Title: Robot Local Network Using TQS Protocol for Land-to-Underwater Communications, Journal of Telecommunications and Information Technology, 2019, nr 1


This paper presents a model and an analysis of the Tag QoS switching (TQS) protocol proposed for heterogeneous robots operating in different environments. Collaborative control is topic that is widely discussed in multirobot task allocation (MRTA) – an area which includes establishing network communication between each of the connected robots. Therefore, this research focuses on classifying, prioritizing and analyzing performance of the robot local network (RLN) model which comprises a point-to-point topology network between robot peers (nodes) in the air, on land, and under water. The proposed TQS protocol was inspired by multiprotocol label switching (MPLS), achieving a quality of service (QoS) where swapping and labeling operations involving the data packet header were applied. The OMNET++ discrete event simulator was used to analyze the percentage of losses, average access delay, and throughput of the transmitted data in different classes of service (CoS), in a line of transmission between underwater and land environments. The results show that inferior data transmission performance has the lowest priority with low bitrates and extremely high data packet loss rates when the network traffic was busy. On the other hand, simulation results for the highest CoS data forwarding show that its performance was not affected by different data transmission rates characterizing different mediums and environments.


Instytut Łączności - Państwowy Instytut Badawczy



Resource Identifier:

ISSN 1509-4553, on-line: ISSN 1899-8852 ; oai:bc.itl.waw.pl:2066


Journal of Telecommunications and Information Technology



Rights Management:

Biblioteka Naukowa Instytutu Łączności

Object collections:

Last modified:

Apr 15, 2019

In our library since:

Apr 15, 2019

Number of object content hits:


All available object's versions:


Show description in RDF format:


Show description in OAI-PMH format:


Objects Similar



Citation style:

This page uses 'cookies'. More information