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Abstract — A gradient based optimization technique along
with a new definition of cost function is applied to synthesis
of coupled resonators filters. The cost function is defined us-
ing location of zeros and poles of the filter’s transfer function.
The topology of the structure is enforced on each step of opti-
mization and its physical dimensions are used as independent
variables.
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1. Introduction

Coupled resonator filters have found many applications in
communication systems. Synthesis techniques of this class
of filters have been known for long time [1, 2]. Unfortu-
nately, some of those synthesis techniques do not always
converge with [6] others, such as those based on equivalent
circuits, and provide only approximation of filter parame-
ters. This results, in many cases, in the necessity to apply
certain optimization methods to meet electrical specifica-
tions.
Recently, a gradient based optimization method along with
relatively simple definition of the cost function was used for
synthesizing coupled resonators filters and excellent results
have been reported in [6]. Unfortunately, this technique
requires at least rough synthesis serving as a starting point
for the optimization method to ensure good quality of the
final solution.
This paper presents new approach to the coupled resonator
filters synthesis which allows to find physical parameters
of filter with a given topology without any prior synthe-
sis. The method is partly similar to one described in [6].
It uses gradient based optimization technique along with
modified cost function. The cost function is based on di-
rect analysis of zeros and poles location of filter’s transfer
function. Physical dimensions of the structure are then used
as variables in the optimization procedure. The superiority
of the proposed approach is evident as a starting guess for
a gradient optimization method can be chosen almost at
random.
To illustrate application of the method three kind of filters
were synthesized:

– an E-plane metal insert filter of the fourth order
(Fig. 1),

– a filter based on inductive irises of the third order
(Fig. 2),

– same filter as above, but with rounded corners
(Fig. 3).

The first two filters were analyzed using the mode-matching
technique (MM) and the third one by means of the Finite
Difference-Time Domain (FD-TD) method. We have cho-
sen a gradient technique based on the Sequential Quadratic
Programming (SQP) method as optimization tool. This
method is implemented in the Matlab Optimization Tool-
box.

2. Cost function

The centerpiece of the new CAD procedure is a new def-
inition of cost function which involves quantities uniquely
describing the filtering character of electrical prototype. To
derive this cost function let us recall that for the generalized
Chebyshev approximation of the filter composed of series
of N coupled resonators the transfer function S21(ω) of the
electrical prototype is given by

��S21

��2 = 1
1+ ε2F2

N (ω)
; (1)

where ε is a constant related to the passband return loss
and FN(ω) is the filtering function given by
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ωn is the position of the nth transmission zero.

If all n transmission zeros are at infinity, the filtering func-
tion becomes a pure Chebyshev polynomial defined as
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�
: (4)

FN(ω) and TN(ω) are rational functions. For instance
FN(ω) can be expressed as [7]
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Fig. 1. E-plane metal insert filter (WR-75 waveguide, t =
= 0:5, w1 = 2:866, w2 = 10:288, w3 = 11:66, l1 = 11:077,
l2= 11:106 – all dimensions in mm).

Fig. 2. Filter based on inductive irises in a rectangular
waveguide (WR-75 waveguide, a= 19:05, b= 9:525, t = 2,
a1= 9:845, a2 = 6:795, l1= 13:218, l2= 14:632 – all dimen-
sions in mm).

Fig. 3. Filter based on inductive irises in rectangular waveg-
uide with rounded corners (WR-75 waveguide, a = 19:05,
b = 9:525, t1 = 1:634, t2 = 1:75, a1 = 9:539, a2 = 6:546,
l1= 13:419, l2 = 14:758, r = 1:5 – all dimensions in mm).

Fig. 4. Scattering parameters of E-plane metal insert filter.

Fig. 5. Scattering parameters of filter based on inductive
irises.

Fig. 6. Scattering parameters of inductive irises filter with
rounded corners.
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For the bandpass approximation the angular frequency ω
is related to ω0 and bandwidth

∆ω by ω!(ω0=∆ω((ω=ω0)� (ω0=ω)):

Since FN is a rational function so is S21 and up to the scaling
factor they both are uniquely determined by the location of
their poles and zeros. Calculating the poles (Pi) as roots of
a denominator and zeros (Zi) as roots of a numerator of the
transfer function gives the cost function defined as follows:

C=
N

∑
i=1

��Z0(i)�Z(i)
��2+ N

∑
i=1

��P0(i)�P(i)
��2 ; (7)

where (Z0

i ) and (P0

i ) are zeros and poles of a filter being op-
timized. The (Z0

i ) and (P0

i ) are calculated for every structure
created by optimization procedure. For pure Chebyshev fil-
ters and other all-pole filters the cost function degenerates
to the following form

C=
N

∑
i=1

��P0(i)�P(i)
��2 : (8)

To extract poles and zeros from the frequency response of
the optimized filter the two procedures are possible depend-
ing on whether the time domain or the frequency domain
software is used to calculate the electromagnetic response
of the filter.

3. Pole extraction from time domain
data for all-pole filters

Let us first deal with all-pole filters and the time do-
main techniques such as the Finite Difference-Time Domain
method. Time domain techniques are in general ill-suited to
repetitive analysis of filters required in optimization. This
is because the simulation time for high-Q circuits can be
too long. However, the analysis time can be substantially
shortened and additionally for all-pole filters the poles re-
quired for forming the objective function can be extracted
directly from time domain output transients without any
need to compute frequency domain characteristics.
To this end we use the matrix pencil approach (MP) [4, 5].
In general, the MP technique builds a model of discrete
time signal in the form of a superposition of P=2 damped
sinusoids, where P is a model order. This can be written
as

y(n∆t)�
P

∑
i=1

Aiz
n
i ; (9)

where zi = ep0

i∆t , ∆t is the sampling time, n is the sample
number, Ai is pole residue and p0i is the location of pole in
the complex plane. Hua and Sarkar [5] showed that poles
of the model can be estimated by considering a matrix
pencil

Y1 �λY2 (10)

with the following data matrices

Y1 =

0
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...
...

. . .
...
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1
CCCA (11)

Y2 =
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x(0) x(1) � � � x(L�1)
x(1) x(2) � � � x(L)

...
...

. . .
...

x(K�L�1) x(K�L) � � � x(K�2)

1
CCCA ; (12)

where K is the number of samples and L is the pencil pa-
rameter. The rank of matrix Y1 � λY2 is P except when

λ = zi = ep0

i∆T . Hence, the poles p0i can be determined by
finding the rank reducing values λ of matrix pencil. Tech-
nically, this is amounts to solving an ordinary eigenvalue
problem

(Y1
†Y2 �λ I )a = 0; (13)

where a is the generalized eigenvector of (10) and Y1
† is the

Moore-Penrose pseudoinverse of Y 1, which can be found
using the singular value decomposition.
Keeping in mind that the method is applied to filter design,
selection of model order P is straightforward, namely the
number of damped sinusoids should be twice as large as the
number of filter cavities (poles appear in complex conjugate
pairs) or, in other words it should be set to the number of
poles in the filter prototype.
So the location of poles on the complex plane is deter-
mined for each trial filter by computing the eigenvalues of
matrix Y1

†Y2 . These eigenvalues are used to evaluate the

cost function later. Once the poles are known, one might
proceed to find the amplitudes of each damped sinusoid.
This would be required for obtaining the frequency domain
characteristics. However, this step may be skipped in case
of all-pole filter optimization as the amplitudes are not used
in the definition of cost function.
Matrices Y1 and Y2 are assembled based on desampled

FD-TD sequences of field recorded at the filter output. Se-
lection of time segment to be used for extracting poles is
based on the technique accounting for signal dynamics de-
scribed in detail in [3]. In general, the recorded samples
are divided into early and late time response. The first part
is discarded. The other part, determining the late time be-
havior of output transients provides the samples for the MP
method. The criterion for signal separation on early and
late time responses is based on investigation of normalized
average energy passing though output port of the filter.
Application of the MP technique for filter optimization, as
proposed in this paper, requires an additional step whose
incorporation guarantees correct extraction of poles. Be-
fore the data matrices Y1 and Y2 are assembled, the time-

domain signal is passed through a cascade of digital filters.
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The bandwidth of a single component of the cascade should
be somehow greater than the bandwidth of filter being de-
signed. In general, the cascade should consists of low-order
Chebyshev or Butterworth filters whose poles shall not co-
incide with the poles of filter being the optimization tar-
get. This technique is called the Band-Pass Matrix Pencil
(BPMP) method [5].

4. Extraction of zeros and poles
from frequency domain characteristics

When the filtering function has zeros that affect the stop
band behavior of a filter, the approach outlined above can
not be used. Also, while theoretically possible, it does
not make any practical sense to use BPMP operating on
time domain data to optimize all-pole filter when the fre-
quency characteristics are known (e.g. computed by the
mode-matching method). For these cases we propose to
use the Cauchy method [8]. The Cauchy method is an in-
terpolation technique which assumes that the approximated
function is expressed as ratio of two polynomials. Co-
efficients of these polynomials are found by applying the
total least squares technique to solve a set of complex linear
equations involving the values of function to be interpolated
at few sampling points. To set up the equations one uses
the filter’s frequency characteristics obtained using the full
wave method. The Cauchy method yields then the polyno-
mials in numerator and denominator whose roots are zeros
Z0

i s and poles P0

i s which are subsequently used to form the
objective function. Note, that the order of the polynomials
in numerator and denominator are known from filter speci-
fications. This implies that provided the structure topology
permits it, the Cauchy method combined with optimization
procedure should find the filter dimensions which guarantee
that transfer function of the optimal geometry reproduces
as closely a possible, the distribution of zeros and poles of
ideal electrical prototype. Obviously, the Cauchy method
should be used also in conjunction with time domain anal-
ysis for filters whose transfer function contains zeros.

5. Results

The methods outlined above were verified by synthesiz-
ing the three previously mentioned filters. In all cases
a starting guess for the optimization was chosen at ran-
dom within the range of possible dimensions for a given
topology. The first two filters were analyzed using mode
matching techniques and the poles were found by means of
Cauchy method. For the filter with the rounded corners,
FD-TD QuickWave software was used and the poles ex-
tracted directly from transients with the MP technique de-
scribed above. Regardless of the numerical tool used and
the poles extraction technique applied the optimization
converged to solution meeting electrical specifications

(Figs. 4–6). The number of cost functions evaluations dur-
ing the gradient based optimization (SQP method) ranged
from 420 to 580 depending on number of independent vari-
ables. Finally, it has to be pointed out that while this paper
presents only all-pole designs, pseudo-elliptic filters with
finite transmission zeros have also been designed. The re-
sults are presented in [9].

6. Conclusions

Using a gradient based optimization technique along with
a new definition of cost function it is now possible to design
resonator filters based on given topology without any prior
synthesis. Due to the judicious choice of goal function
and robust post-processing techniques used to extract zeros
on poles of the filter response, the new algorithm appears
to converge globally from an arbitrarily selected starting
dimensions.
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