the presence of imperfect channel state information (CSI)
and successive interference cancellation (SIC) errors. Further-
more, the stacked long short-term memory (S-LSTM) algorithm
is employed to improve the system’s performance, even under
time-selective channel conditions and in the presence of termi-
nal’s mobility. For vehicular NOMA networks, OP, SER, and
ergodic sum rate have been formulated. Simulations show that
an S-LSTM-based DL-NOMA receiver outperforms least square
(LS) and minimum mean square error (MMSE) receivers. Fur-
thermore, it has been discovered that the performance of the
end-to-end system degrades with the growing amount of node
mobility, or if CSI knowledge remains poor. Simulated curves
are in close agreement with the analytical results.

Keywords  inter-symbol interference, MIMO, NOMA, orthogonal
frequency division multiplexing (OFDM), S-LSTM, zero-mean
circularly symmetric complex Gaussian (ZM-CSCG).

1. Inrtoduction

The market expects that 5G communications will be suitable
for providing services with very low latency, excellent quality
of service (QoS), and increased mobile broadband [1], [2].

Several technological advances, including 5G radio ac-
cess networks (5G-RAN), the Internet of Things (IoT),
ultra-reliable low-latency communications (URLLC), het-
erogeneous networks, including small cells and machine-to-
machine (M2M) communications, as well as the understand-
ing of the mechanisms of specific methodologies, are impor-
tant building blocks of the 5G air interface [3], [4]. Vehicular
communication (VC) solutions, such as vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) schemes, are wide-
ly used in safety-, information-, mobility- and environment-
related applications. Because of its unique characteristics,
VC has evoked the curiosity of academics, businesses, and
governments alike. V2V and V2I have been envisioned as

one of the most promising schemes for improving traffic man-
agement and road safety, because they allow each vehicle
to communicate with other users placed at important inter-
sections, such as stop signs and traffic lights. A schematic
representation of a V2V network is presented in Fig. 1 [1],
[2].

Fig. 1. Schematic representation of a V2V scheme.

In addition to being a new resource allocation scheme, 5G
wireless networks rely also on a user-centric network concept
that seeks to meet the application needs of all users partici-
pating in the connected world [5]–[7]. It is almost impossible
to develop a unified technology that meets the broad variety
of transmission-related needs, due to the sheer number of ac-
cess schemes and use cases existing in today’s interlinked,
digital world. Therefore, 5G does not seek to alter the wire-
less 4G architecture, instead offering a unified platform that
makes use of all current and envisioned technologies to serve
users by providing them with access to a wide range of ser-
vices. 5G aims to provide new air interfaces as well as a few
new access modes by making relying on a spectrum that has
recently been allocated. To be more specific, it will be built
on top of contemporary wireless technologies, such as 5G
URLLC, long-term evolution advanced (LTE-A), mmWave
high-band 5G, lowest signal-to-interference-plus-noise ratio
(SINR), and enhanced mobile broadband (eMBB).
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It is crucial to outline the fundamental components of 5G in
order to create a framework for the co-existence of other tech-
nologies. Secure communication in V2V and V2I NOMA
networks demands minimal latency, excellent end-to-end re-
liability, and massive connectivity. Intelligent transportation
systems (ITS) will be applied in entertainment applications,
such as connected driving and smart transportation, thus in-
creasing the requirement for spectral efficiency (SE) [8]–[11].
By enabling multiplexing in the code and the power domain,
NOMA – which significantly improves energy and SE over or-
thogonal multiple access (OMA) – serves many users concur-
rently or simultaneously accessing frequency resources [12].
5G, IoT and multimedia applications place strict demands on
capacity and user access. The NOMA scheme [13], [14] offers
an optimistic answer to these challenges. MIMO, cognitive
cooperative relaying, full-duplex relaying, millimeter-wave,
and other technologies have been employed in conjunction
with NOMA to increase throughput and guarantee user fair-
ness in a wide range of fading channel distributions [15],
[16]. Figure 2 shows a MIMO-NOMA network example [10],
[17].

Fig. 2. V2V NOMA scenario over Nakagami-m fading channel
conditions.

2. Related Work

In [18]–[20], the authors examine the millimeter-wave scheme
over quasi static frequency flat links. Over the frequency flat
α-η-κ-µ fading channels, paper [21] evaluates end-to-end
SER performance of the relaying network in conjunction
with a NOMA scheme for multiple users. In [22], coopera-
tive NOMA’s exact OP performance and the achievable data
rate are examined by considering an analog relaying proto-
col over frequency-flat generalized Nakagami-m fading links,
and in [23], the authors extend that work by considering im-
perfect CSI conditions and additive white Gaussian (AWGN)
channel noise. It is very difficult to compare channel matrices
in MIMO networks. In their work [24], [25], the authors pro-
pose the generalized singular value decomposition (GSVD)
approach turning MIMO channels into several single-input
single-output (SISO) channels [24], [25]. The authors look at
how well MIMO-NOMA networks minimize delays when
limits concerning transmission time and power are imposed.

This study shows that MIMO-NOMA systems offer shorter
delays than their OMA-based counterparts.

Since security is one of the paramount issues in wireless
networks, the authors of [25] investigate how NOMA and
OMA networks compare in terms of ensuring confidentiality
of information. The results show that NOMA-MIMO offers
a higher secrecy rate. Additionally, the effectiveness of NO-
MA has been assessed for partial CSI [26]. However, there
are several restrictions affecting NOMA, including the need
for a perfect CSI in the transmitter and a significant amount
of processing complexity in the receiver.

Utilizing deep learning (DL) methods is a great way to over-
come these difficulties. The traditional SIC technique has
several drawbacks. With more users, it becomes more chal-
lenging to utilize the SIC approach to accurately interpret
the data. Propagation inaccuracy also has an impact on the
SIC approach. Signal categorization may be used by deep
neural networks (DNN) to recover a discrete sequence from
a degraded signal. The SIC approach can be improved with
DL as well. The authors of [27] study a beamforming-based
downlink NOMA network that uses dynamic user pairing
to maximize the lowest data rate of all DL users. The au-
thors resolve the issue with non-convex optimization with
mixed-integer variables, by converting a discrete domain to
the analog domain using an iterative scheme depending on
the internal approximation to obtain a local optimum. The
suggested technique outperforms standard beam generation,
NOMA with random pairing, and heuristic search schemes.

DL is a popular channel estimation approach used in 5G net-
works. Traditionally, channel estimation and signal detection
processes are separated. Before signal detection, a pilot broad-
cast estimates CSI. The receiver may reconstruct the trans-
mitted signals using the calculated CSI. End-to-end OFDM
channel analysis is discussed in detail in [28], describing
a DL-based technique for joint channel estimation and detec-
tion in OFDM systems. Training a DL model involves match-
ing the received signals with the data and pilots provided.
After training, the model can decode online-transmitted data
without channel estimations. Furthermore, the authors ana-
lyze a DL-based single-input multiple-output (SIMO) channel
estimate. By using piecewise linearity, the DL channel de-
tector might be able to estimate a large group of functions,
since a DNN with a rectified linear unit (ReLU) activation
function is conceptually similar to a piecewise linear func-
tion. An alternative method for estimating the channel using
the DL scheme is presented by the authors in [29]. The au-
thors provide an alternate method for DL channel estimation.
MMSE is a model-specific estimator for conditionally normal
channels. Using MMSE, CNN estimators are defined.

Due to the high processing complexity and substantial varia-
tions in wireless channel conditions, current NOMA systems
make it difficult to evaluate channel characteristics and estab-
lish the appropriate resource allocation strategy. In [30], the
authors present a DL-aided NOMA system, where a single
BS serves random NOMA users. DL learns time-selective
fading NOMA systems with poor CSI. DL-LSTM networks
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in NOMA systems provide automatic channel property
identification. NOMA employs DL for automatic encod-
ing, decoding, and channel identification in AWGN noise.
The suggested method provides more accurate simulations.
Faster than Nyquist (FTN)-NOMA is proposed in [31] to
improve SE, reduce latency, and increase connectivity. The
authors define sliding-window detection for DL-based FTN
NOMA. This scheme’s detector exceeds MMSE-decision
feedback equalization (FDE).
In [32], the authors suggest DL-SIC for downlink (D/L)
MIMO-NOMA. This method minimizes MMSE in MIMO-
precoding NOMAs and SIC decoding. The transmitter pre-
codes signals for multiple D/L users using superposition
coding, and the receiver extracts them using DNN-built SIC
decoders. In each of the SIC phases, one DNN is used to
decode the signal for the current user, while another is used
to reconstruct the signal for the prior user (apart from the first
user). Since the user was not previously decoded, just one
DNN is required to decode the signal. In [33], the authors
establish a DL approach for recognizing D/L signals using the
MIMO-NOMA scheme. DNN is the sole SIC receiver used to
decode D/L signals broadcast in a single time slot. All aerials
provide DNN with data. Most DNNs have a fully linked output
layer that uses the Softmax function. Conversely, MIMO-
NOMA signals, although emanating from several different
transmitters, need a single decoding slot only. Therefore, the
proposed output layer is constructed for data classification
purposes. Each cluster has as many neurons, as there are
aerials for sending signals, and each neuron in a cluster may
only be capable of encoding a single state. Different power
allocations and complex modulation forms degrade energy
efficiency of the proposed system.
Using DL schemes such as CNNs, the authors of [34] re-
construct uplink users’ MIMO channel signals. Data from
several users may potentially be decoded instantly using the
suggested technique which does not rely on any of the typical
processes found in communication signal processing. Each
step of the SIC decoding procedure in [35] employs a DNN
with fully linked layers to decode input from a single user.
DNN is composed of four layers: an input layer, an output
layer, two hidden layers, and an intermediate hidden layer.
The decoded bits that are shown to the user are generated by
the DNN’s output layer which is responsible for that function.
After the first stage of SIC, the input layer receives the com-
bined signal in addition to the signals that have already been
decoded by the users. Signals must be transformed into bit
sequences before digital neural networks (NNs) (also known
as DNNs) may be trained to interpret them. The method pro-
vided in [35] to enhance DL-based SIC systems for higher
order modulation will be shown in Section 3.

2.1. Contribution of the Paper

DL is a popular approach relied upon for boosting error perfor-
mance of MIMO-NOMA end-to-end systems. DL-based SIC
uses a NN to estimate, identify, decode, and reject channels.
DL-based SIC outperforms MIMO NOMA in Nakagami-m

fading channels. We apply the DL-based SIC from [35] to
an uplink MIMO-NOMA system with BPSK modulation in
a time selective Nakagami-m fading channel conditions, and
then:
– study the DL-based MIMO NOMA VC system over

Nakagami-m fading channel users and compare it with the
conventional SIC-based NOMA system,

– study the DL schemes for 5G and beyond 5G communica-
tions, with a focus on the VC scenario and the imperfect
CSI and conduct a comprehensive literature research on
DL,

– for different values of the shape parameter, training data
rates, and packet sizes, the traditional NOMA receiver’s
performance is compared with that of the S-LSTM-based
NOMA receiver,

– to decode user signals and ensure performance with current
conventional systems, it is necessary to create a DL-SIC
MIMO-NOMA model for higher-order complex modula-
tion schemes using the newly suggested architecture.

The paper is organized as follows. Assuming that CSI is im-
perfect and that a SIC error exists, we examine the signal and
channel models in Section 3. The node mobility scenario is
considered in this section, and the effects of channel estima-
tion inaccuracy are investigated. We analyze the DL-based
NOMA receiver in Section 4 and present the S-LSTM ap-
proach for enhancing both OP performance and end-to-end
SER. Optimal power allocation (OPA) is determined because
of a derivation for the ideal power allocation factor. Addition-
ally, training for the S-LSTM model is provided. We discuss
the simulation’s outcomes in Section 5, and we conclude the
study in Section 6.

3. System and Channel Model

3.1. Channel Model

As a result of multipath propagation and node mobility,
fading links transform from being frequency-flat to time-
selective. ISI is caused by time-varying channels and 5G-
OFDM uses a cyclic prefix (CP) to reduce it [36]–[42]. In this
work, the MIMO technique is employed by the base station
(BS) in order to connect withW vehicular nodes (VNs) in
NOMA-based V2V communication networks [10]. As the
VN moves away from the BS, the fading channel profile
changes from the near Rician-fading channel to a Rayleigh
channel. With the help of singular value decomposition (SVD)
techniques, the channels are converted to parallel fading links.
To take advantage of the diversity at the VNs, the receiver
uses maximum ratio combining (MRC), selection combining
(SC), or SVD schemes. However, because the diversity of
connections is non-identical under high fading conditions, the
predicted diversity increases when the independent but non-
identically distributed (i.n.i.d.) assumption is not realized [10],
[30]. The i.i.d. assumption adds complexity to the study,
but the conclusions are more realistic and relevant in real-
time communication and V2V network system design [38],
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[42]. Here, we analyze the performance of an S-LSTM-based
V2V NOMA networks over i.i.d. fading connections while
accounting for inaccurate CSI, and we compare findings with
the existing literature. This section also examines wireless
D/L V2I communications and considers the time selective
Nakagami-m model.
Mobile users communicating with a roadside BS move away
from that BS at a comparable v speed. Each VN has T receive
(Rx) antennas, whereas the BS hasK transmit (Tx) antennas.
Doppler spread is experienced due to the relative motion
between the VNs and the BS. i.i.d. Nakagami-m fading links
can be modeled by using the classical Jakes model and the first
order autoregressive model. The fading channel coefficients
between the BS and w vehicle at t time interval are expressed
as [10], [17]:

zw(w) = ρ
t−1
w zw(1) +

√
1− ρ2w

t−1∑
l=1

ρw(t− l − 1)ew(l), (1)

where ρw = J0 2·π·fc·νRsc
is the correlation factor for the gain

of the temporally neighboring channel, the carrier frequency
is denoted by fc, c is the light speed [4]–[8], [33], and trans-
mission symbol rate is represented by Rs. The zeroth-order
Bessel function of the first kind is defined as J0(:). The time
selective fading component is represented as ew(l) which is
modeled as the ZM-CSCG with variance σ2ew.
According to the working theory, destination tracking loops
are unable to keep up with time-varying channel variances
and can only estimate them during the first signaling period
of each transmitted block, because node mobility causes the
fading channel coefficients to change for each time instant
and transform a quasi-static Nakagami-m fading channel into
a time selective fading channel. This is because the quantity
of information that may be communicated is limited by the
time selected Nakagami-m fading connections, i.e. zw(1) as
ẑw(1). Furthermore, ISI and channel estimation error ẑw(1)
can be expressed as:

ẑw(1) = zw(1) + ẑϵw(1),

where ẑϵw(1) is the fading channel error coefficient distributed
as ZM-CSCG with variance σ2ϵ modeled as, CN(0, σ2e). The
small-scale fading channel is affected by the path loss. The
estimated value of the fading channel coefficient ẑw(1) is
affected by the path loss exponent ϵ, as a function of distance
dw between BS and mobile user w . At t = 1, the gain of
the fading link is given as, ẑw(1)|2 [5], [6], [17], [33]–[35].
The fading channel link gain is inversely proportional to the
distance from the BS to mobile user w. With the increasing
distance between the BS and the user, channel gain decreases.
At t = 1, the channel gain is:

|ẑ1(1)|2 ¬ |ẑ2(1)|2 ¬ . . . ¬ |ẑW (1)|2.

The BS uses superposition coding and power domain NOMA
to correlate the signals for various vehicles in the power
domain. When considering the channel order at time t, the
power coefficients assigned to vehicles are expressed in the
following order β1(t) ­ β2(t) ­ . . . ­ βW (t) [3]–[7], [33].

3.2. System Model

The use of DL to increase the performance of MIMO-NOMA
systems has recently gained in popularity. SIC-related research
based on DL uses a neural network (NN) to conduct channel
estimation, detection, decoding, and discarding of the decoded
signal. A DL-based SIC receiver performs better than MIMO-
NOMA under Nakagami-m fading channel conditions. Hence,
under time-selected Nakagami-m fading channel conditions,
we apply a modified version of the DL-based SIC, as suggested
in [35], to the uplink MIMO-NOMA system that uses BPSK
modulation. After analyzing DL-based SIC in [35], the system
model is formalized and DNN is applied in the SIC receiver.

Fig. 3. Schematic representation of uplink in a MIMO NOMA
(single cell) network.

Figure 3 illustrates the single cell uplink MIMO-NOMA
scenario over time selective Nakagami-m fading channel
conditions. The receiver has T antennas, andW represents the
total number of users. The schematic diagram demonstrates
that users are broadcasting their signals to the BS utilizing
the same frequency resources, but at varying degrees of
transmission power. According to the findings from [35]–
[43], the users must transmit many frames which include
both pilot and data symbols. When the frames are sent within
a coherent period, the channel impulse response is assumed to
be constant across the span of a single frame. Each frame has
N data symbols and J pilot symbols. Symbols with the letter
L in front of them are considered pilot symbols, whereas
those with theD letter denote data symbols. Inspired by the
analysis in [35], all users’ data signals are expressed as [35],
[43]–[45]:

R = ZPSD +ΨD, (2)
where SD represents the data matrix as:

SD = [SD1 , S
D
1 , . . . , S

D
W ]
T ∈ CW×N ,

where T is the transpose operator, W represents the total
number of users, while the total number of receive anten-
nas is T . SDw denotes the data vector of w-th user complex
modulated data symbol and can be given as [35], [44], SDw =
[SDw,1, S

D
w,2, . . . , S

D
w,N ]

T ∈ C 1×N and E(|SDw,N |
2
) = 1.

The fading channel matrix Z is represented as [30]–[35]:

Z = [z1, z2, . . . , zW ] ∈ CT×W ,

where zw = [zw,1, zw,2, . . . , zw,T ] ∈ CT×1 is the chan-
nel vector between w users. Considering the time selec-
tive Nakagami-m fading channel conditions, let the diag-
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onal matrix P be represented as [35], [43], [44], [46] P =
diag(λ1, λ2, . . . , λw). P represents the total available trans-

mit power and is equal to
W∑
w=1
λw ¬ P . ΨD is the AWGN

noise at the BS modeled as ΨD ∼ CN(0, N0I) ∈ CT×N .
The same approach can be used to represent all users’ pilot
signals at any frame [34], [35], [43], [44], [46], [47]:

RL = ZPSL +ΨL (3)

with energy of the symbol equaling:

E(|SLw,n|
2
) = 1.

SL stands for the pilot matrix and can be expressed as [44]:

SL = [SL1 , S
L
2 , . . . , S

L
W ]
T ∈ CW×J .

Channel noise ΨL ∈ CT×J is assumed to be AWGN noise
for pilot symbol transmissions at the BS. In articles [35], [43],
[44] the authors have considered the equal power allocation
scheme. Paper [46] analyzes mMTC with the assumption that
all mobile users have access to the same bandwidth. There are
several drawbacks to the equitable distribution of power. The
user should be allocated less power if they are close to the BS,
since the channel gain between them is higher than it would
be otherwise. Due to its poor channel gain, the distant user
needs a larger share of the available power. Using the dynamic
power distribution technique in [35], [43], [44], [46], [47],
the authors provide more power to the user with the lowest
gain, while giving less power to the user with the highest
gain. Availability of power at the BS is limited - let it be
represented by P . The total available power is distributed
amongW users. The power allocation factor λw is expressed
as [30]–[34]:

λw =
P

W
∀ w ∈ {1, 2, 3, . . . ,W}.

Let user 1 be nearest the BS user w is the farthest user. Chan-
nel gain decreases with distance, as ||z1|| ­ ||z1∥ ­ . . . ­
||zW ||. Detecting the received signals involves recovering
the signal at the receiver. A standard MIMO-NOMA receiv-
er must perform channel estimation, signal detection, and
demodulation before extracting the signal. The operation of
a conventional SIC receiver is shown in Fig. 4. The strength
of the signals provided by users will be used to discern their
meanings. To do this, we start by decoding the user who is
experiencing optimal channel circumstances, and then we
deduct their signal from the composite signal. Then, the user
with the second-highest signal strength will have their code
decrypted. The process will be repeated until the individual
user whose signal strength is the weakest can be deciphered.
Operation of SIC is determined by the user count. SLw pilot
symbols allow the channel to be estimated during the pilot
broadcast. Using zero forcing (ZF)-SIC and MMSE SIC,
MIMO-NOMA can successfully cancel interference. The data
vector (estimated value) for mobile user w can be obtained by
employing the ZF-SIC receiver as [21], [33]–[35], [44], [46]:

ŜDw = ZwR
D, (4)

Fig. 4. Schematic representation of a SIC-based receiver.

where ẑw is the channel estimation vector of user w, as:

ẑw = [ẑ1, ẑ2, . . . , ẑT ]
T ∈ CT×1 and

Zw = ẑ
H
w (ẑw ẑ

H
w + I)

−1.

Next, the (w+1)-th user’s signal is decoded after the decoded
signal is subtracted from the received signal. Similarly, the
detection for userw using MMSE-SIC may be written as [32],
[35], [37], [43], [44], [46]–[48]:

ŜDw =WwR
D. (5)

where Ww = ẑHw (ẑwẑ
H
w + ρ

−1I)−1 and ρ is the received
SNR given by [30], [33]–[35], [43], [44]:

ρ =
Pr
N0
. (6)

Also, the SINR of user w is given as [30], [33]–[35], [43],
[44]:

SINRw =
λwρ|zw|2

w−1∑
j=1
λjρ|zj |2 + 1

(w ̸= 1). (7)

Furthermore, the SINR calculation for user 1 is [30], [33]–
[35], [43]–[46]:

SINR1 = λ1ρ|z1|2. (8)

To communicate with the SIC receiver, the DNN protocol has
been established. According to the results of the preceding
research, a standard SIC receiver starts by making an estimate
of the CSI based on the transmitted symbols that match
the pilot symbols. The estimated CSI may then be used for
reconstruction of the received signal. The DNN, in contrast
to the DL-based SIC technique, is trained during the pilot
transmission and then utilized to recover the transmitted bits
without explicitly calculating the channel state or discarding
the decoded signal. This is possible because the DL-based
SIC approach makes use of DL.
To decode the data from a single user, a DNN with layers
that are completely linked is used at each stage of SIC. In
addition to input and output layers, the DNN design includes
two hidden layers. Except for the first SIC step, the DNN
output layer decodes bits for each user, whereas the input
layer receives the composite signal and previously decoded
signals. DNNs are trained to convert the input data matrix
into bit sequences for the broadcast. The user with the best
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channel condition would have their data deciphered first, as in
the traditional SIC system. Then, in SIC, the second-strongest
user is decoded. In this manner, the procedure is repeated to
decode the user at the lowest level. Modulation order C is
used to determine which nodes of each DNN will be used
as outputs. BPSK requires two nodes, whereas BPSK needs
four. Figure 5 shows a two-user DL-based SIC architecture.
After each DNN SIC, the next modulation block modifies the
decoded user bits. During SIC, the user’s modulated symbols
are delivered to DNN.

Fig. 5. Schematic representation of a DL-based SIC receiver.

DNN is composed of Q fully linked layers, and the Softmax
function is used on the output layer of each DNN. Firstly,
we consider the input vector s = {s1, s2, . . . , sc} ∈ RC×1
and we can find a way to express the output vector Φ =
{Φ1,Φ2, . . . ,ΦC} using real number values in the range of
0 to 1 that add up to 1 [48]. The Adam algorithm optimizes
performance by decreasing the categorical cross-entropy loss
function between output and training objectives. The loss
function is given as [32], [35], [43]–[48],

loss =
J∑
j=1

C∑
c=1

Bjc log
(Φjc
2

)
, (9)

whereBjc is a binary ground truth indicator such thatBjc = 1
only holds if and only if the j-th sample belongs to the c-th
class. The Softmax’s output probability that the j-th input cor-
responds to the c-th class is represented by the Φjc symbol.
Consider fw(.) to be the w-th DNN’s processing compo-
nent, with function fw(.) defined as fw(.) : R(T+w−1) →
{0, 1}log2(c×2), which maps the combined signal and the pre-
viously decoded signal of the (w−1)-th users to the broadcast
bit of user w [49]–[53]. This is possible because all users’
complex signals can be split into real and imaginary parts. To
estimate the function of the w-th DNN, the weight and bias
matrix are changed after pilot symbol training. Specifically,
ELU and ReLU are used as activation functions for the first
and second hidden layers.

4. DL Based NOMA Receiver

4.1. S-LSTM Basics

LSTM cells are presented in Fig. 6 [31]–[33]. Recurrent
neural networks (RNNs) are known as LSTM networks, and
they can learn the long-term associations that exist between

sequence time steps. An LSTM network is made up of several
different layers, two of which are the sequence input layer and
the LSTM layer. A sequence input layer is a component of
the network that is responsible for the transmission of data
to the network in the form of sequences or time series. An
LSTM layer will learn the long-term connections that exist
between the many time steps that make up the sequence data.
The LSTM architecture is shown in Fig. 7 [32], [33]. The
sequence input layer is followed by the LSTM layer. Three
layers are used to forecast class labels: a fully connected layer,
a Softmax layer, and a classification output layer. Figure 8
[32], [33] shows a basic regression LSTM network. The
first two network layers are sequence input and LSTM. The
network’s last layers are completely linked and regressed.
Figure 9 shows the video classification network architecture.
The image sequences could be networked with the help of
a sequence input layer. To independently apply convolutional
processes to individual video frames, each frame needs to
include a sequence folding layer, followed by convolutional
layers, and finally a sequence unfolding layer. To use LSTM
layers to learn from vector sequences, we must first deploy
a flattened layer – Fig. 9 [32]. In its most basic form, an
LSTM model comprises a single hidden LSTM layer followed
by a feed-forward output layer. S-LSTM is a variant of this
paradigm that includes several hidden LSTM layers, each with
numerous memory cells. As more and more LSTM hidden
layers are stacked, the model becomes more complex, and
the technique becomes more acceptable as DL. The hierarchy
provided by the DNNs’ several layers is frequently credited
with its effectiveness. Each layer solves a smaller subproblem
before passing the solution to the next layer. The DNN may be
thought of as a processing pipeline, with each layer performing
a specific task and passing the data on to the next layer to be
processed.

Fig. 6. Schematic representation of an LSTM cell.

Fig. 7. Schematic representation of a simple LSTM network for
classification.

Adding extra hidden layers to an NN multilayer perceptron
makes it more complex. High degrees of abstraction can be
achieved by combining the learnt representation from pre-
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vious layers with the additional hidden layers. Lines, forms,
and objects are just a few examples here. A single, suitably
deep hidden layer. Most functions may be approximated us-
ing multilayer perceptrons. An alternative approach that uses
fewer neurons and trains more quickly involves deepening
the network. After all, depth optimization is a form of repre-
sentational optimization.

Fig. 8. Schematic representation of an LSTM network for regression.

Fig. 9. Schematic representation of a video classification network.

In [25], the authors proposed S-LSTM or deep LSTMs for
their speech recognition application. The authors achieved
this by solving a difficult standard problem. RNNs are deep
in time, because they use hidden states. This paper examines
the question of whether RNNs may also take advantage of the
benefits of depth in space, i.e. the practice of placing numer-
ous, recurrent hidden layers one atop the other, the way that
feedforward layers are built in conventional deep networks.
Layered LSTMs have recently solved difficult sequence pre-
diction tasks. S-LSTM architecture is a name given to an
LSTM model that is made up of multiple, different layers of
LSTMs. A higher-level LSTM transmits values to a lower-
level LSTM. Each input time step should have a separate
output time step (Fig. 10), instead just of one such step. It is
necessary to generate one output time step for each input time
step, and to generate one output for each input [29].

Fig. 10. LSTM architecture.

4.2. Model Training

OFDM data packets consist of 92 carriers, and each packet
consists of four OFDM symbols. Three pilots are assigned
to detect fading channel coefficients. The number of bits per
carrier is 4, because channel detection is a very complex
task and more bits are assigned per subcarrier. After the

carriers have been assigned, the next step is to create a feature
vector (FV) and, despite the fact that data symbols are of
a complicated nature in the training stage, this step must be
completed before moving on. The symbols include both real
and imaginary components in their construction. The number
of subcarriers influences the size of the FV in a significant
way. The FV dimension may be expressed as 92×4×2 = 736.
The S-LSTM NOMA channel estimator acquires the ability
to comprehend the signal connected to the k-th subcarrier
after having the key labels included in the training process.
A label is a numerical representation of a signal sent by two
users together. There will be 30 combinations/labels, since
BPSK symbols are being transmitted by both users. DNNs
are created with Python and Matlab by attaching DL layers
to the DL Toolbox and GPU accelerator. Tensor flow and
the Sigmoid activation function are employed in the receiver
analysis. A fully linked layer comes after the S-LSTM layer.
This layer has an output size of 30 bits and contains 280 hidden
units. The classification layer is responsible for generating
putative labels that will be used to map the signals that are
being concurrently sent by both users, and the Softmax layer
is the one that will apply a Softmax function to the input.

5. Simulation Results

In this section, performance comparisons have been presented
between S-LSTM and other conventional NOMA receivers, in
terms of node mobility, SIC error, and imperfect CSI. Further,
the S-LSTM NOMA receiver is trained using simulation data
and the end-to-end SER and OP are examined. Performance of
the system is investigated for each subcarrier, over the various
SNR regimes. The effect of ISI and Doppler spread is thought
to be reduced in both online training and offline training by
assuming that the fading links are time-selective and there
is imperfect CSI. All i.i.d. fading links receive a distinct
random face shift from each OFDM packet, enabling the
analysis of time-selective fading channel conditions. This
proposed scheme is trained using 550,000 OFDM samples
over 280 epochs, while considering all real-time propagation
scenarios, i.e. those involving SIC error and imperfect CSI.
The accuracy of S-LSTM-based receivers is evaluated using
optimal or maximum probability receivers. In simulations,
the carrier frequency is 25 GHz, CP duration is 20 and 25 s,
the number of subcarriers is 92, and the number of multiple
paths is 60, 70, 80, and 90. BPSK constellations have been
used, and the maximum delay spread is set to 25 µs. Table 1
shows the simulation parameters.

5.1. OP Performance in Time-selective Fading Channels
with VNs and Imperfect CSI

OP performance and average SER performance of the different
modulation schemes for NOMA-based 5G V2V networks
have been compared to validate the analytical findings given
in the preceding sections. Consider a D/L V2V scenario in
which all VNs are moving away from the BS at 130 km/h.
The BS establishes connections with VN1, VN2, VN3 and
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VN4 using the carrier frequency of fc = 25 GHz and the
transmit symbol rate of Rs = 20Mbps. Assume that VN1
is the farthest user, and that it has a weak fading channel
gain. The channel gain also decreases significantly when the
VN1 moves away from the BS. For VN2, the user closest to
the BS, channel status fluctuates or is inversely proportional
to distance and node mobility in the simulations. Channel
coefficients change very fast, and gain is highly reduced as
node mobility rises. For 25 GHz and 30 GHz frequency bands,
the path loss exponent values are 1.64 and 3.10, respectively.
The power allocation factors in the simulations for VN1, VN2,
VN3, and VN4 are 0.60, 0.25, and 0.10, 0.05, respectively.
The dynamic power allocation approach is employed. The
target data transmission rate is fixed at 2 bps/Hz, yielding the
threshold SNRs of 2, 4, 6, and 8 for VN1, VN2, VN3, and
VN4, respectively. An autoregressive process with a variation
of 0.01% at a certain point in time may be used to simulate
a time-selective fading channel.

Tab. 1. Simulation parameters.

Simulation settings Type or value
Total number of vehicular
users 10

Number of Tx/Tr 20/10
DL optimization scheme Stochastic gradient descent
Training rate 0.004
Number of complex
modulated symbols 5000

Number of hidden layers 280
Hidden layer activation
function Parametrized ReLU

Number of training epochs 280
OPA factor 0.75, 0.25
Complex modulation scheme BPSK
Fading channel used in
simulation

Time selective i.i.d.
Nakagami-m fading links

Algorithm 1. MIMO-NOMA DL-based training algorithm
1. Initialization of the DL model
2. Parameter initialization
3. Data normalization
4. Generation of training data symbols and formatting of the

data symbols. In simulations, the total number of time
slots is Ts and the data vector is:
SL = [SL1 , S

L
2 , . . . , S

L
W ]
T ∈ CW×J . The l-th slot time

slot data is S[l−th].
5. Set the hidden layer and output layer’s important settings,

including epochs, data training rate, dropout, and output
functions

6. Assigning bias and weight to DNN layers
7. Calculation of the output data vector
8. Calculation of the loss function as:

Loss = −
J∑
j=1
−
C∑
c=1
−Bjc log(Φjc2 )

9. Use the stochastic gradient descent technique to compute
the correction parameter and to update the simulation
settings to seek OPA factors that provide the minimum
SER and OP

10. If the loss function is not satisfactory, then recalculate the
loss function

11. Using the test data, evaluate the trained DNN and generate
OP vs. SNR and OP vs. SNR plots

Figure 11b shows the user’s OP performance for S-LSTM
MIMO-NOMA and MIMO-OMA for m=3. When compared
to m = 2, the performance is better, since the diversity of
benefit form = 3 is better (severity of fading decreases with
an increase in the value of the fading severity parameter). It
can be readily seen that MIMO-NOMA outperforms MIMO-
OMA when m = 3, by a difference of 4 dB. However, the
performance decline brought on by i.i.d. consideration is
more pronounced whenm = 3, as opposed tom = 2. The
influence of i.i.d. consideration is shown to decrease under
non-line of sight conditions. Because in non-line of sight
communication, the channel is no longer Rayleigh faded,

Fig. 11. OP vs. SNR for MIMO NOMA considering node mobility
and imperfect CSI: a)m = 2 and b)m = 3.
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and in this simulation, we have considered the time selective
Nakagami-m, with more generalized fading. OP performance
for m = 4 and 8 for the maximal ratio combining (MRC)
NOMA and OMA is shown in Fig. 12a–b. Becausem = 4
has more severe fading,m = 8 has better OP performance
for 1× 4 and 1× 8 thanm = 4. It can be readily seen that
the simulation results differ from the analytical results if the
likelihood of error is less than 10−4. This is because the
simulation’s sample size was practically limited owing to
computer-related restrictions.

Fig. 12. OP vs. SNR for 1 × 8 and 1 × 4 MIMO NOMA for: a)
m = 4 and b)m = 8, considering node mobility and imperfect CSI
and error variance equal to σ2ϵ = 0.02.

Figure 13 shows a MIMO-NOMA with 4×2 and 8×4 anten-
na configurations, with imperfect CSI. The simulation results
show how imperfect CSI error impacts the functionality of
UN2 and UN3. UN2 is affected by interference from UN1,
whereas UN3 is affected by interference from both UN1 and
UN2. As a result of an increase in SIC error, it is seen that
UN3 exhibits a greater rate of performance deterioration than
UN2. For both vehicles, 8× 4MIMO performs better than
MIMO because of its higher diversity gain. Simulations of the

net throughput and sum-rate between two VNs are performed
for SISO-NOMA, SIMO-NOMA, and MIMO-NOMA. The
power coefficients for UN1 and UN2 are β1 = 0.70 and β2 =
0.30, respectively, while the i.i.d. channel has a decaying fac-
tor of 0.40. It is assumed that the receiver has access to the ide-
al CSI. MMSE channel estimation also shows the sum rate per-
formance. Periodically, the BS transmits pilot signals for the
purpose of channel estimation. Even if the velocity is higher in
the case of S-LSTM when compared to the S-LSTM scheme,
SER performance is better compared to the LSTM NOMA
scheme. This is something that can be clearly recognized.

Fig. 13. Performance comparison between the 8 × 4 and 4 × 2
MIMO NOMA system over time selective Nakagami-m fading
channel considering SIC error.

5.2. Effect of the Number of Pilot Symbols and Clipping
Noise

As shown in Fig. 14, both MMSE and LS approaches may pro-
duce accurate estimates and detection rates when 120 pilots
are used. Standard MMSE, LS, and SIC-based receivers are
outperformed by the S-LSTM based NOMA detector. MMSE
and SIC-based receivers’ detection accuracy decreased by
15 dB SNR after limiting the number of pilots to 35, for both
VN1 and VN2. Additional pilots make it abundantly evident
that when the velocity between communication nodes ris-
es, the fading links transform from being frequency-flat to
time-selective, resulting in a decreased SER. However, the DL
NOMA receiver can equal the performance of the 120-pilot
example. This demonstrates that the S-LSTM-based receiver
is more dependable for many pilots and can attain a higher
level of performance with a lower number of pilots.
In Fig. 15, a comparison of performance is provided for
various values of CP. Considering the scenario in which
lengthCP is greater than lengthimpulse response, DL NOMA works
considerably better as opposed to the scenario the lengthCP is
less than lengthimpulse response. Because the channel is changing
at every instant, it has been demonstrated in the literature [12]–
[16] that neither MMSE nor LS schemes can properly detect
the fading channel coefficients. Due to the ISI effects caused
by temporal selectivity, the ideal ML-based NOMA receiver
can no longer provide the optimal response, even in the
event of perfect CSI. In a real-time communication scenario,
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Fig. 14. Performance comparison between S-LSTM and conven-
tional NOMA receivers for various pilot numbers, considering node
mobility and error variance equal to σ2ϵ = 0.02.

frequency-selective links are needed to check the robustness
of the S-LSTM NOMA receiver.

Fig. 15. Performance comparison between S-LSTM and conven-
tional NOMA receivers for various CP length values, considering
node mobility and channel error variance equal to 0.02.

When the influence of node mobility is disregarded, the S-
LSTM NOMA receiver’s end-to-end error performance under
frequency flat fading channel circumstances is in near agree-
ment with the ideal ML-based NOMA receiver. Additionally,
the end-to-end error performance of the Nakagami-m con-
nections considerably improved as the shape parameter or
amount of fading was increased. Additionally, the S-LSTM
NOMA detector for VN2 (far user) in Fig. 16 is robust in
terms of signal intensity and has an impact on conventional
error estimation. Performance of the DL NOMA detector is
equivalent to the optimal fading channel circumstances and is
more resistant to random channel fluctuations.
The simulated results have demonstrated that a reduction
in node velocity improves end-to-end system performance.
One of the issues that arises in connection with the use of
power amplifiers, is non-linear clipping noise. To maintain

Fig. 16. SER vs. SNR plots considering all impairments for time-
selective Nakagami-m fading connections.

the linearity of the power amplifier, the envelope cancella-
tion scheme is used in this work. In Fig. 16, end-to-end error
performance comparisons have been provided between the
S-LSTM, MMSE and conventional NOMA receivers, con-
sidering BPSK modulated symbols. The S-LSTM NOMA
detector has been found to perform better overall than the tra-
ditional SIC-based NOMA receiver when the clipping ratio
is equal to two and the SNR is more than 14 dB. As shown in
Fig. 17, performance improves significantly when S-LSTM is
used, but the end-to-end system performance improves with
a decrease in node velocity.

Fig. 17. Performance comparison between S-LSTM NOMA and
other conventional NOMA schemes for various CP.

The time-varying fading channel coefficients in the online
phase, considering BPSK symbols, are calculated using of-
fline data sets. Performance difference between the offline
and online states is shown in time-selective fading. Further-
more, these differences must be stable for the trained model.
Figure 18 presents the results of the effect that is caused by
changing the fading relationship statistics that are used dur-
ing the training and testing stages. It is easy to understand
that the performance of SER will improve if the number of
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Fig. 18. Performance S-LSTM NOMA for various number of paths
and delays with node velocity equal to 120 km/h.

possible paths is increased while maintaining the same fixed
propagation delay.

5.3. Impact of Training Rate and Packet Length

The achievable data rate plots for VNS are demonstrated in
Fig. 19, along with an investigation for the S-LSTM MIMO-
NOMA receiver trained at various training rates. It is evident
that a lower training rate leads to a greater data transmission
rate, supporting the hypothesis that a higher training rate
would result in more frequent weight changes and a bigger
validation error. A lower training rate of 0.004 improves
accuracy, but slows down convergence, since more updates
are required.

Fig. 19. Achievable data rates for various training data rates, con-
sidering node mobility equal to 120 km/h and error variance of
σ2ϵ = 0.02.

To balance training accuracy and duration, the training rate
has been adjusted to 0.03 for all other simulation scenarios.
Smaller packets, however, offer reduced testing precision.
Figure 20 shows the data rate that is achievable for different
packet lengths when the node mobility is set to 130 km/h and
the error variance is set to σ2ϵ = 0.02. Additionally, more data
is used to offer a more precise estimate of the gradient for

Fig. 20. Achievable data rate for various packet lengths, considering
node mobility equal to 130 km/h.

each update, even though larger-sized packets require fewer
iterations and updates of S-LSTM’s parameters. Therefore,
a final receiver with superior performance benefits from larger
packet sizes.

6. Conclusion

This work presents a preliminary analysis of an S-LSTM-
based MIMO-NOMA receiver and considers node mobility,
SIC error and channel estimation error. Relative velocity
between the BS and mobile users yields the ISI and time se-
lectivity results in the enhanced end-to-end SER increase and
OP. The simulation results show that the S-LSTM technique
works better than the conventional SIC receiver and is more
resistant to limited radio resources, such as SE, energy effi-
ciency, number of pilot symbols, training rate, packet length,
and CP than previous channel estimation methodologies. For
more complex models, such as S-LSTM MIMO-NOMA sys-
tems, more research and testing will be performed. The entire
training and testing procedure presented in this work starts
with a time-selective channel profile. The impacts of node
mobility and imperfect CSI will be examined for use in ac-
tual applications, in order to further evaluate the S-LSTM
NOMA model’s resistance to random channel profiles.
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