Object structure
Title:

SPOT-GPR: A Freeware Toolfor Target Detection and Localizationin GPR Data Developedwithin the COST Action TU1208, Journal of Telecommunications and Information Technology, 2017, nr 3

Creator:

Pajewski, Lara ; Meschino, Simone

Subject and Keywords:

Ground-Penetrating Radar ; MUltiple SIgnal Classification (MUSIC) ; Sub-Array Processing ; Direction-of-Arrival algorithms ; matched filter technique

Description:

SPOT-GPR (release 1.0) is a new freeware tool implementing an innovative Sub-Array Processing method, for the analysis of Ground-Penetrating Radar (GPR) data with the main purposes of detecting and localizing targets. The software is implemented in Matlab, it has a graphical user interface and a short manual. This work is the outcome of a series of three Short-Term Scientific Missions (STSMs) funded by European COoperation in Science and Technology (COST) and carried out in the framework of the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar” (www.GPRadar.eu). The input of the software is a GPR radargram (B-scan). The radargram is partitioned in subradargrams, composed of a few traces (A-scans) each. The multi-frequency information enclosed in each trace is exploited and a set of dominant Directions of Arrival (DoA) of the electromagnetic field is calculated for each sub-radargram. The estimated angles are triangulated, obtaining a pattern of crossings that are condensed around target locations. Such pattern is filtered, in order to remove a noisy background of unwanted crossings, and is then processed by applying a statistical procedure. Finally, the targets are detected and their positions are predicted. For DoA estimation, the MUltiple SIgnal Classification (MUSIC) algorithm is employed, in combination with the matched filter technique. To the best of our knowledge, this is the first time the matched filter technique is used for the processing of GPR data. The software has been tested on GPR synthetic radargrams, calculated by using the finite-difference time-domain simulator gprMax, with very good results.

Publisher:

National Institute of Telecommunications

Date:

2017, nr 3

Resource Type:

artykuł

Format:

application/pdf

Resource Identifier:

ISSN 1509-4553, on-line: ISSN 1899-8852

Source:

Journal of Telecommunications and Information Technology

Language:

ang

Rights Management:

Biblioteka Naukowa Instytutu Łączności

×

Citation

Citation style: