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Abstract—In this paper a smart modeling approach for re-
alistic simulation of selected technological parameters is pre-
sented. The technology of making contacts with plasma vapor
deposition (PVD) method has been chosen for this purpose.
The analysis is based on the Monte Carlo (MC) method and
uses the Excel worksheet – the simplest tool, easily accessi-
ble to anyone. The statistic parameters are calculated and
discussed as we introduce this experiment to demonstrate the
advantages of design for six sigma (DFSS).
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1. Design for six sigma

Design for six sigma (DFSS) [1] and its metric – the prob-

ability of non-compliance [2] make it possible to consider

different sources of variation when applied in manufactur-

ing. The philosophy of this approach is that variation exists

in all systems, components, and procedures. The proba-

bilistic analysis is to be run when analysing and optimising

all the successive phases of the design and its implemen-

tation (Fig. 1a). DFSS approach may also be applied in

research, such as experiments, simulations, result analysis,

etc. (Fig. 1b). In this paper a methodology presented in

Fig. 1b is proposed.

Using DFSS one analyses the whole statistical distribution

of input values or parameters over their possible range, in-

stead of estimating the influence of extreme (therefore rare)

values on the operation or the condition of the object. Thus

instead of calculating the limits of the result range, one

calculates the probability of the distribution of possible re-

sults. And the distribution of probability is the basic metric

for DFSS.

When an output response represents the total influence of

independent input values and parameters, the output distri-

bution tends to be normal as a result of the central limit

theorem [3]. The significance of this is that there is no

precondition for probability distributions of the input de-

sign parameters (they do not have to be normal) to obtain

a normal output response. The majority of physical phe-

nomena and variables are represented by the normal distri-

bution.

The Tchebychev inequality known in statistics [3], states

that at least 1−(1/k2
) per cent of any distribution is within

the product: (±k× deviation×mean).

Table 1

The per cent of normal distribution covered by the range

calculated with Tchebychev inequality

k [- -] 1 1.415 2 3 4 5 6

[%] 68.3 84.3 95.5 99.7 99.99 99.99994 99.9999998

In the case of normal distribution the percentage in this

range is known exactly (Table 1).

2. Monte Carlo method

Monte Carlo (MC) methods were used already in 1947 to

simulate the neutron transport in the research on the hydro-

gen bomb [4]. Since their first presentation (at a conference

in Los Alamos in 1949), they have been used to predict

“almost everything”, from a simple bingo game, through

weather forecasts to atomic fusion.

The goal of the MC method is to simulate an existing ob-

ject (an equation, a model, a process, etc.) by randomly

sampling the input ranges (input distributions) and then

calculating the output response. The flow chart is shown

in Fig. 2.

The fundamental problem of using MC to perform a prob-

abilistic analysis is that it requires a large number of trials

to obtain a sufficient confidence in the results. With the

development of PCs many techniques have been developed

to generate random numbers; with many of them still re-

quiring huge time and memory resources. MC methods

can be applied to extremely complex finite element mod-

els, fluid dynamics, etc., but every trial may last long hours

and the computer grids (parallel processing) are the only

solution to meet these demands. They are beyond the scope

of this paper, as we propose to use Excel RAND() func-

tion, that is adequate for application in a great number

of cases.
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Fig. 1. Phases of considering the variations (a) in the production; (b) in testing the model.

Fig. 2. Monte Carlo method. Flow chart.

3. Distributions prepared in Excel

A standard uniform random number (any number be-

tween 0 and 1; denoted as RU) is required to generate

a random value from any probability density function. In

Microsoft Excel the RAND() function returns RU . Some

experts claim that the algorithm applied in Excel does

not meet the rigorous standard required for cryptography,

but it is absolutely sufficient for simulations in engineer-

ing. Random numbers for a standard normal distribution

(denoted as RN; both mean and standard deviation are

equal to zero) can be computed with Box-Muller method,

known since 1958 [4]:

RN =

√

−2 ln(RU1) · cos
(

2π · (RU2)

)

, (1)

where RU1 and RU2 are uniform random numbers.

The Excel function is:

RN=SQRT(−2∗LN(RAND()))∗COS(2∗PI()∗RAND()).

Having RU and RN numbers one may generate a com-

mon distribution (e.g., uniform, normal, log-normal, expo-

nential, etc.) using the appropriate formulae with the de-

sired values of mean and standard deviation. For a uniform

distribution between the minimum (min) and maximum

(max) values the random value (denoted as RV ) is cal-

culated as:

RV = (max−min)RU + min (2)

and for a normal distribution:

RV = mean + deviation ·RN . (3)

The more random numbers we generate, the closer the

mean and the standard deviation are to specified values.

If one generated an infinite number of RNs – the calcu-

lated mean and deviation would be equal exactly to the

specified ones.

As it was mentioned before, Microsoft Excel may be used

to generate random numbers. The maximum number of

MC trials is limited by the maximum number of rows in

the worksheet (65,536 trials in Excel 2002). It is assumed

that one thousand trials already meet the requirements,

with a limited confidence. The author checked tens ran-

domised normal distributions (ND) with one thousand runs,

assuming the mean of 10 and the calculated means equalled

to 9.8 – 10.2 so the error was not greater than 2 per cent.

A screen capture with typical results is shown in Fig. 3.

In the simulated experiment described later 5000 trials

were used.
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Fig. 3. The part of the spreadsheet to check the error at one thousand trials.

4. The experiment

The MC method was used to simulate plasma vapor

deposition (PVD) metallization from a resistive source

(Fig. 4) intended to form aluminium contacts. A detailed

description of this process may be found, e.g., in [5, 6].

The technique is used in the Technical University of Łódź,

Institute of Electronics (TUL IE) during studies to im-

prove the quality of contacts to such materials as SiC.

The process takes place in a vacuum chamber (Fig. 5).

The goal of the virtual experiment is to anticipate the

solution of the Langmuir formula [5] for the evaporation

rate:

v = 77.8

√

M

T
· ps [g/cm

2
s] , (4)

where: M – molecular weigh [g/mole], T – material

temperature [K], ps – vapor pressure at the tempera-

ture T [Pa].
Fig. 4. The typical system for PVD from the resistive source

[from student manual, TUL IE].
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Table 2

Range and distribution of input parameters

Parameters
Experiment I Experiment II

Range Distribution Range Distribution

Purity of aluminium ±0.5% uniform ±0.5% uniform

Temperature ±1% Gaussian ±2% Gaussian

(∼12 degrees) (deviation = 0.66) (deviation = 1.3)

Pressure ±10% Gaussian ±20% Gaussian

(changes logarithmically) (deviation = 1) (deviation = 2)

The formula (4) is true when the pressure of residual

gases is lower than 1.33
−4 Pa. It takes 30–40 min to

deposit a layer with the typical thickness of 1–1.2 µm

at substrates heated to ∼ 475 K. Process duration increases

to 40–60 min at temperatures of 572–625 K [7]. The pump-

ing, heating and cooling rate strongly affects the quality of

the layers.

Fig. 5. The interior of the chamber in TUL IE.

The melting point of pure aluminium is 932 K and its

evaporation takes place at 1421 K. The optimum evapo-

ration rate is 0.85 ·10
−4 g/cm2s [5]. Temperature stability

is very important here since its increase by approximately

10–15 per cent may elevate the pressure as much as ten

times, and the evaporation rate depends on the diffusion of

the outer layers of the cloud of vaporised aluminium.

5. The MC simulation

The optimum values of input (purity of aluminium M, tem-

perature T and vapor pressure ps) and output (evaporation

rate) parameters are assumed to be 100 per cent. The goal

of the simulation is to study the variation of evaporation rate

with the variation of input parameters (strongly depending

on the conditions in the lab).

The range and distribution of input parameters are listed in

Table 2. Every experiment covers 5000 trials.

The obtained distribution of evaporation rate is presented

in Fig. 6 for experiments I (Fig. 6a) and II (Fig. 6b).

Fig. 6. The distribution of results – quantity of events in the

classes: (a) experiment I; (b) experiment II.

The whole range of rates (maximum rate – minimum

rate) was divided into 20 equal sub-ranges (we have

established 20 classes). Quantities in classes are listed in

Table 3, which contains also basic statistical parameters.

The accepted limit value may be chosen arbitrarily. The

last row in Table 3 means that the assumed maximum

allowed change of the output (i.e., evaporation rate) is

5 per cent for our experiments. It may be seen that more
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than 30 per cent of output values will not meet this require-

ment in experiment II and less than 5% in experiment I.

Table 3

Simulation results

Classes
Quantity in classes

Experiment I Experiment II

1 1 2

2 5 3

3 12 16

4 29 52

5 98 94

6 144 168

7 275 289

8 433 450

9 547 533

10 717 681

11 698 694

12 644 619

13 532 511

14 417 369

15 226 245

16 125 154

17 71 63

18 16 37

19 7 15

20 3 5

Parameters Values

Mean [%] 100.022 99.99087

Deviation 1.066626 2.110416

Min value [%] 96.00374 92.44879

Max value [%] 103.7724 107.0591

Median [%] 100.0243 100.0857

Within the range

of coarse values: 98–102
95.5% of events 68.3% of events

These are our probability of non-compliance (PNC) results

for the assumed parameters.

6. Conclusions

The example given in this paper focused on math and

statistics, but MC method may be used in numerous con-

siderations. When the distribution type for a population is

determined, one can simulate any object for which an ap-

propriate model exists. One can calculate characteristic pa-

rameters for the investigated distributions; determine what

the tolerance limits or the range should be (based on ex-

pected behavior); estimate how great is PNC for a given

case and assumptions. The presented example shows how

helpful Excel may be in this research. In the investigated

case the time to make a population and to calculate the

statistic parameters was very short (a few seconds). Thus

it has been demonstrated that Excel is sufficient as a DFSS

tool.
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