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Abstract — In this paper we present a new probability
function G that generalizes the classical probability function.
A mass function is an assignment of basic probability to some
context (events, propositions). It represents the strength of
support for some contexts in a domain. A context is a subset
of the basic elements of interest in a domain – the frame of dis-
cernment. It is a medium to carry the “probabilistic” knowl-
edge about a domain. The G function is defined in terms
of a mass function under various contexts. G is shown to
be a probability function satisfying the axioms of probability.
Therefore G has all the properties attributed to a probability
function. If the mass function is obtained from probability
function by normalization, then G is shown to be a linear
function of probability distribution and a linear function of
probability. With this relationship we can estimate probabil-
ity distribution from probabilistic knowledge carried in some
contexts without any model assumption.

Keywords — mathematical foundations, knowledge representa-
tion, machine learning, uncertainty, data mining.

1. Introduction

Probability theory is the body of knowledge that enables us
to reason formally about uncertain events or propositions.
There are different approaches to probability theory, most
notably the frequentist and Bayesian approaches [1, 4].
In the frequentist point of view, the probability of an event
is taken to be equal to the limit of the relative frequency of
the chosen event with respect to all possible events as the
number of trials goes to infinity. The appeal of the frequen-
tist approach for scientists lies in the apparent objectivity
of its treatment of data.
On the other hand, the Bayesian approach extends the in-
terpretation of probability to include degrees of belief or
knowledge in propositions. We pass from the probabil-
ity of events (frequentist) to the probability of propositions
(Bayesian). Nevertheless the axioms used to define the
mathematical properties of probability remain unchanged.
Consequently many of the statistical procedures of the two
approaches are identical.
Here we focus on the mathematical properties of probabil-
ity. In particular we take probability to be defined in terms
of probability distribution. Let Ω be a set consisting of the
basic elements of interest in a domain. A probability dis-
tribution function is p : Ω! [0;1] such that ∑x2Ω p(x) = 1.
A (classical) probability function is P : 2Ω ! [0;1] such
that, for any E �Ω

P(E) = ∑
x2E

p(x): (1)

The function P(E) is the probability that an arbitrary ele-
ment x2 Ω belongs to a well-defined subset E �Ω.

It can be shown that the classical probability function de-
fined above satisfies the axioms of probability: for any
event E �Ω:

� P(E)� 0.

� P(Ω) = 1.

� If E1\E2 = /0 then P(E1[E2) = P(E1)+P(E2).

It is recognized that any function satisfying the axioms of
probability, however defined, is a probability function [1].
If we know the probability distribution (in the case of fi-
nite sets) or density (in the case of infinite sets) we can
calculate probability for any events – in a sense probability
distribution provides us with complete information about
a domain ([3], p. 273). Therefore probability distribution
estimation – estimating the probability distribution from
known probabilities for some events – is very important.
This is in a sense a way of extending or generalizing our
knowledge (represented by probabilities on some events) to
all possible events of interest.
There are two general classes of distribution models: para-
metric and nonparametric. Parametric models assume
a particular functional form for the distribution function,
such as a uniform distribution, a normal distribution, and
so on [3]. Parametric models are often characterized by
a relatively small number parameters. Parametric models
have the advantage of simplicity (easy to estimate and in-
terpret) but may have relatively high bias because real data
may not obey the assumed functional form.
In nonparametric models the distribution estimate is data-
driven and relatively few assumptions are made a priori
about the functional form. Histogram, kernel models and
k-nearest-neighbors are examples. Histogram is a relatively
primitive version of kernel method, and k-NN is a special
case of kernel [5]. Kernel methods are based on the as-
sumption that a function is constant locally, but the extent
of “locality” is parameter to be given, which has a critical
bearing on the performance of the methods.
In this paper we present a theory that generalizes the clas-
sical probability theory. It can estimate probability distri-
bution without any model assumption.

2. Contextual probability function
Let Ω be a finite set called frame of discernment. E�Ω is
called a context or event. A mass function is m: 2Ω ! [0;1]
such that

∑
X�Ω

m(X) = 1: (2)

The mass function is interpreted as a representation of
(probabilistic) knowledge about Ω.
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Our objective is to extend our knowledge to those contexts
that we have no explicit knowledge about in m. Therefore
we define a new function G : 2Ω ! [0;1] such that for any
E �Ω

G(E) = ∑
X�Ω

m(X)
jE\Xj
jXj

: (3)

The interpretation of the above definition is as follows.
Context E may not be known explicitly in the represen-
tation of our knowledge, but we know explicitly some con-
texts X that are related to it (i.e., E overlaps with X or
E\X 6= /0). Part of the knowledge about X (m(X)) should
then be attributed to E. Since we do not know how this
knowledge about X is distributed among the components
in X, we can assume it is evenly distributed. So the part of
this knowledge attributable to E is m(X)�jE\Xj=jXj.

Theorem 1. G is a probability function on Ω. That is to
say:

1. For any E �Ω, G(E)� 0.

2. G(Ω) = 1.

3. For E1;E2 2 Ω, G(E1 [ E2) = G(E1) + G(E2)
if E1\E2 = /0.

Proof. The first claim is true following the fact that
m(X)� 0 for any X �Ω. The equation holds when E = /0.

The second claim is true since G(Ω) = ∑X�Ω m(X).

Let’s now consider the third claim. X \ (E1 [ E2) =
=(X\E1)[(X \E2). If E1\E2 = /0 then jX\ (E1[E2)j=
= jX\E1j+ jX\E2j. As a result we have

G(E1[E2) = ∑
X�Ω

m(X)
jX\ (E1[E2)j

jXj
=

= ∑
X�Ω

m(X)
jX\E1j+ jX\E2j

jXj
=

= ∑
X�Ω

m(X)
jX\E1j

jXj
+ ∑

X�Ω
m(X)

jX\E2j

jXj
=

= G(E1)+G(E2) :

�

We therefore call G a contextual probability function, and
the formalism about this function is termed contextual
probability theory (CPT for short).

As a probability function G has the following properties,
the proofs of which are left to the readers.

� G(Ē) = 1�G(E).

� G( /0) = 0.

� If E1 � E2, then G(E1)�G(E2).

� G(E)� 1, for any context E.

� If E1;E2; � � � ;En are contexts such that Ei\Ej = /0 for
all pairs i; j , then

G(
n[

i=1

Ei) =
n

∑
i=1

G(Ei):

� G(E1[E2) = G(E1)+G(E2)�G(E1\E2).

By the above theorem we have

1= G(Ω) = ∑
x2Ω

G(x) :

As a result, if G is restricted to the singleton sets (i.e., the
elements in Ω) it is a (calculated) probability distribution.
This is in contrast to p, which can be interpreted as a priori
probability distribution.

For simplicity, if E is a singleton set, e.g., E = fag, we
write G(a) for G(fag).

Now we look at an example before we move on.

Example 1. Let Ω = fa;b;c;d;e; fg, and the mass func-
tion m be as follows:

m(fa;bg) = 0:3

m(fa;b;cg) = 0:4

m(fa;b;c;dg) = 0:1

m(fa;b;c;d;e; fg) = 0:2

Suppose that we are interested in the probabilities of the
contexts: fag;fbg;fcg;fdg;feg;f fg;fb;cg;fa;b;dg. Ac-
cording to the definition of G function, we have

G(a) = m(fa;bg)�
jfagj
jfa;bgj

+m(fa;b;cg)�
jfagj

jfa;b;cgj
+

+ m(fa;b;c;dg)�
jfagj

jfa;b;c;dgj
+

+ m(fa;b;c;d;e; fg)�
jfagj

jfa;b;c;d;e; fgj
=

= 0:3�1=2+0:4�1=3+0:1�1=4+0:2�1=6=

= 41=120

G(b) = G(a)

G(c) = m(fa;b;cg)�
jfcgj

jfa;b;cgj
+

+ m(fa;b;c;dg)�
jfcgj

jfa;b;c;dgj
+

+ m(fa;b;c;d;e; fg)�
jfcgj

jfa;b;c;d;e; fgj
=

= 0:4�1=3+0:1�1=4+0:2�1=6=

= 23=120

G(d) = m(fa;b;c;dg)�
jfdgj

jfa;b;c;dgj
+

+ m(fa;b;c;d;e; fg)�
jfdgj

jfa;b;c;d;e; fgj
=

= 0:1�1=4+0:2�1=6= 7=120
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G(e) = m(fa;b;c;d;e; fg)�
jfegj

jfa;b;c;d;e; fgj
=

= 0:2�1=6= 4=120

G( f ) = G(e) :

Clearly G(a)+G(b)+G(c)+G(d)+G(e)+G( f )= 1. Fur-
ther on, we have

G(fb;cg) = m(fa;bg)�
jfbgj
jfa;bgj

+

+ m(fa;b;cg)�
jfb;cgj
jfa;b;cgj

+

+ m(fa;b;c;dg)�
jfb;cgj

jfa;b;c;dgj
+

+ m(fa;b;c;d;e; fg)�
jfb;cgj

jfa;b;c;d;e; fgj
=

=0:3�1=2+0:4�2=3+0:1�2=4+0:2�2=6=

= 64=120= G(b)+G(c)

G(fa;b;dg) = m(fa;bg)�
jfa;bgj
jfa;bgj

+

+ m(fa;b;cg)�
jfa;bgj
jfa;b;cgj

+

+ m(fa;b;c;dg)�
jfa;b;dgj
jfa;b;c;dgj

+

+ m(fa;b;c;d;e; fg)�
jfa;b;dgj

jfa;b;c;d;e; fgj
=

= 0:3+0:4�2=3+0:1�3=4+0:2�3=6=

= 89=120= G(a)+G(b)+G(d) :

3. CPT versus probability theory
and Dempster-Shafer theory

Contextual probability theory generalizes classical prob-
ability theory in the sense that the probability distribu-
tion p changes to the mass function m and the probability
function P changes to contextual probability function G.
The probability distribution p is defined on Ω while m is
defined on 2Ω; P and G are both defined on 2Ω and they
are both probability functions. Once the mass function is
restricted to singletons the G function becomes the proba-
bility function.
Dempster-Shafer (D-S for short) theory [6] is also a gen-
eralization of probability theory, which has evolved from
a theory of upper and lower probabilities. It starts by as-
suming a set Ω and a mass function m, based on which the
belief function bel and plausibility function pls are defined.

Formally the mass function is m : 2Ω ! [0;1] where
m( /0) = 0 and ∑X�Ω m(X) = 1. Belief function is bel :
2Ω ! [0;1] such that, for E�Ω, bel(E)=∑X�Ω;X�E m(X).

Plausibility function is pls : 2Ω ! [0;1] such that pls(E) =
= 1�bel(E0), where E0 is the complement of E in Ω.

The set Ω is a set of mutually exclusive alternatives. For
any E �Ω, m(E) represents the strength of some evi-
dence supporting E; bel(E) summarizes all reasons to be-
lieve E, and pls(E) expresses how much we should be-
lieve in E if all currently unknown facts were to support E.
Thus the true belief in E will be somewhere in the interval
[bel(E); pls(E)].

When the mass function is restricted to singleton elements
x 2 Ω, the belief and plausibility functions become the
same and they are also the same as the probability func-
tion. Therefore D-S theory is regarded as a generalization
of probability theory [2].

However the belief function satisfies the first two axioms
of probability theory, but for the third axiom the equation
is changed to “�” [2]. Therefore the belief function is not
probability function.

Although both CPT and D-S theory can be understood as
generalizations of probability theory, there are differences
between the two:

� CPT uses a single function to represent “uncertainty”
while D-S theory uses two functions.

� The G function is a probability function, therefore
all of the properties of probability theory are still
valid. For example, with the additive property we
do not need to calculate G for every E � Ω; in-
stead we only need to do so for singletons x2Ω and
G(E) = ∑x2E G(x). The belief function is, however,
not a probability function. So we have to calculate
bel for every E �Ω.

4. Relationship between G and P

Now that G is a probability function, we may ask the ques-
tion: what is the relationship between G and P? To answer
this question we need to base m on p so that G can be con-
nected to P. Here we interpret mass function as a measure
of the occurrence of elements in a set. Therefore the larger
a set is the more likely the set as an event occurs.

Specifically we assume that the mass function be defined

in terms of probability as follows, letting K
def
= ∑X�Ω P(X)

m(E) =
P(E)

∑X�Ω P(X)
=

P(E)

K
: (4)

According to this interpretation of the mass function the
following lemma follows from the fact that P(E1)� P(E2)
when E1 � E2.

Lemma 1. If E1 � E2 then m(E1)�m(E2).

Let
�N

n

�
be the combinatorial number representing the num-

ber of ways of picking n unordered outcomes from N possi-
bilities. From combinatorics we know that

�N
n

�
= N!

(N�n)!n! .

With these assumptions we have the following results.
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Lemma 2. Let N = jΩj. Then K = ∑N
i=1

�N�1
i�1

�
=

= 2N�1.

Proof.

K = ∑
X�Ω

P(X) =
N

∑
i=1

∑
X�Ω;jXj=i

P(X) =

=
N

∑
i=1

∑
x2Ω

�
N�1
i�1

�
p(x) =

N

∑
i=1

�
N�1
i�1

�
∑
x2Ω

p(x) =

=
N

∑
i=1

�
N�1
i�1

�
= 2N�1 :

�

Theorem 2. Let α def
= 1

K ∑N
i=1

(N�2
i�1)
i , and β def

= 1
K ∑N

i=1
(N�2

i�2)
i .

Then G(x) = α p(x)+β for x2 Ω.

Proof.

G(x) = ∑
Y�Ω

x\Y
jYj

m(Y) = ∑
Y�Ω;x2Y

1
jYj

P(Y)

K
=

=
1
K ∑

Y�Ω;x2Y

P(Y)

jYj
=

1
K ∑

Y�Ω;x2Y

∑z2Y p(z)

jYj
=

=
1
K

N

∑
i=1

1
i ∑

Y�Ω;jYj=i;x2Y
∑
z2Y

p(z) =

=
1
K

N

∑
i=1

1
i

 �
N�1
i�1

�
p(x)+

�
N�2
i�2

�
∑
z6=x

p(z)

!
=

=
1
K

N

∑
i=1

1
i

��
N�1
i�1

�
p(x)+

�
N�2
i�2

��
1� p(x)

��
=

=
1
K

N

∑
i=1

1
i

��
N�2
i�1

�
p(x)+

�
N�2
i�2

��
=

= α p(x)+β :

�

The claim then follows.
Since both P and G are probability functions we have
∑x2Ω P(x) = 1 and ∑x2Ω G(x) = 1. According to Theo-
rem 2 we then have:
Corollary 1. α + jΩj�β = 1.

As a result we only need to calculate either of α and β ,
and the other can be determined according to the corollary.

Since both P and G are probability functions they sat-
isfy the additive axiom. In other words for E � Ω,
P(E) = ∑x2E p(x) and G(E) = ∑x2E G(x). Following The-
orem 2 we then have:
Corollary 2. G(E) = αP(E)+β jEj :

Theorem 2 and Corollary 2 establish the relationship be-
tween G and probability distribution, and G and probability
respectively. If we have full knowledge about the distribu-
tion we can calculate probability, which can further be used

to calculate G. On the contrary, if we have full knowledge
about G then we can calculate distribution and probabil-
ity precisely. The interesting question is, if we have only
incomplete or partial knowledge about G then we can get
an approximation to the probability (and probability dis-
tribution). Therefore CPT can be used as a method for
probability distribution estimation.

Example 2. Consider a set fa;b;c;dg, whose probability
distribution is assumed to be f0:1;0:3;0:4;0:2g. Following
definition, the P, m and G values can be calculated for all
the subsets (contexts) and are shown in Table 1.

Table 1
The set is Ω = fa;b;c;dg. The probability distribution
is assumed to be Ω = fa : 0:1;b : 0:3;c : 0:4;d : 0:2g.

Note that p(x) = P(fxg) for x2 Ω

E /0 fag fbg fcg
P 0 0.1 0.3 0.4
m 0 1/80 3/80 4/80
G 0 198=960 254=960 282=960

E fdg fa,bg fa,cg fa,dg
P 0.2 0.4 0.5 0.3
m 2/80 4/80 5/80 3/80
G 226=960 452/960 480/960 424/960

E fb,cg fb,dg fc,dg fa,b,cg
P 0.7 0.5 0.6 0.8
m 7/80 5/80 6/80 8/80
G 536/960 480/960 508/960 734/960

E fa,b,dg fa,c,dg fb,c,dg fa,b,c,dg
P 0.6 0.7 0.9 1.0
m 6/80 7/80 9/80 10/80
G 678/960 706/960 762/960 1

Clearly the G values for singleton subsets are slightly dif-
ferent from the those P values given in probability distri-
bution.
Let’s now illustrate the relationship between P and G with
respect to Theorem 2.
Here Ω has four elements so N = 4. Then according to
Lemma 2, K = 2N�1 = 23 = 8. Other components in the
theorem are calculated as follows:

α =
1
K

N

∑
i=1

�N�2
i�1

�
i

=

=
1
8

 �
2
0

�
+

�2
1

�
2

+

�2
2

�
3

+

�2
3

�
4

!
=

1
8

�
1+1+

1
3

�
=

28
96

β =
1
K

N

∑
i=1

�N�2
i�2

�
i

=

=
1
8

 �
2
�1

�
+

�2
0

�
2

+

�2
1

�
3

+

�2
2

�
4

!
=

1
8

�
1
2
+

2
3
+

1
4

�
=

17
96

:
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Now we show that P(x) = [G(x)�β ]=α for every elements
in the set.

[G(a)�β ]=α =

�
198
960

�
17
96

�
�

96
28

=
28
960

�
96
28

= 0:1

[G(b)�β ]=α =

�
254
960

�
17
96

�
�

96
28

=
84
960

�
96
28

= 0:3

[G(c)�β ]=α =

�
282
960

�
17
96

�
�

96
28

=
112
960

�
96
28

= 0:4

[G(d)�β ]=α =

�
226
960

�
17
96

�
�

96
28

=
56
960

�
96
28

= 0:2

Clearly the equation holds.
To illustrate Corollary 2, consider context E = fa;b;cg.
By the additive property of the G function we have

G(E) = G(a)+G(b)+G(c) = 734=960:

By the definition of G we have

G1(E) = m(a)+m(b)+m(c)+m(fa;bg)+m(fa;cg)+

+ m(fb;cg)+m(fa;b;cg)+
3
4
�m(fa;b;c;dg) =

=
1
80

+
3
80

+
4
80

+
4
80

+
5
80

+
7
80

+
8
80

+
3�10
4�80

=

=
158
320

G2(E) =
1
2

m(fa;dg)+
1
2

m(fb;dg)+
1
2

m(fc;dg) =

=
3

2�80
+

5
2�80

+
6

2�80
=

14
160

G3(E) =
2
3

m(fa;b;dg)+
2
3

m(fa;c;dg)+
2
3

m(fb;c;dg) =

=
2�6
3�80

+
2�7
3�80

+
2�9
3�80

=
44
240

G(E) = G1(E)+G2(E)+G3(E) =
734
960

:

The probability function P(E) is calculated according the
additive property as follows:

P(E) = P(fag)+P(fbg)+P(fcg)= 0:8:

Using the α and β values above we have

P(E)�α + jEj�β = 0:8�
28
96

+3�
17
96

=
734
960

= G(E)

Example 3. Now let’s look at another example with the
same Ω and the same underlying probability distribution.
We assume that we do not know the distribution explicitly,
but we know the probability values for some subsets. These
values are normalized to give a mass function. The known
probability and mass values are shown in Table 2.

Table 2
The probability and mass values for Example 3

E fa,bg fa,cg fb,dg fc,dg

P 0.4 0.5 0.5 0.6

m 4/50 5/50 5/50 6/50

E fa,b,cg fa,b,dg fa,c,dg fb,c,dg

P 0.8 0.6 0.7 0.9
m 8/50 6/50 7/50 9/50

By definition we have

G(a) =
1
2
[m(fa;bg)+m(fa;cg)]+

+
1
3
[m(fa;b;cg)+m(fa;b;dg)+m(fa;c;dg)]=

=
1
2
�

4+5
50

+
1
3
�

8+6+7
50

=
69
300

= 0:230

G(b) =
1
2
[m(fa;bg)+m(fb;dg)]+

+
1
3
[m(fa;b;cg)+m(fa;b;dg)+m(fb;c;dg)]=

=
1
2
�

4+5
50

+
1
3
�

8+6+9
50

=
73
300

= 0:243

G(c) =
1
2
[m(fa;cg)+m(fc;dg)]+

+
1
3
[m(fa;b;cg)+m(fa;c;dg)+m(fb;c;dg)]=

=
1
2
�

5+6
50

+
1
3
�

8+7+9
50

=
81
300

= 0:270

G(d) =
1
2
[m(fb;dg)+m(fc;dg)]+

+
1
3
[m(fa;b;dg)+m(fa;c;dg)+m(fb;c;dg)]=

=
1
2
�

5+6
50

+
1
3
�

6+7+9
50

=
77
300

= 0:257

To calculate P values from respective G values we need K,
α and β , which are functions of N. From Example 2 we
know that K = 8, α = 28=96= 0:292 and β = 17=96=
= 0:177. P(x) can be calculated by P(x) = [G(x)�β ]=α
for every elements as follows:

P(fag) = (0:230�0:177)=0:292 = 0:18

P(fbg) = (0:243�0:177)=0:292 = 0:23

P(fcg) = (0:270�0:177)=0:292 = 0:32

P(fdg) = (0:257�0:177)=0:292 = 0:27

With these values we can calculate probability for any other
subsets.
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If we apply Dempster-Shafer theory we can calculate the
belief and plausibility values for any contexts. For example

bel(fxg) = 0 for any x2 Ω:

The plausibility value is calculated as follows:

pls(fag) = m(fa;bg)+m(fa;cg)+m(fa;b;cg)+

+ m(fa;b;dg)+m(fa;c;dg) = 30=50

pls(fbg) = m(fa;bg)+m(fb;dg)+m(fa;b;cg)+

+ m(fa;b;dg)+m(fb;c;dg)= 32=50

pls(fcg) = m(fa;cg)+m(fc;dg)+m(fa;b;cg)+

+ m(fa;c;dg)+m(fb;c;dg) = 35=50

pls(fdg) = m(fb;dg)+m(fc;dg)+m(fa;b;dg)+

+ m(fa;c;dg)+m(fb;c;dg) = 33=50:

5. Summary and conclusion

In this paper we have presented a new probability func-
tion G – contextual probability function, which is defined
in terms of a basic probability assignment – mass function.
Therefore G has all the properties of the classical probabil-
ity function, which satisfies the three axioms of probability.
The mass function has similar meaning as that in the D-S
theory. Thus CPT enjoys the flexibility and other properties
attributed to the D-S theory. The key difference between
the two, however, is the fact that G is a probability function
whereas the belief and plausibility functions are not. One
consequence is that, due to the additive property, only the
G values for singleton elements in Ω need to be calculated
and the G values for any other subsets of Ω can be obtained
from the G values for singletons. This is a big save in time.
Since the belief and plausibility functions in the D-S theory
are not additive we have to calculate belief and plausibility
values for all subsets of Ω.
Though G is a probability function, CPT can be viewed as
a generalization of the classical probability theory in the
sense that if the mass function is defined only for elements
in Ω, the G becomes the P function. The D-S theory is also
regarded as a generalization of probability theory, but the

belief and plausibility functions are not probability func-
tions; they become probability functions when the mass
function is defined only for elements in Ω.
The mass function can be interpreted in different ways for
different purposes. We have shown that if it is interpreted
as normalized (summing up to 1) probability function, G is
a linear function of the P function. This connection makes
it possible to estimate probability distribution from the
probability values of some known events.
Future work should include interpreting the mass function
in other ways for other purposes and applying the CPT to
some real world problems.
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